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Abstract 
This paper is concerned with knowledge representation 
issues in machine learning. In particular, it presents a 
representation language that supports a hybrid analytical and 
similarity-based classification scheme. Analytical classi- 
fication is produced using a KL-ONE-like term-subsumption 
strategy, while similarity-based classification is driven by 
generalizations induced from a training set by an unsuper- 
vised learning procedure. This approach can be seen as 
providing an inductive bias to the learning procedure, 
thereby shortening the required training phase, and reducing 
the brittleness of the induced generalizations. 

Introduction 
Classification is a central concern of knowledge 

representation and machine learning. At the heart of 
many knowledge representation systems is a classifi- 
cation procedure which determines where an individual 
fits within the knowledge base. These classification pro- 
cedures are realized in various ways, for example in rule- 
based frameworks, or with the term subsumption strategy 
of KL-ONE. They are all, however, analytic methods. A 
major problem for these analytic methods is that they 
require a large knowledge base to guide classification; 
typically this knowledge base is constructed by hand. 

The machine learning community’s concern with 
classification addresses the above problem by auto- 
matically acquiring classification schemes from a 
collection of examples. Although various techniques 
have been developed, such as inductive learning and 
case-based reasoning, all can be thought of as statistical 
classification mechanisms. A major problem with these 
methods is their “example complexity,” the large number 
of training examples required if one wants to induce a 
classification that distinguishes unusual classes while 
ensuring that typical classes are recognized as such. 
Further, if the classification method is incremental, it 
tends to be sensitive to the order in which the examples 
are presented; to recover from a poor classification 
typically requires a large number of “normal” cases. 

The extent of this example complexity was measured 
by Aghassi (1990) in the context of the Heart Failure 
program, a model-based expert system that diagnoses 
patients with heart failure (Long et al. 1987). Aghassi 

estimates that in this moderately complex domain, a 
case-based classifier with no prior background knowledge 
would need to be trained with as many as 100,000 cases 
to provide reasonably accurate similarity classifications. 

We believe that the approaches to classification taken 
by the knowledge representation and machine learning 
communities complement each other and can be 
fruitfully combined: express the normal cases within an 
analytical classification framework and use the statistical 
classification procedure to identify the exceptional cases. 
To accomplish this requires a hybrid knowledge represen- 
tation that combines analytical and contingent languages. 

In the following sections we describe a machine 
learning classification system and show how analytic 
knowledge can be incorporated within it, then we 
describe the hybrid knowledge representation, and 
discuss the relationship between this work and the 
machine learning community’s concept of inductive bias. 

A Hybrid Learning System 

Background: Dynamic Memory 
We have previously described a medical diagnosis 

program that used case-based reasoning to construct a 
knowledge base for classifying cases of heart failure 
(Koton 1988). The knowledge base, in the form of a 
dynamic memory (Kolodner 1983), was constructed 
entirely by the program, using the cases that had been 
presented to it, and using assistance from the Heart 
Failure program. 

A dynamic memory records instances of cases, 
organizing them in a hierarchy. Cases are made up of 
attribute-value pairs (or features). The memory also 
applies a learning procedure to create generalizations, 
frames that record the similarities between a group of 
cases. Each generalization maintains a list of norms, the 
features that are common to most of its descendants in 
the hierarchy’. The descendant of a generalization need 
not share all of the generalization’s norms, in which case 
it is said to be differentiated from the generalization by 
its distinguishing attributes. 

‘In many dynamic memory systems, “most” is implemented as 22/3. 
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DISEASE-G2084 CASES: 23 

NORMS 
cardiomegaly(x) = LV 
s2(x) = single 
characteristic-murmur(x) = AS 
pulse(x) = slow-rise 
apex-impulse(x) = sustained 
chest-pain(x) = anginal 
dyspnea(x) = on-exertion 

Figure 1: A generalization frame. 

As a result of seeing many instances of patients with 
similar sets of symptoms, our program created genera- 
lization categories that associated certain symptoms with 
other symptoms. For example, the symptom syncope on 
exertion identifies a disease category containing 23 of 
the 45 cases presented to the program. Patients who 
exhibited syncope on exertion also had other features in 
common, for example, chest pain, a heart murmur, and 
an enlarged heart (Figure 1). Diagnosing these patients 
using the Heart Failure program revealed that 16 of them 
had the disease aortic stenosis. What our program had 
done, in effect, was to create a category describing the 
common symptoms of aortic stenosis, without having any 
previous knowledge of this disease. 

However, since the memory construction was guided 
statistically, many “typical” cases of aortic stenosis had 
to be presented so that unusual cases would not produce 
an inaccurate classification scheme. As suggested 
above, this requirement could have been reduced by first 
defining some “normal” classifications analytically. 

Representing analytical and contingent knowledge 
To allow for analytical knowledge, we have extended 

the dynamic memory representation with an analytic 
term-subsumption language in the style of KL-ONE. This 
language is used to define salient categories of a domain 
- for medical diagnosis, these consist of important 
combination of symptoms indicating the likelihood of a 
disease. The statistical associations induced by the case- 
based learning procedure are then used to extend the 
analytic framework with contingent knowledge, further 
refinements of the framework, and exceptions2. The 
representational challenge is in meaningfully combining 
the first-order analytical definitions with the contingent 
knowledge, which is neither analytical nor first-order. 

As an example of this hybrid representation, consider 
the representation fragment shown in Figure 2. This 
fragment contains two preconstructed categories, Zikely- 
cardiac-disease, and likely-valve-disease. For the first, 

2Much like a medical student at the beginning of the third year, whose 
book knowledge becomes extended by clinical experience. 
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3 
I I 

LIKELY-CARDIAC-DISEASE 

DEFN 
h(x) disease(x) A syncope(x) = on-exertion 

A chest-pain(x) = angina1 

NORMS 
age(x) = 60-or-greater 
sex(x) = male 
cardiac-catheterization(x) = single-or-multivessel-disease 
diagnosis(x) = cardiovascular-disease 

LIKELY-VALVE-DISEASE 

DEFN 
h(x) likely-cardiac-disease(x) 

A characteristic-murmur(x) = systolic-ejection 

NORMS 
ekg(x) = LVH 
xray(x) = cardiomegaly 
cardiac-catheterization(x) = normal 
diagnosis(x) = aortic-stenosis 

Figure 2: A representation fragment. 

textbook knowledge tells us that symptoms of syncope on 
exertion and chest pain are indicators of the likelihood of 
heart disease. This is captured in the representation by 
giving the category likely-cardiac-disease the definition3 
kc (syncope(x) = on-exertion)A(chest-pain(x) = anginal). 
In addition, the representation of this category indicates a 
number of norms, contingent properties which tend to co- 
occur or co-vary with syncope and chest pain (though not 
necessarily in the strict statistical sense), for example, 
age > 60, sex = male, and single- or multi-vessel disease 
on cardiac catheterization. In fact, the probability of 
syncope and chest pain being caused by cardiovascular 
disease is sufficiently high that the likely-cardiac-disease 
category includes that diagnosis as a norm. Norms are 
interpreted as defaults, so this knowledge structure does 
not imply that all patients with syncope and chest pain 
are males over 60 with cardiovascular disease, but that 
these symptoms are found primarily in older males and 
are caused by cardiovascular disease. 

The default nature of norms is evidenced by the cate- 
gory likely-valve-disease, which is analytically differenti- 
ated from the category of patients with syncope and chest 
pain by the presence of the symptom systolic ejection 
murmur. Here, the default diagnosis of cardiovascular 

3Properly speaking, this definition actually denotes something like 
medical-case-whose-symptoms-are-likely-indicators-of-cardiac-disease. 
We are using shorter names for their obvious legibility benefits! 



disease is overridden by the default diagnosis of aortic 
stenosis. Also, we find a different set of symptoms that 
covary with syncope, chest pain, and murmur, for 
example, left ventricular hypertrophy on EKG and an 
enlarged heart on x-ray. 

Incorporating specific cases 
The norms in the preceding examples could have been 

defined by the user as part of the knowledge acquisition 
process. More interestingly, they could equally have 
been induced by the dynamic memory learning procedure 
from a set of training cases, as with the generalization in 
Figure 1. The learning procedure can thus be seen as a 
mechanism for acquiring the contingent knowledge 
encoded in the representation. Additionally, by indexing 
training cases into the analytical hierarchy, the learning 
procedure extends the hierarchy with (contingent) 
refinements and exceptions. 

The learning procedure indexes training cases in the 
hierarchy by matching them to existing categories. For 
example, suppose the system is presented with a case x 
which is described by the features syncope=on-exertion, 
chest-pain=anginal, murmur=systolic-ejection, sex=male, 
and age=30-or-less. The values for attributes syncope, 
chest-pain, and murmur identifies this case as an 
exemplar of the category likely-valve-disease. However, 
the value 30-or-less for attribute age distinguishes this 
case from the category likely-valve-disease because the 
majority of cases in that category have value 60-or-more 
for age (a norm inherited from likely-cardiac-disease). 
The new case is thus inserted into the hierarchy directly 
underneath the likely-valve-disease frame, differentiating 
it by providing a different value to the age attribute. 

When multiple cases are indexed to the same place in 
the hierarchy, the learning procedure creates a 
generalization capturing their common features as a set 
of norms. The cases are then indexed below the new 
generalization, differentiated from it by the features they 
fail to share. It is this process which inductively extends 
the analytical framework with contingent knowledge 
derived from the training cases. 

The Analytical Language 
Our analytical language is an extremely simple 

definitional frame language, which is based on the term 
subsumption strategy of KL-ONE. The language provides 
three frame-forming operators which are used to form 
complex frame terms: definitions are performed by 
naming the resulting terms. 

Our first operator, AND, simply conjoins frame terms. 
We interpret the expression (AND qp1 432 . . . cpn) as 

ax CplW A q2c-d A *.* A cp,w 

The second operator, ATTR, restricts a frame to take a 
certain value for an attribute. We thus intepret the 
expression (ATTR a p) as 

ax ~<-a 
We will adopt a restriction common in the machine 

learning classification literature, and treat attributes as 
functions. Therefore, ATTR expressions such as the one 
above can additionally be read as il x a(x) = p 

Additionally, it is often necessary to form the 
disjunction of attribute selections, for which we use our 
third frame-forming operator, ATTR*. We thus interpret 
the expression (ATTR* al p1 ... a, fin) as 

~-d~l(x)=pl)v **- w%l(x)=p*) 

Analytical definition are created by naming a 
complex term. In the heart disease domain, we might 
define likely cases of valve disease as follows 

LIKELY-VALVE-DISEASE = 
(AND LIKELY-CARDIAC-DISEASE 

(A TTR CHARACTERISTIC-MURMUR 
SYSTOLIC-EJECTION)) 

As usual, such definitions as these are interpretable as 
universally quantified biconditionals, in this case 

vx LIKELY-VALVE-DISEASE (x) H 
LIKELY-CARDIAC-DISEASE(x) A 
CHARACTERISTIC-MURMUR (x) = 

SYSTOLIC-EJECTION 

As with other KL-ONE derivatives, classification in 
our analytical language is performed by term 
subsumption. That is, frames are organized in a 
hierarchy, with frame ql placed below frame 4.~2 just in 
case the meaning of rpI is entailed by that of (~2, i.e., just 
in case the sentence ‘V’X qpl(x) * 92(x) is valid. We then 
say that qI is subsumed by ~2. In effect, qI is (non- 
trivially) subsumed by (~2 just in case ql satisfies the 
definition of 45 and additionally possesses one or more 
attribute assignments not valid for (~2. Classifying a 
frame cp simply consists of finding those frames in the 
hierarchy that immediately subsume cp. Despite the 
extreme simplicity of this language, frame classification 
in general can be shown to be NP-complete, by a 
straightforward reduction from 3-SAT. 

However, for the knowledge bases of interest to hybrid 
classification, we will be concerned only with definitions 
in the normal form 

~1 = (AND ~2 (ATTR al PI) . . . (ATTR ai pi) 

(ATTR* aj Pj . . . % Pn>> 
where ~1 and “/2 are categories, the a terms are attri- 
butes, and the p terms are values. This normal form is of 
interest as it characterizes the generalizations induced by 
the learning procedure. As we shall see below, for 
knowledge bases of such definitions, analytical classifi- 
cation is no longer NP-complete, but tractable. 
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The Contingent Language 
The term hierarchy defined in the analytical language 

provides a framework within which to express the contin- 
gent associations derived by the case-based learning 
procedure. In essence, these associations describe the 
covariances of attribute-value assignments that hold for a 
particular generalization. These covarying feature 
assignments can be interpreted as mutually providing 
evidence for each other: if any single one of them holds, 
the others can be assumed to do so as well, at least in 
the context of the same generalization. 

Consider, for example, two generalizations ~1 and m, 
in which ‘y2 differs from y1 by assigning to some 
attributes aI, a2 . . . . an the values /?I, p2, . . . . pn. If we 
know that, for some entity e, ~1 (e) A al(e) = PI, then if 
we additionally choose to believe Yz(e), we would 
assume a2(e) = p2 , . ..,an(e) = /In by default, as these 
feature assignments covary with al(e) = PI. The process 
of making assumptions in this way captures the essence 
of similarity-based classification. Knowing that e is 
similar in some way to instances of m allows us to infer 
that e might possibly be an instance of ~2, and thereby 
possess other features common to the class. 

In earlier papers ((Koton & Chase 1989), (Koton, 
Chase, & Vilain 1990)), we applied Reiter’s default logic 
to model similarity-based classification in case memory. 
This treatment can be extended to encompass analytical 
classification as well. We do so by interpreting the 
generalizations formed by the case classification 
procedure with the following two axiom schemata, one 
analytical and the other contingent. Let ~1 and ~2 be 
generalizations that, as above, differ in 71’s assigning 
values PI . . . & to attributes al . . . an. Then 

jp (AND ~1 (ATTR* al p1 . . . a, pn)) (link) 

Y2W : wW=P1 

a1W=P1 

,.--, Y2W : %W=PIl 

%W=P* 
(norm) 

The link schema creates an analytical definition for m, 
requiring it to differ from y1 by at least one of the 
assignments to attributes al . . . a,. The norm schema 
captures the covariance of the ai by introducing a normal 
default rule (Reiter 1980) for each assignment of some pi 
to the corresponding ai. 

It is easy to see how these axiom schemata enable 
similarity-based classification. For example, say that for 
some particular 71, al, PI, etc, an entity e is described 
by the theory e(e) = yl(e) A (al(e) = pl) A . . . . Then 
m(e) is true from the biconditional interpretation of the 
link schema, and the remaining ai = pi become true 
by default, so long as they are consistent with e(e). 

The contingent language of our representation scheme 
is just the language of normal default rules that have the 
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0(e) = disease(e) A syncope(e) = on-exertion 
A chest-pain(e) = anginal 
A characteristic-murmur(e) = systolic-ejection 

DISEASE 

(e) = cardiovascular-disease 

LIKELY-CARDIAC-DISEASE 

DEFN 
h(x) disease(x) A syncope(x) = on-exertion 

A chest-pain(x) = anginal 
NORMS 

likely-cardiac-disease(x) : diagnosis(x) = cardiovascular-disease 

diagnosis(x) = cardiovascular-disease 
. . . 

f$(e)= $(e) h . . . 
A diagnosis(e) = aortic-stenosis 

LIKELY-VALVE-DISEASE 

DEFN 
h(x) likely-cardiac-disease(x) 

A characteristic-murmur(x) = systolic-ejection 

NORMS 
likely-valve-disease(x) : diagnosis(x) = aortic-stenosis 

diagnosis(x) = aortic-stenosis 
. . . 

Figure 3: A memory fragment showing cancellation. 

form of the norm schema. However, there is more to the 
representation of contingent reasoning than the specifi- 
cation of those normal defaults that express the case 
memory covariances induced by the learning procedure. 
The hierarchies induced by the learning procedure 
typically require the cancellation of feature assignments 
on the basis of specificity (as with the assignments to 
diagnosis in Figure 3). With a default encoding of 
property inheritance, this leads to case memory theories 
having multiple extensions, only the most specific of 
which is legitimate (e.g., 82 in Figure 3). We must 
therefore indicate how to interpret this non-monotonic 
aspect of property inheritance. 

Understanding Cancellation 
In default logic, the traditional approach towards 

handling cancellation in non-monotonic inheritance is 
through semi-normal defaults ((Etherington & Reiter 
1983), (Reiter & Criscuolo 1983)). This solution is 
unappealing for several reasons. For one, it potentially 
requires encoding the topology of the entire inheritance 
network into each norm default. The global reasoning 
task this presupposes is a poor model of inheritance with 
cancellation, which is typically understood as a local 



y1 
DEFN 

X(x) person(x) A 
(party(x) = g.o.p. v pacifism(x) = hawk) 

NORMS 
yl(x) : pacifism(x) = hawk 

pacifism(x) = hawk 

B(nixon) = . . . faith(nixon) = quaker A party(nixon) = g.0.p. 

PERSON 

eI(nixon) = e(nixon) A pacifism(nixon)=dove 8 2(nixon) = B(nixon) A pacifism(nixon)=hawk 

72 
DEFN 

I,(x) person(x) A 
(faith(x) = quacker v pacifism(x) = dove) 

NORMS 
3 (x) : pacifism(x) = dove 

*‘* pacifism(x) = dove 

Figure 4: The infamous Nixon diamond. 

reasoning process. Additionally, with a semi-normal 
encoding of cancellation, the default characterizations of 
memory structures induced by the learning procedure are 
not necessarily ordered in Etherington’s sense (Koton, 
Chase, & Vilain 1990). This means that they can not be 
guaranteed an extension by existing default proof theories 
(Etherington 1988). As case memory theories actually 
always do have extensions, this makes a semi-normal 
encoding of cancellation even less appropriate. 

We have chosen the alternative of separating 
inheritance from cancellation, expressing property 
inheritance with normal defaults (as above), and relying 
on an external criterion to determine cancellation. In 
(Koton, Chase, & Vilain 1990), we describe one such 
criterion based on Poole’s notion of theory preference 
(Poole 1985). We can easily extend this criterion (and 
in fact simplify it) to encompass our analytical terms 

Say e(e) is some theory of some entity e, and say 
81 (e) and 02(e) are extensions of e(e) that assign 
different values p1 and p2 to an attribute a. Note that 
these values must have been respectively assigned by 
some default rules 61 and & such that 

We then say that 81 < a 82 just in case yl (the pre- 
condition of 61) subsumes y2 (the precondition of 82). 
Subsumption in this case is simply the relationship of 
meaning-entailment defined over terms in the analytical 
language which is used to define the preconditions of 
defaults. In Figure 3, for example, 81 <diagnosis 02 
because the precondition of the default that assigned 
cardiovascular-disease to diagnosis in 81 is subsumed by 
that of the default that assigned it aortic-stenosis in 02. 

To enforce cancellation on some feature a, we simply 
select as our prefered extensions those maximal in <a. 

To extend this minimality criterion into a theory- 
preference criterion, say e(e) is a theory of some entity 
e, with extensions @l(e) . . . e,(e). From among these 0i, 

the prefered extensions are those which are maximal in 
<a for all attributes a. In Figure 3 for example, 02 is 
prefered over 81, thus cancelling the assignment of 
cardiovascular-disease to diagnosis which holds in 81. In 
contrast, the 81 and 02 of Figure 4 are both maximal, 
since the defaults that lead to their incompatibility on 
pacifism have incomparable preconditions (neither one 
subsumes the other). 

In essence, our preference criterion selects those 
extensions of a theory in which attribute values are only 
assumed using the most specific applicable default. 
What’s especially appealing about this approach is that 
the determination of specificity is entirely cast in terms 
of the analytical language which naturally supports 
specificity through subsumption. 

Integrated Classification 
The knowledge representation task begins by using the 

analytical language to define initial categories which 
will later be extended by the learning algorithm4. The 
representation hierarchy is then built by classifying these 
definitions with respect to the subsumption relation; as 
noted above, this is an NP-complete process. This NP- 
completeness must be taken in perspective, however. 
For the purpose of identifying salient diagnostic 
categories, one can limit definitions to conjunctions of 
feature assignments created by only using AND and 
ATTR expressions. In this case, classification becomes 
tractable with an algorithm such as that of (Schmolze & 
Lipkis 1983). 

Next, the hierarchy is extended with the case memory 
learning procedure. This is accomplished by classifying 
training cases using both analytical and similarity cri- 
teria. Simultaneously, running statistics are maintained 
of the relative frequency of attribute-value assignments: 

4These are similar to the T Box definitions of (Brachman, Fikes, & 
Levesque 1983) which are completed by (user-declared) A Box axioms. 
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Turning to the details of the classification algorithm, 
to classify a case x, with initial description 8: 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

Let known be a list of properties known to be true 
of x, and let defaults be a list of properties 
conjectured to be true of x. The known properties 
are simply those which hold in 8, the conjectured 
ones are added by the norm defaults. 

Starting with the root of the hierarchy, proceed 
down the hierarchy by following links which 
match propositions in known. 

(Analytical classification) If nodes ~1 and y2 
are linked by any necessary links, then to 
proceed from “/1 to ~2 all such links must be 
matched by properties in known . 

(Similarity classification) Separately, if nodes 
~1 and ~2 are only linked by contingent links, 
then to proceed from ~1 to y2 at least one such 
link must be matched by properties in known. 

Potentially, several paths could be followed from 
a given node y, each leading to a different 
classification. If so, the algorithm follows each 
path independently. 
For each norm at each node, if the norms does 
not contradict some property in known, it is added 
to defaults, overriding any properties in defaults 
which it contradicts. 

these are used to establish norms, and reorganize the 
hierarchy should it prove to reflect a skewed presentation 
order. We will say little about the statistical aspects of 
the learning procedure, focussing on the classification 
process instead (see (Kolodner 1983) for details). 

The classification algorithm 
The hierarchy is implemented as a graph in which 

categories are connected by two kinds of attribute-value 
links. Necessary links correspond to conjoined attribute- 
value assignments, such as those in the analytical 
definitions. Contingent links correspond to disjuncts from 
A T TR * expressions, and are used to implement 
similarity-based classification. The key to the operation 
of the algorithm is that all of the contingent links 
connecting two nodes are interpreted as part of the same 
disjunction. This effectively restricts the analytical 
definitions of categories to be in the normal form. 

~1 = (AND j-9 (ATTR al PI) . . . (ATTR ai pi) 

(ATTR* aj Pj . . . an Pn>) 

The ATTR expressions in the normal form correspond 
to feature conjunctions specified in the category defi- 
nitions predefined by the user. The ATTRR* expression 
encodes the feature assignments by which the learning 
procedure determined the category to be differentiated 
from its parent in the hierarchy. 

(7) The algorithm terminates (along each indepen- 
dent path) when the leaves of the hierarchy are 
reached, or no links can be followed from a node. 
The algorithm returns, ~1 . . . Xn, the nodes at the 
end of each path, along with the values of known 
and defaults. 

It can be shown that the nodes returned by this algo- 
rithm define the maximal extensions of the initial theory 
0(x). The theories are simply defined by the properties 
which hold at these nodes (the union of known and 
defaults in the algorithm). It is also easy to show that the 
algorithm computes these extensions in polynomial time. 
For details see (Koton, Chase, & Vilain 1990). 

In order to actually add x to the hierarchy, x must 
additionally be indexed to each Xi in ~1 . . . Xn, If Xi is a 
generalization, x is inserted below Xi and linked to it by 
a contingent link for each property of Xi which x does not 
share. If Xi is another case, a generalization x’ is first 
created, and given as norms those properties shared by Xi 
and x. These two cases are then indexed below x’ with a 
contingent link for each property they don’t share with x’. 
Indexing x below the Xi effectively joins the separate 
paths taken by the algorithm. 

It is easy to show that indexing a case to the hierarchy 
with this strategy effectively provides the case with a 
normal form definition. It is also possible to show that 
the structure of the hierarchy encodes the subsumption 
relations between the definitions of its category node$. 
This leads directly to the tractability of computing the 
subsumption of the normal form definitions induced by 
the learning procedure. 

A classification example 
To illustrate this classification process, say we had 

created a hierarchy by predefining the categories likely- 
heart-disease and likely-valve-disease. The definitions of 
these categories are reproduced in Figure 5 (below), 
along with some norms that might have been assigned at 
some point to these categories by the learning procedure 
(assume for now that disease-g0017 has not been created 
yet). Say we are now shown a case e of youthful aortic 
stenosis, a fictitious but illustratively useful disease, with 
e characterized by the following feature assignments. 

syncope(e) = on-exertion 
chest-pain(e) = angina1 
characteristic-murmur(e) = on-ejection 
age(e) = 30-or-under 
diagnosis(e) = youthful-aortic-stenosis 

51n brief, this follows from the fact that the same attribute-value pair can 
never appear twice on a given path, thus imposing an ordering on the 
disjunctive components of definitions. 
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LIKELY-CARDIAC-DISEASE 

DEFJ (= necessary links) 
A.(x) disease(x) A syncope(x) = on-exertion 

A chest-pain(x) = anginal 

NORMS (= contingent links) 
age(x) = 60-or-greater 
diagnosis(x) = cardiovascular-disease 

I LIKELY-VALVE-DISEASE 

DEFN (necessary links) 

h(x) likely-cardiac-disease(x) 
A characteristic-murmur(x) = systolic-ejection 

NORMS (contingent links) 
age(x) = 60-or-greater (inherited) 
diagnosis(x) = aortic-stenosis 

DISEASE-GO017 “Youthful valve disease” 
1 

NORMS (contingent links) 
age(x) = 30-or-under 
diagnosis(x) = youthful-aortic-stenosis 
. . . 

Figure 5: An induced category (DISEASE-GO017). 

During classification, say e enters the hierarchy at the 
level of disease. It is then compared to the necessary 
links between disease and its descendant likely-cardiac- 
disease. These necessary links are simply the two expli- 
cit feature assignments in the latter category’s definition: 
syncope(x)=on-exertion and chest-pain(x)=anginal. Since 
e has feature assignments to syncope and chest-pain that 
match these necessary links, it traverses them and is thus 
analytically classified as an instance of likely-cardiac- 
disease. Similarly, e matches the necessary links 
between likely-cardiac-disease and likely-valve-disease, 
allowing it to be analytically classified as an instance of 
the latter category. The case is then entered into the 
hierarchy by creating node disease-g00I 7 and giving it as 
norms the feature assignments to age and diagnosis that 
differentiate e from likely-valve-disease. 

These norms are in turn interpreted as contingent links 
between likely-valve-disease and disease-g001 7; these 
can be exploited to perform similarity-based classifi- 
cation. For example, say we are now shown a new case f 
which shares e’s feature assignments for syncope, chest 
pain, characteristic-murmur, and age, but has no assign- 
ment to diagnosis. Like e, f will be classified analy- 
tically below likely-cardiac-disease and likely-valve- 

disease. From the latter, the contingent link for age can 
be followed down to disease-g001 7, as f also assigns 30- 
or-less to the age feature. This classifies f by similarity 
as an instance of disease-g001 7; f then inherits this 
category’s consistent norms by default, including an 
assignment of youthful-aortic-stenosis to diagnosis. 

Relation to Inductive Bias 
The enterprise we have described above can be 

related to a concern of researchers in the machine 
learning community, inductive bias. The task of the 
statistical classification methods described earlier is to 
induce a classification upon being presented with a 
sequence of examples. That is, the learning program 
partitions the examples into a set of (not necessarily 
disjoint) classes. When the examples are labeled with 
their class (often just a binary labeling), the task is 
called “learning from examples” or “supervised 
learning,” and the learning program produces an inten- 
sional description of the classes. When the examples are 
not labeled, and the learning program must induce the 
classes as well as the intensional descriptions of the 
classes, the task is called “concept formation” or “un- 
supervised learning.” (Gennari, Langley, & Fisher 1989) 

Both learning tasks may be viewed as a search 
through a space of hypotheses, in which each hypothesis 
represents a partition of the examples. To keep the 
learning task tractable, machine learning researchers 
early recognized the need to incorporate into their 
systems an inductive bias, namely, some mechanism for 
controlling the search of the hypothesis space (Russell & 
Grosof 1990). This bias controls the number of examples 
needed to induce a classification. 

There are two major types of bias (Utgoff 1986): (1) 
restricting the hypothesis space, and (2) ordering the 
hypotheses. The first bias is usually imposed by limiting 
the concept description language; the second is often 
achieved through some general preference, such as, 
prefering a simpler to a more complex description. More 
recently, researchers have proposed a more general 
framework for inductive bias, namely, viewing it as prior 
knowledge that becomes part of the context within which 
the learning system operates (Russell & Grosof 1990). In 
particular, explanation-based learning, an analytic 
learning technique, can be viewed as using “background 
knowledge” as a type of bias; the generalizations pro- 
duced through explanation-based learning are biased 
towards those that can explained in terms of this 
background knowledge (Ellman 1989). 

Much of the research into inductive bias, particularly 
that which makes use of analytic learning techniques, 
has focused upon (supervised) learning from examples. 
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Our hybrid learning system, however,-can be viewed as 
employing an analytical classification method as an 
inductive bias for an unsupervised concept formation 
task. In our system, the hypothesis space is implicitly 
represented; the current memory structure represents the 
current hypothesis regarding the classification scheme. 
The prior knowledge encoded in the memory structure is 
a declarative bias. When a new instance is presented to 
be incorporated into the memory structure (perhaps 
causing the memory to be restructured), the classification 
algorithm can be viewed as conducting a search of the 
hypothesis space, using the analytic knowledge as a bias 
focusing the search. 

Conclusion 
In this paper we have presented a mechanism for 

combining the machine learning and knowledge 
representation approaches to classification, and described 
a hybrid knowledge representation appropriate for 
handling analytic and contingent knowledge. Our goal 
has been to use analytic knowledge as an inductive bias 
to focus the statistical learning procedure. 

One obvious extension is to use prior contingent 
knowledge along with analytic knowledge to set up the 
initial memory. The analytic language was used to 
define the essential links of the hierarchical classi- 
fication; we could also use the contingent language to 
define some of the well-known, textbook covarying 
features in advance. For example, a patient with general 
symptoms of heart disease who happens to be thirty or 
younger is almost certainly suffering of valve disease, 
despite the fact that the age norm for valve disease is 
greater than sixty. We expect that allowing for such non- 
analytic associations as these would further reduce the 
statistical learning method’s sensitivity to exceptional 
cases and to poor presentation order. 

We should note that our work to date has focussed 
primarily on theoretical considerations of representation 
and tractability. We intend to further validate our results 
by carrying out experiments to compare the performance 
of the learning method with and without the use of prior 
analytic knowledge. Finally, we would like to imple- 
ment our work in other diagnostic domains and explore 
the feasibility of this approach to other application areas. 
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