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Abstract 
We describe an application of the discovery system 
FAHRENHEIT in a chemistry laboratory. Our em- 
phasis is on automation of the discovery process as 
oposed to human intervention and on computer con- 
trol over real experiments and data collection as op- 
posed to the use of simulation. FAHRENHEIT per- 
forms automatically many cycles of experimentation, 
data collection and theory formation. We report on 
electrochemistry experiments of several hour duration, 
in which FAHRENHEIT has developed empirical equa- 
tions (quantitative regularities) equivalent to those de- 
veloped by an analytical chemist working on the same 
problem. The theoretical capabilities of FAHREN- 
HEIT have been expanded, allowing the system to 
find maxima in a dataset, evaluate error for all con- 
cepts, and determine reproducibility of results. After 
minor adjustments FAHRENHEIT has been able to 
discover regularities in maxima locations and heights, 
and to analyse repeatability of measurements by the 
same mechanism, adapted from BACON, by which all 
numerical regularities are detected. 

1. Introduction and motivation 
Our current research on computer discovery systems 
has been guided by three long term goals. First, we 
are pursuing real, not simulated applications in a sci- 
ence laboratory. Second, we want to minimize human 
intervention in the working of our system, eventually 
aiming at a fully automated discovery. The third goal 
is generality of the discovery mechanism. We want 
to make our system useful to any experimental scien- 
tist dealing with acquisition and analysis of numerical 
data. Although much remains to be done, our discov- 
ery system FAHRENHEIT has made progress on all of 
these goals. 
Discovery systems: a brief summary In the last 
dozen of years many computer programs have been 
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constructed that simulate various aspects of scientific 
discovery. The earlier systems concentrated on qualita- 
tive and quantitative regularities, discovery of intrinsic 
concepts, the scope of the laws, and explanation of the 
hidden structure (Buchanan and Mitchell, 1978; Lang- 
ley, 1978, 1981; Bradshaw, Langley, and Simon, 1980; 
Langley et al. 1983, 1987; Zytkow and Simon, 1986; 
Zytkow and Koehn, 1986; Falkenhainer and Michalski, 
1986). 

The growth of discovery systems has accelerated in 
the last three years. Several abilities lacking in ear- 
lier discovery systems have been introduced, primarily 
the ability to consider empirical context of a law (IDS: 
Langley and Nordhausen, 1990; GALILEO: Zytkow 
1990; Sleeman, Stacey, Edwards, and Gray, 1989), 
the ability to design experiments (KEKADA: Kulka- 
rni and Simon, 1987; FAHRENHEIT: Zytkow, 1987; 
Langley and Zytkow 1989), the ability to represent ob- 
jects, states and processes (Langley and Nordhausen, 
1990; iytkow 1990) and the ability to reason by anal- 
ogy (Falkenhainer, 1987; Falkenhainer and Rajamoney, 
1988). Sleeman et al. (1989) suggested an interesting 
search in the space of qualitative models of a chemi- 
cal system. All these new abilities have deepened our 
understanding of selected aspects of discovery, but sig- 
nificant progress has been made also on the impor- 
tant issue of integration. Two systems, both descen- 
dents of BACON, reached a considerable integration: 
IDS and FAHRENHEIT, the latter augmented by the 
GALILEO system that generalizes laws by decompos- 
ing them into simpler expressions. 
Data acquisition problems. Virtually all discovery 
systems are simplistic in handling data acquisition and 
experimental error. 

Error handling. Discovery systems were typically 
limited to ‘clean’ input data. Although many systems 
include some error-related parameters, they disregard 
the breadth and notoriety of real scientist’s problems 
with raw data. For instance, a single error param- 
eter for the whole system in BACON and ABACUS 
produces a funny result when a system cannot find a 
regularity for a variable V, but then it finds that V4 is 
constant. This may happen when the values of V are 
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between 1 and 0 because for each power of V they dif- 
fer less and less with respect to the unchanging value 
of error. Experimental science not only requires that 
the empirical error is determined, but also that it is 
reduced as much as possible. This involves analysis 
of repeatability and detection of abnormal experimen- 
tal conditions that invalidate a particular collection of 
data, such as a contaminated electrode. 

Data acquisition bottleneck. As the discovery sys- 
tem&ey require more input 
data. A computer system can be provided with data 
in several ways. In the simplest variant, a human oper- 
ator responds to the system’s request for data by cal- 
culating and typing in the appropriate values. Some 
of BACON’s original experiments were conducted in 
this way. When the number of requested experiments 
becomes large, it is preferred to use a simulation. Sim- 
ulation is easy for toy problems, but it is difficult to 
build a simulator that would model a situation typical 
in a science laboratory where a variety of unexpected 
and unwanted phenomena influence the experiments, 
causing error of measurement and inducing sophisti- 
cated measurement procedures. If we want our discov- 
ery systems to deal with these effects, it is easier to 
study them in interaction with the real world. 

Empirical semantics. The role of operational seman- 
tics, which 1’ 

* & inks terms in scientific theories with direct 
observations and manipulations (Bridgman, 1927; Car- 
nap, 1936; iytkow, 1982) is negligible in the existing 
discovery systems, while it is very important in real 
science. Especially the use of instruments has been 
disregarded by research on machine discovery. 

While the simplistic approach to experimentation 
was useful at the early stage of research on discovery 
systems, at the present time we may directly confront 
the main goal of science, which is developing theories 
of the real world in an interaction with the world. If 
discovery systems are going to satisfy the needs of the 
experimental scientist, we must spend more time work- 
ing on real experiments and on processing real data. 
Because even a simple discovery in modern science is 
based on the analysis of many thousand datapoints, 
discovery systems should be ready to handle massive 
data rather than few datapoints on which we tested 
our early systems. 
Automation in chemistry. Automation of the 
thinking processes which we are building into discov- 
ery systems must be matched by automation of the 
actual experimentation and data collection in the sci- 
ence lab. Are scientists getting ready for that? Actu- 
ally, the automation and computer support in a science 
lab has already reached a massive scale, including data 
acquisition and data analysis. Recently the robot tech- 
nology has been tested in the chemistry laboratory on 
the tasks of sample preparation, and in a relatively 
short time a number of complex lab operations can 
be automated by combination of simple steps (Sharp, 

Whitfield, and Fox, 1988). 
To all for whom automation of discovery looks like 

a science fiction, we would like to deliver a practical 
proof that it is already possible on a limited scale. This 
paper reports our first results. But if it is possible to 
use a discovery system as a scientist’s associate, does it 
pay to do so ? It depends on the generality of the sys- 
tem. The BACON family of discovery systems, includ- 
ing BACON, IDS, and FAHRENHEIT, comes off very 
favorably on this account. Not only does each experi- 
mental scientist speak in terms of independent and de- 
pendent variables, empirical equations, their stepwise 
generalization, and their range of application, measure- 
ment error, relevant and irrelevant variables, but these 
terms refer to a larger part of their laboratory work. 
A reliable discovery system can become a workhorse 
that carries out a considerable amount of work in any 
science lab. 

2. Chemistry experiments 
We selected electrochemistry as the application area 
for a number of reasons. First, the computer operated 
sensors and actuators are readily available in a typical 
chemistry lab. Second, it is relatively easy to auto- 
mate various electrochemical operations on chemical 
samples. Third, chemists often work with relatively 
simple equations, which do not exceed the theorizing 
capabilities of the systems in the BACON family. 

We report on an automated experiment in differen- 
tial pulse voltammetry. Our experiments parallel an 
ongoing research conducted by a chemist working on 
construction of new instrumentation. This gives us an 
opportunity to compare and verify our results. 

Problem 1: Detection of low concentration ions. 
Differential pulse voltametry (DPV) can be used to 
measure concentration of ions such as Cu2+, Pb2+, 
and Cd2+, simultaneously and at a very low concen- 
trations of few particles per million (ppm) and lower 
(Bard and Faulkner, 1974). The problem is important 
since those ions are toxic at ppm and sub-ppm levels. 
DPV uses excitation of a sample by potential pulses 
characterized by the pulse height, width, and the delay 
between pulses (Figure la), and measures the response 
as a function of current in potential (Figure lb). Figure 
3 shows a typical result of a single series of experiments 
in which a particular pulse height, width, and delay 
between pulses have been used and three types of ions 
have been detected: cadmium, lead and copper. The 
type of an ion is determined by peak’s location whereas 
concentration is proportional to peak’s height. The lo- 
cation and height of each peak as well as the errors 
with which they are determined vary with the pulse 
parameters. Typically the resolution (discrimination 
between types of ions) is better at low values of pulse 
height, while the sensitivity is higher at larger values, 
that is, the concentration is measured with smaller er- 
ror. When the values of pulse height become too high, 
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Fig. 1 Differential pulse voltammetry 

(a) control signal -- voltage E as a function of time 
(b) response -- difference in current Ai as a function of 

voltage E 

however, the error in determining peak paramaters in- 
creases dramatically. To obtain the best resolution 
and sensitivity, not only the pulse height, but also the 
width, and the delay between pulses should be opti- 
mized. Instrumental to the optimization that would 
be efficient under different circumstances is a theory 
that describes how the peak parameters and their er- 
ror depend on the pulse parameters. 

The final objective for our FAHRENHEIT system on 
Problem 1 is to find such a theory in a fully automated 
way. In this paper we report on our initial results. 

Problem 2: Peak repeatability. The initial phase 
of any scientific experiment is focused on experimen- 
tal error and repeatability of results. The working 
electrode (Figure 2) poses repeatability problems be- 
cause the measurements may deteriorate due to chemi- 
cal changes at the electrode. To make the replacement 
of an electrode easy, chemists use mercury electrodes 
in which a hanging drop of mercury forms a working 
surface. When the performance of the electrode de- 
teriorates, a drop of mercury can be forced out of the 
working electrode and replaced by a fresh, not contam- 
inated drop. How many measurements can we perform 
with the use of the same drop? This is a typical re- 
peatability problem, common for every sensor, and the 
procedure is also typical: perform a sequence of exper- 
iments trying to keep constant the values of all con- 
trollable parameters, and find the border between the 
area of repeatability, in which the results are constant 

Fig. 2 Hardware and software configuration 

within small error, and the area in which the results 
change or the error increases. By the analysis of the 
same sequence of experiments we must determine both 
the range of repeatability and the measurement error. 
Another source of error is the varying size of the drop. 
The amount of the current Ai is proportional to the 
surface of the drop. To determine the error we must 
experimentaly answer the question: “How accurately 
can we reproduce the drop size?” 

Hardware and Software configuration Figure 2 
illustrates hardware and software components and con- 
nections in our automated system, including the chem- 
istry equipment. Our system runs a complete loop 
in which experiments are designed by FAHRENHEIT, 
performed under the control of PC in the electrochem- 
ical cell, the experimental results are sent to the Sun 
where FAHRENHEIT uses them to build a theory. Hu- 
man interference is reduced to sample preparation and 
occasional assistance. 

3. FAHRENHEIT’s new features 

FAHRENHEIT has b een described by Koehn and 
Zytkow (1986), Zytkow (1987), and by Langley and 
Zytkow (1989). It uses BACON’s mechanism for mul- 
tidimensional control of experiments and for detection 
of multidimensional regularities, but it extends BA- 
CON in several directions. FAHRENHEIT searches 
for the scope of the laws it has discovered, it can find 
several regularities in data, change the order in which 
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it varies independent variables, and detect irrelevant 
variables. 

Placing FAHRENHEIT ‘(in charge” of laboratory ex- 
periments challenged us with new tasks. To be suc- 
cessful in the chemistry experiments, FAHRENHEIT 
must be able to (1) find “points of special interest”, 
such as maxima, and incorporate them into a recur- 
sive mechanism for detection of multidimensional reg- 
ularities, (2) determine reproducibility of results, (3) 
determine the error for each new concept, (4) establish 
empirical semantics, and (5) establish the communica- 
tion between the brain (FAHRENHEIT) and the hands 
and eyes (PC), including a command language used by 
FAHRENHEIT. We will briefly describe the first four. 
Handling ‘especial points”. Quantitative discovery 
systems were traditionally preoccupied with numerical 
regularities, whereas scientists are also interested in 
other aspects of numerical data, especially in “special 
points” such as maxima, minima, discontinuities, ze- 
ros, and so forth. Sometimes finding a special point is 
more important than detecting a regularity. FAHREN- 
HEIT has been able to find many special points but it 
has used them for another purpose. FAHRENHEIT 
has been able to find boundaries of regularities, reg- 
ularities on boundaries and boundaries of boundaries. 
It turned out that the same recursive mechanism for 
generalization to new variables applies to all types of 
special points. The system needed only a small change 
in code, after which it can mix and match various tasks 
of function analysis for different independent variables. 
For instance, FAHRENHEIT can now search for the 
maxima of regularities, for regularities on maxima, or 
for maxima of a regularity on minima. Problem 1 in 
section 2 requires detection of the location and height 
of each peak in a sequence of data for each pulse height, 
such as shown in Figure 3. Then, FAHRENHEIT is 
supposed to find separate regularities for the locations 
and heights of maxima for different ions. The electrode 
potential is .the independent variable for the former, 
while pulse height is the independent variable for the 
latter. 
Determining the reproducibility of results. In 
the repeatability study FAHRENHEIT performs a 
number of experiments without changing any values of 
controlled variables. Then it analyses the data, trying 
to separate an area of constancy from the remaining 
data in which there is either another regularity or no 
regularity can be found. FAHRENHEIT’s capability 
for finding multiple regularities and their boundaries 
is essential on this task. 
Handling experimental error. For each new vari- 
able generated by FAHRENHEIT, such as the maxi- 
mum location or the slope of a linear regularity, the 
system finds the error. Each error is computed from 
appropriate data. For instance, the error of maxima lo- 
cation and height can be inferred from the repeatability 
study. The error is necessary for the generalization of 
results to new dimensions. It also allows to determine 
the quality of final results. 
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Fig. 3 DPV of metal ions (20ppm CL?, Pb2’,nd C%‘) 
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Fig. 4 Regularities for the maximum 

4. Results of experiments 
We started with the repeatability study, that is with 
problem 2 in section 2, using the pulse height of 15 mV. 
We repeated the experiment 20 times. Each time our 
system collected 360 datapoints, measuring the current 
as a function of potential of the working electrode. For 
a single pulse the results are plotted in Figure 3. In 120 
minutes 7200 datapoints were collected and analysed, 
60 maxima have been located and nine regularities, in- 
cluding six constancies, have been found. By analysing 
the ranges of constancy FAHRENHEIT detected that 
repeatability of maxima heights are different for differ- 
ent ions, and that each maximum is measured with a 
specific error as described in the “rows” errors and “re- 
peatability” in Table 1. As a result, we use the number 
of 7 repetitions before we change the drop of mercury. 

In the next experiment, reported in Figure 4 and in 
Table 1, we aimed at the detection of regularities that’ 
describe changes of the peaks as a function of the pulse 
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Table 1. Summary of DPV experiments. The upper part shows the parameters of the maxima. The first number in the 
row “error/repeatability” indicates the error, either absolute or relative(%), the second number indicates the range of 
repeatability. The lower part gives the type of the regularity and the numerical values of coefficients. 

height. Figure 4 illustrates a sequence of experiments 
with a varying pulse height. FAHRENHEIT found the 
locations and heights of the maxima, reported in the 
upper portion of Table 1, then it found regularities 
both for peak locations and heights, depicted in Figure 
4 and described in the lower portion of Table 1, where 
the type of regularity is given and the numerical values 
of the coefficients for each regularity. The experiment 
lasted 50 minutes, during which for seven pulse heights 
the total of 2320 datapoints were collected and anal- 
ysed, 21 maxima have been located and six regularities 
have been found. 

5. Evaluation 
System’s performance can be evaluated according to 
accuracy, range of application, and usefulness. The 
accuracy of our results is compatible with the accuracy 
achieved by human researchers. When we were able to 
compare the results, our system finds both the maxima 
and regularities which are equivalent within empirical 
error. 

The range of applications of FAHRENHEIT goes far 
beyond electrochemistry, because FAHRENHEIT can 
deal with numerical data regardless of the application 
domain, provided that the laboratory hardware is re- 
arranged and the appropriate operational procedures 
are defined. 

Is our system useful? How fast it performs? The 
performance is still subject to many improvements, but 
the first results are encouraging. When we compare the 
theoretical work on the data made by FAHRENHEIT 
with an off-line analysis by the chemists, the results are 
very favorable. More than one day of work on data by 
a research assistant corresponds to 1 minute of data 
analysis by FAHRENHEIT. Altogether, several days 
work of research assistants corresponds to 50 minutes 
work of our system. The cost of the system installation 
is still enormous, measured in man-months of work, 
and it will take some time before we reach satisfactory 
portability. 

6. Limitations and Future Directions 
Limit ations. Although FAHRENHEIT can auto- 
matically determine the repeatability conditions and 
it can find regularities for the peaks, the transition 
from the first to the second requires our intervention. 
We would like our system to understand the notion 
of repeatability, so it would investigate repeatability 
automatically whenever necessary, and it would be 
able to automatically use the results. The results of 
repeatability study influence the experimentation be- 
cause they impose a limit after which the experiments 
can continue only after the electrode has been changed. 
The corresponding change in operational procedure, 
however, has not been automated and must be done 
manually. 

Immediate future steps. We are planning to work 
on these limitations, and then to expand the theory 
of DPV measurements to additional independent vari- 
ables, including pulse width, delay between pulses, and 
concentration of ions in the sample. 

7. Conclusions 
Our preliminary results demonstrate how a quantita- 
tive discovery system can be used in a chemistry lab- 
oratory on the experimental problems of interest to a 
contemporary chemist. Both an experimental scientist 
and a machine learning researcher can benefit from the 
application of a discovery system in a science labora- 
tory. The scientist may save enormously on time and 
effort spent on data analysis, while the ML researcher 
may gain a valuable exposure to problems of real world 
experimentation and real data analysis. 

FAHRENHEIT is superior over the existing statis- 
tical packages from the perspective of theory genera- 
tion in that it can infer multidimensional regularities 
and it integrates many discovery steps. Various soft- 
ware packages are available that can help scientists in 
data processing, but they only automate single small 
steps, like smoothing and regression. The result of 
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each step must be inspected by a scientist before he 
decides about the next step and prepares the input for 
that step. In contrast, FAHRENHEIT automates large 
portions of the inference process. 

Another advantage is a flexible data collection. 
Many chemistry labs use automated procedures for 
data collection which vary the independent variables 
in a predetermined pattern. These procedures do not 
provide automated feedback from the theoretical re- 
sults, because theoretical analysis is done after empir- 
ical data have been collected. In contrast, FAHREN- 
HEIT builds the theories on-Zinc and it changes the ex- 
perimentation pattern to concentrate new experiments 
on a particular area that best contribute to the growth 
of the emerging theory. 

Researchers on discovery can also benefit because a 
real lab interface allows to overcome the bottleneck of 
data generation, provides realistic raw data, and yields 
new research problems such as on-line refinement of 
experimental procedures. 
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