
Empirical Comparisons of
Some Design Replay Algorit

Brad Blumenthal t
Department of Computer Sciences

University of Texas at Austin
Austin, Texas 78712
brad@cs.utexas.edu

Abstract
Although most design replay techniques have been em-
pirically tested against some performance program,
there has been very little empirical evidence published
that compares various approaches on the same prob-
lems to determine the source of power. Six different
design replay algorithms based on approaches in the lit-
erature are implemented and tested on 20 different de-
sign replay problems. The resulting data indicate that
there is a trade-off between efficiency and autonomy
for certain types of adaptation strategies. Based on
some of the lessons drawn from this data, a new algo-
rithm, REMAID, has been developed. This algorithm
recognizes two different types of mis-matches between
previous experience and current problems: detours and
pretours. The REMAID strategy takes advantage of
its knowledge of m&matches to improve replay auton-
omy without sacrificing efficiency. The success of the
REMAID algorithm is empirically verified.

Introduction
Design replay has been proposed as a way of us-
ing previous design experience to improve the perfor-
mance of automated design systems [Carbonell, 1986;
Mostow, 19891. Instead of attempting to reuse a pre-
vious solution, the design replay technique records the
steps that went into producing a previous solution and
replays the sequence of steps. This approach provides
more flexibility in reusing experience by preserving in-
termediate steps of the problem solution and thus al-
lowing partial reuse of the appropriate parts of the
solution. However, this flexibility depends on a ca-
pability to adapt previous solution steps to fit a new
problem.

Mostow enumerates the dimensions on which a de-
sign replay technique can be evaluated [Mostow, 19891.
This paper will concentrate on the dimensions of ef-
ficiency, or how much computation is required, and

+ Support for this research was provided by the National
Science Foundation under grant IRI-8620052, Apple Com-
puter Corp., and by the Army Research Office under grant
ARO-DAAG29-84-K-0060.

autonomy, or how much of the problem the replay al-
gorithm addresses. An ablation study was performed
using six algorithms that vary only in what strategies
they use to adapt previous experience to fit a new prob-
lem. These strategies are based on replay strategies
presented in the literature. The resulting data isolate
and quantify the contributions of each of these adap-
tation strategies to replay efficiency and autonomy.

The data support several hypotheses. Some are un-
surprising: design replay is generally an effective tech-
nique, and increased flexibility in adapting recorded
experience to new problems increases both efficiency
and autonomy. More informatively, the data also in-
dicate that calling an automated design performance
program to help adapt to replay failures can be a suc-
cessful strategy, but that there may be a trade-off be-
tween efficiency and autonomy unless the execution of
the replay program and the performance program are
interleaved intelligently.

The lessons learned from this study have led to the
development of a seventh algorithm: REMA1D.l This
algorithm increases both the efficiency and autonomy
of the design replay process by appropriately interleav-
ing execution of design replay and automated design.
It does so by recognizing two types of replay failures
that occur, detours and pretours, and by appropriately
adapting design experience during replay. The RE-
MAID algorithm was run on the design replay prob-
lems from the ablation study, and empirically, it per-
formed with the best.

For clarity, the following terminology will be used in
this paper: a design episode is a computation which
takes a specification as input and produces a design as
output. A design experience is a previously completed
design episode. A design goal is a description of a de-
sign (sub-)problem and includes information about the
entity being addressed and the desired outcome of ad-
dressing that goal. A rule is a heuristic used to select or

“‘MAID” is an acronym for “Metaphoric Application
Interface Designer;” MAID is the performance component
of this system which produces interface designs that re-
semble real world objects. “REMAID” is an acronym for
“Replaying Episodes of MAID.”

902 MACHINE LEARNING

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

address a design goal. A design history is a recording of
the goals and rules that make up a design experience.
“Step” is short for a recorded goal and its associated
rules and decisions. Thus, for the purposes of this pa-
per, design replay is concerned with recording design
experience and using the resulting design history to
improve the efficiency and autonomy of a new design
episode. Typically this is done by matching a goal in
the history to a goal in the current episode, replaying
the corresponding design rule, and continuing with the
next step.

The Domain
To test the various replay algorithms, a performance
program was written which automates the design of hu-
man interfaces for computer applications. Thedomain
of automated human interface design is an especially
appropriate one because interface design is expensive
and time-consuming, yet it is often desirable to have
multiple, alternate interface designs to a computer ap-
plication. Such a collection of designs might be used
to conduct user studies to determine what techniques
are most effective or to tailor computer applications
for specialized user communities.

The Performance Program
The performance program used for this study is the
MAID interface designer. This program takes as input
a frame-based description of the objects and operations
that a computer program makes available to a user. It
produces as output a design for a human interface to
that application in terms of a set of interface techniques
such as menus, graphics, text, etc. In addition, the
MAID interface designer uses a knowledge base of real-
world objects to produce metaphoric interfaces which
mimic the appearance and behavior of such objects
[Blumenthal, 19901.

One of the most expensive operations in the MAID
program is choosing the next design goal to be ad-
dressed. A characteristic of the interface design do-
main is that there are default rules for addressing any
design goal. As a consequence, MAID is not required
to do any backtracking ; however, in order to achieve
the best designs possible, MAID has to spend more
effort ordering the design goals. Essentially, MAID
trades backtracking for extra goal-ordering effort and
the possibility of sub-optimal designs.

Therefore, at the heart of the MAID program is an
agenda of pending design goals. MAID uses a set of or-
dering heuristics to select a goal from the agenda based -
on the features
the agenda, and
then uses
the goal.

a separate set of design heuristics to-address

of each goal, what other goals are on
the state of the design in progress. It

Applying design replay techniques to this problem
of selecting goals from the MAID agenda is promising
for the following reasons: since there is no backtrack-
ing in MAID, the order in which design subgoals are

addressed can significantly affect the resulting inter-
face design; it is necessary to run the agenda ordering
heuristics at every step, since the relevant factors can
change in unpredictable ways during the course of a
design; however, running all of the heuristics is expen-
sive and only a small percentage of the heuristics tried
at any step usefully reduce the size of the conflict set.

The Experiment
The MAID design program is currently capable of de-
signing five interfaces to a single application.2 Thus,
there are five possible design histories, each of which
can be used in the design of any of the five interfaces.
This gives a total of 25 possible design replay episodes,
including five trivial cases designing the same interface
in both the recorded experience and the new episode.

The six algorithms summarized below were imple-
mented and run on all 25 cases. Data were collected
from the 20 non-trivial cases on the total number of
goals addressed, the number of goals replayed from
the recorded experience, the total number of order-
ing heuristics which were applied to the agenda, and
the number of ordering heuristics that were useful in
selecting the next goal to be addressed.3

Current Techniques
Mostow outlines the important issues in successfully
applying the design replay technique, including ac-
quiring design experience, determining the correspon-
dence between previously and newly encountered de-
sign goals, and determining the appropriateness of a
previously executed design step in a new situation
[Mostow, 19891. This paper will focus solely on the
issue of adaptation: the problem of reusing design ex-
perience when parts of a new design episode do not
match the previous experience.

There are two parts to this problem which Mostow
refers to as the adaptation process. This paper de-
parts from that terminology slightly. The first part of
this problem, which is here referred to as “adaptation,”
is the question of what to do when a particular step
in a recorded history fails to match or address a corre-
sponding goal in the current design episode. Strategies
for adaptation vary from simply ignoring the failing
recorded goal to trying to modify the state of the cur-
rent design episode so that the recorded step succeeds
in finding or addressing a corresponding goal.

The second part is referred to as “recovery” and is
the question of what to do when none of the goals in
a recorded history can be successfully used to select a

2This is limited by the amount of knowledge entered in
the knowledge base, not by any inherent limitations of the
MAID program.

3Due to irrelevant technical details, accurate CPU times
were unavailable. All of the ordering heuristics use similar
amounts of CPU time, so for purposes of comparison, a
count of heuristic applications is adequate.

BLUMENTHAL 903

corresponding goal from the current design state. Re-
covery strategies range from simply halting replay to
invoking a performance program and then attempting
to restart replay.

There have been a number of projects address-
ing the problems in design replay since Carbonell’s
derivational analogy proposal [Carbonell, 19861. Three
projects that the REMAID research builds on are the
BOGART/VEXED project [Mostow, 19891, the work
by Carbonell and Veloso on using derivational anal-
ogy in the PRODIGY system [Carbonell and Veloso,
19881, and the PRIAR project [Kambhampati, 1989a;
Kambhampati, 1989b].

The following algorithms vary only in their ap-
proaches to adaptation. Since the domains used for
research in these techniques have varied from circuit
design to matrix manipulations to blocks world plan-
ning it has not been possible to reimplement exact ver-
sions of the various algorithms for use in the interface
design domain. However, the approaches toward adap-
tation and recovery are domain-independent, and they
have been preserved and implemented in order to de-
termine how they affect the replay process.

Table 1 summarizes the six replay algorithms. There
are two adaptation strategies: simply skip the recorded
goal and try later or use alternate design rules. There
are three recovery strategies: halt replay, use MAID
for one goal then restart replay, or use MAID for all
remaining goals. A short description of the research
motivating each adaptation and recovery strategy fol-
lows.
BOGART/VEXED The replay program, BOG-
ART [Mostow, 19891, records design goals and the de-
sign rules for achieving those goals as they are chosen
by a designer who is using the VEXED circuit design
tool. BOGART then applies the design rules in the
order in which they were recorded. BOGART fails to
reuse a design rule if the corresponding recorded goal
fails to match a goal in the current episode or if the
rule preconditions are not satisfied by the matching
goal. The BOGART approach to adaptation is to sim-
ply skip any design step that fails to be replayed. It
continues until it has tried every step remaining on the
history without success. BOGART’s approach to re-
covery is to halt replay and ask the human designer for
a new history to replay.

HOBART4 implements the BOGART approach to
adaptation and recovery. HOBART attempts to match
a goal from the history to a goal on the current agenda
of pending goals. HOBART simply skips any step
whose goal does not match a goal on the agenda or
whose design rule does not address the matching goal.
When no more goals on the history match any goals
on the agenda, HOBART halts.

4The names of the reimplementations
for their phonemic similarity.

were chosen solely

PRODIGY Extensions Carbonell and Veloso’s ex-
tensions to the PRODIGY system [Carbonell and
Veloso, 19881 reuse a history that records the goal or-
dering decisions, variable bindings, and problem solv-
ing rule choices that produce a solution to a matrix
manipulation problem, as well as the justifications for
each of these decisions.

When PRODIGY fails to reuse a recorded step, then
it follows what Carbonell and Veloso call the “sat-
isficing approach” to adaptation and recovery. One
strategy described for this approach is to address the
matched goal in some other fashion and then continue
replay at the next step. A second is to attempt to
satisfy the violated justification(s) in some way and
continue replay at the current step.

There are a number of ways these strategies can be
implemented, so one simple adaptation strategy and
one simple recovery strategy were developed and added
to the basic HOBART algorithm, both separately and
together. The adaptation strategy is based on the first
satisficing strategy and is used when a recorded goal
from the history matches a goal on the current agenda,
but the recorded design rule does not apply. This strat-
egy tries other design rules until one succeeds (recall
from section that there is always a default rule which
is guaranteed
the next step.

to succeed) and then continues replay at

The recovery strategy is invoked when all of the goals
on the recorded history have been tried and none of
them match a goal on the current agenda. In this case
the MAID algorithm is invoked to select and address a
goal on the agenda, and replay is started again where
it was stopped. This is based on the second strategy;
something is done to satisfy the justifications of some
recorded goal and replay is started where it left off.

The implementation of HOBART
with the PRODIGY-inspired adaptation strategy (al-
ternate design rules) is called “PROBART.” The im-
plementation which has the recovery strategy (select
and address one goal with a performance program) is
called “POSSIBLY.” The implementation with both
the adaptation strategy and the recovery strategy is
called “PROBABLY.”

PRIAR Kambhampati’s PRIAR system reuses
plans produced by a non-linear planner to solve new
planning problems [Kambhampati, 1989b]. PRIAR’s
adaptation strategy uses the pre- and post-conditions
of the recorded plan operations to determine what op-
erations in the recorded plan to reuse. This strategy is
not feasible in the MAID domain5

PRIAR’s recovery strategy takes any goals that are
not satisfied by the old plan and posts them as new
goals that are then solved by the same non-linear plan-

5For one reason, the MAID domain has rules with con-
ditional consequents. This prevents PRIAR from analyzing
the recorded rules to determine whether they will have the
desired effect.

904 MACHINE LEARNING

1 Algortihm 11 Adaptation Strategy 1 Recovery Strategy II

Table 1: Summary of algorithms tested: strategy for adapting to single recorded rule failures, and strategy for
recovering when recorded history can suggest no more goals.

ner that produced the recorded plan. This strategy
inspired a recovery strategy which use the MAID de-
sign program to address any goals left on the agenda
without attempting to restart replay. The first, called
“BRIAR,” uses the HOBART algorithm until replay
fails, and then invokes the MAID algorithm to ad-
dress any left-over design goals. The second algorithm,
called “PYRE,” uses the PRODIGY-inspired adapta-
tion strategy (using alternate design rules) and the
PRIAR-inspired recovery strategy (turn control over
to the performance program to finish the design).

Results
Table 2 presents the averages of the data collected from
20 different replay episodes of each algorithm. The
data for MAID give the average number of goals ad-
dressed and the average number of heuristics tried and
used by the MAID performance program over five de-
signs and is presented for comparison.

The efficiency of the various algorithms is measured
in terms of the number of applications of ordering
heuristics that were needed to complete a design. All of
the ordering and match heuristics measured use similar
amounts of CPU time, so for purposes of comparison,
searching the agenda for a goal matching a recorded
goal on the history was counted as one heuristic ap-
plication. Since all of the algorithms use ordering and
match heuristics for adaptation and recovery, this met-
ric adequately captures the overhead due to replay.

The number of heuristics tried represents the num-
ber of heuristics which were applied (successfully or
not) in an attempt to select a goal from the agenda.
The number of heuristics used represents the number
of heuristics which successfully reduced the size of the
conflict set (including those that actually chose a goal).

The autonomy of each algorithm was measured by
the number of goals that it successfully replayed. All
of the algorithms that used the MAID algorithm for
recovery completed all of the designs. HOBART and
PROBART halted when there were no more goals that
could be replayed.

Both the PRODIGY-inspired adaptation plan (ex-
pand one goal and restart replay) and the PRODIGY-
inspired recovery plan (try alternate design rules)
added similar amounts of autonomy. This is evidenced
by comparing the difference in goals replayed between

HOBART and PROBART or POSSIBLY and PROB-
ABLY (difference due to adaptation) with that be-
tween HOBART and POSSIBLY or PROBART and
PROBABLY (difference due to recovery).

The PRODIGY-inspired adaptation strategy of us-
ing alternate design rules also contributed to efficiency.
This is evidenced by the data for PROBART, PROB-
ABLY, and PYRE. Since checking the preconditions of
alternate design rules is very cheap compared to apply-
ing goal selection rules, the overhead for this approach
is nominal.

In terms of efficiency, the PRODIGY-inspired recov-
ery strategy was the most expensive, as seen by the
results for POSSIBLY and PROBABLY. The most ef-
ficient performer is the PYRE algorithm which takes
advantage of flexible adaptation with a less expensive
recovery strategy. The least efficient is the POSSIBLY
algorithm which used the more rigid adaptation strat-
egy and the most expensive recovery strategy.

Discussion
The foremost lesson of the empirical data is that, in
terms of efficiency, design replay is a successful ap-
proach. Although the implementations employed very
simple adaptation and recovery strategies, all but one
of the algorithms required fewer ordering heuristics
than the MAID performance program. Even the sim-
plest approach, HOBART, replayed 43.4% of the de-
sign goals.

Autonomy vs. Efficiency

Another important point supported by the empiri-
cal data is that using the performance program for
recovery when the replay algorithm cannot find any
more corresponding goals to replay is generally an ef-
fective strategy. Although this has been suggested
by Carbonell [Carbonell, 1986] and demonstrated for
non-linear planners by Kambhampati [Kambhampati,
1989a], the empirical data show that this is true if the
replay strategy is sufficiently flexible.

However, there seems to be a trade-off between the
amount of autonomy afforded by using the perfor-
mance program for recovery, and the cost of such a
strategy. The PRODIGY- and PRIAR-inspired recov-
ery strategies represent two extremes. In general, more

BLUMENTHAL 905

Algorithm

MAID

Goals Goals Heuristics Heuristics % Used/Tried
Addressed Replayed Fried Used

145.2 NA 1677.0 331.6 21.7 c

1 REMAID 11 145.2 1 ill.7 1 584.5 1 276.8 1 59.6

Table 2: Results of running each algorithm on 20 design replay problems.

steps are reused when the history is examined every
time a goal is addressed. This is the case in the POS-
SIBLY and PROBABLY algorithms. The problem is
that it is very expensive to determine that more recov-
ery is needed, and this usually must be done multiple
times.

The other extreme is to avoid the expense of recov-
ery altogether by giving up on the replay algorithm
as soon as it can no longer suggest a goal to address.
This is the approach taken by the BRIAR and PYRE
algorithms. Such an approach takes advantage of the
efficiency of design replay when corresponding goals
are readily apparent, without spending any more ef-
fort on replay once the replay algorithm fails to find
a matching goal. This technique can tolerate a larger
number of goals in the new design episode that do not
correspond to goals in the recorded history; however,
it requires that most of the corresponding goals appear
on the agenda before the replay strategy is abandoned
and control is turned over to the performance program.

The REMAID Strategy
One conclusion that can be drawn from the trade-off
between recovery cost and recovery autonomy is that
some guide to navigating the history, other than lin-
ear search, is needed. One of the goals of the REMAID
project is to find a technique for intelligently interleav-
ing design replay and automated design. Each of the
six algorithms compared above follows a strategy of ag-
gressively pursuing only those agenda goals in the cur-
rent episode that correspond to goals on the recorded
history. If a single step on the history fails to find or ad-
dress a corresponding goal on the agenda, it is ignored
and the next step is considered. Recovery strategies
are only invoked when replayable goals on the history
are exhausted.

REMAID, on the other hand, attends to the kinds of
failures that occur and uses that information to mod-
ify the order in which the recorded history is used so
that it better matches the current agenda. Thus, it
intelligently interleaves replay and automated design
and produces both an efficient and autonomous design
episode.

The REMAID Algorithm

The REMAID algorithm reuses the experience of the
MAID automated interface design system. In addition
to each goal that was addressed, and the design rule
used to address it, REMAID records the heuristics that
usefully reduced the size of the conflict set when the
goal was selected.6

During replay, REMAID applies the recorded or-
dering heuristics to the agenda and compares the re-
sulting candidate goals with the chosen goal recorded
in the history. If only one goal is chosen from the
agenda by the recorded ordering heuristics, and that
goal matches 7 the chosen goal recorded on the his-
tory, then REMAID addresses that goal and contin-
ues replay with the next step recorded on the history.
The assumption here is that the same goal was cho-
sen for the same reasons, and that replay is therefore
proceeding correctly. REMAID uses the PRODIGY-
inspired adaptation strategy of considering alternate
design rules if the recorded design rule fails.

When the recorded ordering rules do not select a
matching goal on the agenda or when they select more
than one goal, REMAID attempts to determine why
the recorded ordering rules have failed and attempts
to recover from such failures in a more appropriate
way than by just going to the next step in the linear
ordering of the design history. Currently, REMAID
recognizes two classes of ordering rule failure: detours
and pretours.

Detours If the recorded ordering rules choose more
than one goal, and one of the selected goals corre-
sponds to the chosen goal recorded on the history, then
REMAID has encountered a situation where there are
new goals in the current design episode that were not
present in the design experience recorded in the his-
tory. Such a situation is called a detour. REMAID
addresses the goal corresponding to the chosen goal

6Recall from the discussion of MAID that the number
of useful heuristics is a small percentage of the number of
heuristics tried.

7REMAID uses the same matching algorithm used by
the other six algorithms.

906 MACHINE LEARNING

recorded on the history first. Any other goals are as-
sumed to be new goals which are similar enough to the
chosen goal recorded on the history that they should
be addressed at the same time. By recognizing de-
tours, REMAID can use its replay strategy on goals
that do not correspond to any goal recorded on the
history. This strategy increases autonomy, thereby re-
ducing the number of goals in the current episode that
have to be addressed with the performance program.

Pretours If the recorded ordering heuristics choose
at least one goal, and none of the goals chosen match
the chosen goal recorded on the history, then REMAID
assumes that there are goals in the recorded history
that are not in the current design episode. Such a situ-
ation is called a pretour. If REMAID can find recorded
goals on the history that correspond to the goals cho-
sen in this step, then it chooses the nearest goal in the
linear order of the history and continues replay there.
Instead of matching each goal on the history, one at a
time, against the agenda, REMAID effectively reorders
the history to better fit the current agenda.

If REMAID cannot find any recorded goals on the
history to match the ones chosen, or if the ordering
heuristics recorded on the history for this step do not
choose any goals, then it calls on MAID to select a goal.
If the goal MAID selects corresponds to some goal on
the history, then REMAID restarts replay with that
goal, again, effectively reordering the history. Other-
wise, it continues to call MAID until MAID selects a
goal that corresponds to some goal on the history or
the design is complete.

By recognizing pretours, and using the performance
program to suggest where to restart replay, REMAID
can navigate through the history, intelligently inter-
leaving the execution of the replay and performance
programs. This strategy increases autonomy without
sacrificing efficiency.

REMAID Results
The REMAID algorithm was run on the same replay
problems given to the other six algorithms. The av-
erages for the 20 runs are presented in Table 2. Even
though REMAID has more overhead for straightfor-
ward replay (i.e. replay with no pretours or detours),
it performed as autonomously as PROBABLY and as
efficiently as PYRE.

Conclusion
Most replay algorithms have been empirically tested
against some performance program, but very little em-
pirical data have been published that compare vari-
ous approaches in the same domain to establish the
source of power. The data presented here indicate
that a flexible technique for adapting to single goal
n&-matches increases both the efficiency and auton-
omy of replay. Further, using a performance program
for recovery from replay failures is a promising tech-

nique, but there is a trade-off between efficiency and
autonomy unless the replay algorithm can intelligently
interleave execution of the replay program and the per-
formance program. Although efficiency and autonomy
are not the only ways that derivational analogy can
be evaluated, they do give a rough comparison of the
effectiveness of various approaches.

The REM AID algorithm recognizes the kinds of mis-
matches that occur during replay. By recognizing and
addressing detours, REMAID increases the autonomy
of design replay. By recognizing pretours, REMAID
increases autonomy and maintains efficiency by intel-
ligently interleaving design replay and automated de-
sign.

Acknowledgements
I am grateful to Subbarao Kambhampati, Ray Mooney,
Jack Mostow, Ken Murray, Bruce Porter, and Manuela
Veloso for comments, discussions and correspondence
on design replay and derivational analogy. I would also
like to thank Liane Acker, James Lester, and Penni
Sibun for comments on early drafts of this paper.

References
[Blumenthal, 19901 Brad Blumenthal. Replaying

Episodes of a Metaphoric Application Interface De-
signer. PhD thesis, University of Texas Artificial
Intelligence Lab, Austin, TX, Forthcoming 1990.

[Carbonell and Veloso, 1988] Jamie G. Carbonell and
Manuela Veloso. Integrating problem solving and
derivational analogy. In Proceedings of the First
Workshop on Case-Based Reasoning, 1988.

[Carbonell, 19861 J amie G. Carbonell. Derivational
analogy: A theory of reconstructive problem solv-
ing. In R. S. Michalski, Jamie G. Carbonell, and
T. M. Mitchell, editors, Machine Learning: An Ar-
tificial Intelligence Approach, volume II, chapter 14.
Morgan Kaufman, Los Altos, CA, 1986.

[Kambhampati, 1989a]
Subbarao Kambhampati. Control of refitting during
plan reuse. In Proceedings of the International Joint
Conference on Artificial Intelligence 1989, Detroit,
MI, 1989.

[Kambhampati, 1989b] Subbarao Kambham-
pati. Flexible Reuse and Modification in Hierarchical
Planning: A Validation Structure Based Approach.
PhD thesis, Computer Vision Laboratory, Center for
Automation Research, University of Maryland, Col-
lege Park, MD, 1989.

[Mostow, 19891 Jack Mostow. Design by derivational
analogy: Issues in the automated replay of design
plans. Artificial Intelligence, 40(l-3), 1989.

BLUMENTHAL 907

