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Abstract 
This paper describes an application of an analyti- 
cal learning technique, Plausible Explanation-Based 
Learning (PEB L), that dynamically acquires search 
control knowledge for a constraint-based scheduling 
system. In general, the efficiency of a scheduling sys- 
tem suffers because of resource contention among ac- 
tivities. Our system learns the general conditions un- 
der which chronic contention occurs and uses search 
control to avoid repeating mistakes. Because it is im- 
possible to prove that a chronic contention will occur 
with only one example, traditional EBL techniques are 
insufficient. We extend classical EBL by adding an em- 
pirical component that creates search control rules only 
when the system gains enough confidence in the plau- 
sible explanations. This extension to EBL was driven 
by our observations about the behavior of our schedul- 
ing system when applied to the real-world problem of 
scheduling tasks for NASA Space Shuttle payload pro- 
cessing. We demonstrate the utility of this approach 
and provide experimental results. 

Introduction 
In many real-world scheduling domains, activities are 
highly constrained by their need to share a finite set of 
resources. Efficient allocation of these resources and ef- 
ficient search strategies are imperative in any schedul- 
ing system. Recognizing and anticipating situations of 
likely resource contention and determining an appro- 
priate search strategy to avoid backtracking can im- 
prove scheduling and resource allocation. To synthe- 
size schedules with minimum work-in-process (WIP) 
time, activities are scheduled from a temporally-based 
perspective. In a constraint-based scheduling system, 
this means committing to an activity’s first available 
start and end times consistent with all temporal con- 
straints, then selecting a resource that is available in 
that time interval. However, if there is no resource 
of the appropriate type available at that time, new 
start and end times must be chosen, causing back- 
tracking. Scheduling from a resource-based perspec- 
tive means choosing an appropriate resource, then find- 
ing an activity’s start and end times based on the 

capacity constraints of that resource (i.e., the next 
time the resource is available). This strategy re- 
duces backtracking, but the efficiency improvement is 
gained at the expense of increased WIP time. Previ- 
ous scheduling methods have been to perform a heuris- 
tic look-ahead to determine contentious resources, and 
to schedule only these “bottleneck resources” from 
the resource-based perspective [Smith and Ow, 1985, 
Fox, 19871. Rather than relying onZy on opportunistic 
schemes, we exploit previous experience by learning 
the general conditions under which backtracking oc- 
curs. We use the learned search control knowledge in 
future situations to alter the search strategy accord- 
ingly. 

Because of the exponential size of the search space, 
the ability to use search control knowledge has been 
shown to be critical in many domain-independent 
problem solvers, including planning, scheduling, and 
theorem-proving systems [Minton, 1988b, Laird et al., 
1986, Smith and Ow, 19851. We use (and extend) exist- 
ing explanation-based learning (EBL) methods to dy- 
namically acquire search control rules. We have added 
an empirical component to EBL, in which multiple ex- 
amples confirm plausible conjectures. Unlike most pre- 
vious work that combines empirical techniques with 
EBL [Pazzani et al., 1986, Mooney and Ourston, 1989, 
Hirsh, 1989, Danyluk, 19891, our empirical component 
is not used to make inductive leaps. Rather, it is used 
because of the inherent characteristics of the target 
concept; the target concept cannot be proved with a 
single example and requires a distribution of examples. 
This extension was driven by the application of EBL 
to the real-world problem of scheduling tasks for Space 
Shuttle payload processing. The target concept in this 
domain is a chronic resource contention and cannot 
be confirmed with one example. We call this exten- 
sion to EBL “Plausible Explanation-Based Learning” 
(PEBL). 

This paper discusses the integration of PEBL into a 
constraint-based scheduling system. After a brief de- 
scription of the scheduling system and the Kennedy 
Space Center (KSC) payload processing domain, we 
describe PEBL and how it is used in the context of 
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scheduling. We then present results of a set of experi- 
ments that reveal the advantages and disadvantages of 
using the learned search control rules. 

Constraint-based Scheduling 
In this section, we describe our formulation of a 
constraint-based scheduling problem, and the specific 
problem of payload processing. 

Scheduling as a Constraint Satisfaction 
Problem 

A constraint satisfaction problem (CSP) is character- 
ized by a finite set of variables V = {Vl...V,), their 
respective domains Dl...Dn, and a set of constraints 
C(V;:, Vi, ..). A solution to a CSP is an assignment of 
values pi to all V;: such that all constraints are satis- 
fied. A constraint is a subset of the Cartesian product 
C E D1 x D2 x . . . x D,, that specifies the consistent 
and inconsistent choices among variable values. Con- 
straints may be specified extensionally by enumerating 
all consistent values, or specified intensionally as func- 
tions. 

A scheduling problem can be viewed as a constraint 
satisfaction problem. In our scheduling system, we for- 
mulate a resource allocation and scheduling problem as 
a set of task and resource objects [Zweben and Eskey, 
19891. Task objects contain information (slots) about 
an activity’s start time, end time, duration, and re- 
source requirements. This information is represented 
by distinct variables each having a domain of possible 
values and a set of domain constraints. Resource re- 
quirements of a task include information about type 
and quantity needed. Resource objects contain infor- 
mation about the availability of the resources. Con- 
straints in the system define temporal relations and 
resource capacity requirements. We specify constraints 
intensionally. 

The scheduling process begins by placing all tasks 
on a priority queue of unscheduled tasks. The prior- 
ity queue generally prefers tasks that are close to the 
anchors of the schedule (the tasks fixed in time due 
to external forces). As the tasks are removed from the 
queue, a variable commitment strategy is used to guide 
the search for appropriate times and resources for the 
task. When scheduling from a temporally-based per- 
spective, start time, end time and duration variables 
are instantiated before resource requirement variables. 
When scheduling from a resource-based perspective, 
resource requirement variables are instantiated before 
temporal variables. A solution to the scheduling prob- 
lem is an assignment of times and resources to each 
task, such that all constraints are satisfied. 

The Kennedy Space Center Payload 
Processing Domain 

We have formulated a scheduling problem based on 
the NASA space shuttle’s payload processing domain 

[Hankins et al., 1985, Brown, 19871. Payloads that fly 
on the shuttle rest on modular containers called carri- 
ers. Kennedy Space Center personnel have generated 
a partially ordered hierarchy of tasks necessary to pro- 
cess the payloads and carriers before and after a shut- 
tle flight. Resource type and quantity requirements 
for each task have also been determined. The anchor 
of the schedule in this domain is the launch date of 
the shuttle. The task queue is ordered such that post- 
launch tasks are scheduled forward in chronological or- 
der (with respect to the partial order) and pre-launch 
tasks are scheduled backwards from launch in reverse 
chronological order. 

In this domain there are a limited number of ex- 
pensive, specialized resources (e.g., the carriers) and 
a number of other scarce resources. Each mission’s 
processing tasks must be completed in time for the 
next mission that requires the specialized or scarce re- 
source. Thus, if WIP time is too long, a mission’s 
launch date could potentially slip. Additionally, one 
must quickly synthesize viable schedules since time is 
also a critical resource. Although scheduling from the 
resource perspective generally improves the efficiency 
of the system, if used without restraint it can degrade 
the optimality of the solution by creating schedules 
with unacceptably long WIP times. Thus, our goal is 
to restrict the changes in the search strategy to the 
most critical points in the scheduling process. 

Plausible Explanation-based Learning 
In this section we describe 
to improve search. 

the learning technique used 

The Basic Learning Method 
Explanation-based learning is an analytical technique 
that can be used to learn search control knowledge 
[Mitchell et al., 1986, DeJong and Mooney, 1986, 
Minton, 1988a]. EBL begins with a high-level target 
concept and a training example. Then, using a do- 
main theory (a set of axioms describing the domain), 
it generates an explanation of why the particular train- 
ing example is an instance of the target concept. The 
explanation is a proof that the training example satis- 
fies the target concept. The EBL approach finds the 
weakest preconditions of the explanation, producing 
a learned description that implies the target concept. 
The description is a generalization of the training ex- 
ample and a specialization of the target concept and 
must satisfy some operationality criterion that requires 
that it be in a usable form. 

In the domain of scheduling, the resources that are 
in high demand are considered bottlenecks if their ca- 
pacity is insufficient for the resource requirements of 
concurrent tasks. The tasks competing for the bottle- 
neck resources vary depending on the specific condi- 
tions of the current schedule. In each instance of con- 
tention, it is unlikely that the exact configuration of 
tasks will compete for some resource more than once. 

ESKEY AND ZWEBEN 909 



Given: 
1. 
2. 

3. 

4. 

1. 

2. 

3. 

4. 

5. 

A domain theory 
A target concept 
An example instance 
A library of previously generated explanations 

Try to instantiate one of the previously generated 
explanations for the given example instance. 
If no explanation applies to the example instance, 
then use standard EBL to explain the instance: us- 
ing the domain theory, prove that the example in- 
stance entails the target concept and generalize the 
explanation. Go to 5. 
If an explanation applies to the example instance, 
augment the confidence in the explanation. 
If the stored explanation has reached its con- 
fidence level, (based on some decision function, 
D uaefuz-explan), th en extract an operational concept 
from the explanation and form a search control rule. 
Continue problem solving. 

Figure 1: The PEBL Procedure 

On the other hand, some subset of these tasks may 
reappear in a similar configuration. With standard 
EBL, one must be able to prove that the example en- 
tails the target concept, but proving that some resource 
contention is chronic requires multiple examples. We 
define our target concept in this domain as a “plausi- 
bly chronic resource bottleneck”. Thus, each example 
of contention is only a plausible conjecture of chronic 
contention, and empirical confirmation with multiple 
examples is needed to prove the target concept. Only 
when the system has gained enough confidence in the 
plausible explanation is a search control rule created. 
The confidence in an explanation can be described as 
a decision function, Duseful-ezplan, where: 

D usef ul-explan . ’ Pexplan x c, x c, - {O,l}. 

P explan is the probability that the explanation is cor- 
rect, Cm is the expected cost to match the search 
control rule [Minton, 1988a], and Co is a measure of 
the expected degradation in the quality of the solu- 
tion. The semantics of the rules in the domain theory 
can be viewed as conditional probabilities. Then, the 
conditional probabilities associated with the plausible 
implications can be used to determine the probability 
that an explanation is correct over some sample space 
[Pearl, 19851. The PEBL procedure is shown in Fig- 
ure 1. 
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An Example in the Payload Processing 
Domain 
In the payload processing domain, the target concepts 
to be learned are the plausibly chronic resource bot- 
tlenecks. The domain theory contains information de- 
scribing the conditions under which contention might 
occur, such as proximity of multi-mission launch dates, 
types of carriers, types of tasks, and types of resources. 
The training example is an instance of a task whose 
resource requirements were not met. As an example, 
we illustrate the generalization problem for a plausi- 
bly chronic resource bottleneck between tasks in two 
different missions (see Table 1). The domain theory is 
used to create a specialized instance of the target con- 
cept (with each of the variables instantiated). Then 
a goal regression algorithm generalizes the description 
by regressing the target concept’s preconditions back 
through the results of the inference process, and finds 
the weakest preconditions under which the explanation 
holds. 

For example, consider a task spucelab-systems- 
experiment-test that is a subtask of spucelub- 
experiment-integration. SpaceZub-systems-experiment- 
test is part of a biological mission that uses a long- 
module-2 carrier. Among its resource requirements 
is a request for automatic test equipment. If there 
is no automatic test equipment available at the first 
time consistent with its temporal constraints, learning 
would be initiated. First, all previously generated ex- 
planations are tested to see if their preconditions apply 
to this particular example. If no explanation holds, a 
new one is generated that describes the current situa- 
tion. In this example, by using the domain theory, the 
system would determine that the bottleneck is a result 
of contention with a set of previously scheduled tasks 
in some other biological mission that use all of the au- 
tomatic test equipment. Both missions have launch 
dates within six months of each other. 

If a previously generated explanation held, its con- 
fidence would be augmented. If the confidence in the 
explanation, as determined by the decision function, 
D useful-esplan, was sufficient, a new search control rule 
would be generated. Then, this and other rules would 
be used to guide search in future scheduling runs. If, 
in this example, the confidence was high, the search 
control rule shown in Figure 2 would be created. 

Evaluating the Method 
In this section we describe the empirical analysis of the 
PEBL method. 

Empirical Results 
To evaluate the success of this approach we randomly 
generated sixteen sets of missions with varying prox- 
imity of launch dates and various carrier types. For 
the training phase, we used six sets of missions (with 



TABLE 1: THE PLAUSIBLY-CHRONIC-RESOURCE-BOTT~ENECK-ACROSS-TWO-MISSIONS 
GENERALIZATION PROBLEM 

Given: 
0 et Cu Class of 

where: 
instances of a chronic resource bottleneck across two missions 

~AUSlBLY-CHRONlC-RESOURCE-BOTTLENECK-ACROSS-TWO-MISSIONS(taskf.res) 

IN-MlSSlON(taskf.missZ) A CONFLICTING-TASKS(taskf.res,task-ffsr) 
A 1SA(missZ.MlSSlON) A NOT-EQUAL(mfssf.mfssZ) A NEARBY(mfssf.mfss2) 
A CONFLICT-IN-MISSlON(task-ffst.mfss2.task2) A USES-CARRlER(missf,carrf) 
A USES-CARRIER(mfss2,carr2) A CARRIER-TYPE(carrf .carr-typef) 
A CARRIER-TYPE(carr2,carr-type21 A RESOURCE-TYPE(res,res-type) 
A TASK-TYPE(taskf,task-typef) A TASK-TYPE(task2,task-type2). 

RESOURCE-BOTTLENECK(spacelab-systems-experiment-test 1. 
automatic-test-equipment 1) 

ISA(spacelab-systems-experiment-test l.SPACELAB-SYSTEMS-EXPERIMENT-TEST) 
IN-MISSlON(spacelab-systems-experiment-test 1 .sts-62) 
lSA(sts-62.MlSSION) 
USES-CARRlER(sts-62.lm2- 1) 
lSA(lm2- l.LONG-MODULE-21 

USERS(res.task-fist) A EQ(paraffef-tasks. {task E task-fist I lNTERSECTS(task.taskf))) 
+ CONFLICTING-TASKS(taskf.res.paraffef-tasks) 

START-TIME(taskf .st 1) A END-TIME(taskf .et f 1 A START-TIME(task2.st2) 
A END-TlME(task2.et2) A (LEQ(stf.et2) A LEQ(et2,etf 1) v(LEQ(stf.st2) A LEQ(st2,etf 1) 
+ lNTERSECTS(taskf,task2) 

lSA(mf.MlSSlON) A ISA(m2.MlSSlON) A NOT-EQUAL(mf .m2) A LAUNCH(mf .timef 1 
A LAUNCH(m2.tfme2) A MINUS(tfmef.tfme2.df/f3 A ABSOLUTE-VALUE(dfff.abs-vaf) 
A LESS-THAN(abs-vaf.SlX-MONTHS) + NEARBY(mf.rn2) 

CONFLICTING-TASKS(conf-task.res.task-ffst) A 3 task E task-fist IN-MISSlON(task.miss) 
+ CONFLICT-IN-MISSION(task-ffst.miss.fask) 
lSA(task.SPACELAB-SYSTEMS-EXPERIMENT-TEST) 
+ TASK-TYPE(task.SPACELAB-EXPERIMENT-INTEGRATION) 
ISA(task.PAD-OPERATIONS) + TASK-TYPE(task.LEVEL-I) 

e 
EQ(res. AUTOM ATIC-TEST-EQUIPMENT I) 
+ RESOURCE-TYPE(res. AUTOM ATIC-TEST-EQUIPMENT) 

EQ(res.EAST-CRANE) -+ RESOURCE-TYPE(res.CRANE) 
e 

lSA(c.MPESS) + CARRIER-TYPE(c.MISSlON-PECULIAR) 

lSA(c.LONG-MODULE- 1) v lSA(c.LONG-MODULE-21 v lSA(c.PALLET-IGLOO) 
+ CARRIER-TYPE(c.BIOLC#$AL) 

tv Critefipa; 

The concept definition must be expressed in terms of the predicates used to describe 
the examples (e.g.. IN-MlSSlON(fask.mfss). USES-CARRlER(mfss.carrJ) or other 
selected. easily evaluated predicates from the domain theory (e.g..MlNUS. LAUNCH. 
TASK-TYPE). 

A generalization of the training example that is a sufficient concept definition for the 
target concept and that satisfies the operationality criterion. 
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If Discussion of the Results 
TASK-TYPE( taskf, 

SPACELAB-EXPERIMENT-INTEGRATION) A 
RESOURCE-TYPE( res, 

AUTOMATIC-TEST-EQUIPMENT) A 
IN-MISSION( taskf,nadssf) A 
LAUNCH( missf, timef) A 
ISA( mis&,MISSION) A 
LAUNCH( rniss2, timei?) A 
MINUS( timef , time& difl A 
ABS-VAL( di#,abs-val) A 
LESS-THAN( ah-val,SIX-MONTHS) A 
USES-CARRIER( missf ,carrf) A 
CARRIER-TYPE( carrf,BIOLOGICAL) A 
USES-CARRIER( missS!,carr2) A 
CARRIER-TYPE( carr2,BIOLOGICAL) A 

Then 
SCHEDULING-PERSPECTIVE( taskf, 

RESOURCE-BASED) 

Figure 2: An Example Search Control Rule 

- 300 examples of resource contention). In our cur- 
rent implementation of PEBL, the decision function, 
D usefui-explan, is a simple threshold value. We ana- 
lyzed the characteristics of the search space of schedul- 
ing this training set of missions to determine a likely 
range of threshold values. In this problem, a rule was 
created from an explanation if the explanation was ap- 
plicable to four examples in a sample of one hundred. 
After training, we compared the respective speeds and 
WIP times for the resulting schedules generated with 
and without the learned search control rules created 
by PEBL, and for the schedules generated with rules 
created by using a zero threshold on ten different sets 
of missions. Using a threshold of zero is analogous 
to using standard EBL, where each explanation would 
be used to create a search control rule. This falsely 
implies that every resource bottleneck is chronic, how- 
ever, so we refer to this as the “Learn Always” method. 
The results of the efficiency gain of synthesizing sched- 
ules using the learned knowledge are shown in Table 2. 
The results of the increased WIP times for the sched- 
ules generated with search control rules are shown in 
Table 3. 

The number of tasks in each set of missions varied 
from 362 in Test-3 to 652 in Test-8 From 296 ex- 
amples, PEBL created 19 search control rules. The 
number of times that the search control rules applied 
in each set of missions varied from 70 times in Test-3 
to 138 times in Test-7 and Test-lo. The rules were 
tested before scheduling each task. When using the 
Learn Always technique, 78 search control rules were 
created. The number of times the rules applied ranged 
from 117 times in Test-3 to 233 times in Test-lo. 

In any learning system that generates search control 
rules, the utility of the rules is of primary importance 
[Minton, 198813, Keller, 19871. Minton defines search 
control knowledge as being useful when the cumulative 
benefits of applying the knowledge outweigh the cumu- 
lative costs of testing whether the knowledge is appli- 
cable. He defines performance improvement in terms 
of run time speed-up. But utility can also be mea- 
sured in terms of solution quality. In many scheduling 
domains, the optimality of a schedule cannot be com- 
promised for efficiency gain. Thus, when measuring 
the utility of the search control knowledge in schedul- 
ing, one must also take into account the quality of the 
generated schedule. In this domain, the optimization 
criterion for schedule quality is minimal WIP time. 

In our experiments, the empirical component of 
PEBL proved essential. With too many rules, schedul- 
ing with the learned knowledge is worse than schedul- 
ing without the learned knowledge. The cost of test- 
ing the rules results in decreased system efficiency, and 
over-applying the non-optimizing search strategy cre- 
ates poor schedules. 

The results of our empirical analysis indicate that 
we must address the utility problem in terms of so- 
lution quality. The speed-up of the system is sig- 
nificant, ranging from - 19 % to - 77 % when the 
search control knowledge is applied. Test-9 showed the 
most significant efficiency improvement (76.99 %) be- 
cause of the configuration of carriers and launch dates 
(three biological carriers with launch dates within six 
months, thus, high contention for human resources). 
The overall average speed-up was 34.25 %. However, 
the increase in WIP time varies from one set of mis- 
sions to another. In some instances, the degradation in 
the quality of the synthesized schedules is noticeable, 
in others, the total WIP time is maintained. In this 
and other real-world domains, however, the ability to 
rapidly generate viable schedules is essential, and in 
some cases, worth marginal increases in WIP time. 

When scheduling from the resource perspective, we 
choose resources randomly and then choose times 
based on these resources’ availability. Some processing 
to select the “best” resource (the resource that has the 
maximum availability or that has a sufficient quantity 
available during a time interval closest to the desired 
time) may improve the synthesized schedules, because 
the choice of resource determines the values for start 
and end times when scheduling from the resource per- 
spective. This is similar to the look-ahead schemes of 
[Smith and Ow, 19851 however, and would incur addi- 
tional costs to the efficiency of the system. 

Additionally, we believe that scheduling tasks from 
individual missions such that WIP time is minimized 
does not necessarily create schedules in which total 
WIP time is minimized. That is, there may be some 
cases when a sparser distribution of resource utilization 
in one mission allows the tasks in a second mission to 
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arch Control 

Table 2: Program Efficiency with and without the Learned Search Control Knowledge 

Increase in 

Table 3: WIP time with and without the Learned Search Control Knowledge 
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better interleave with the tasks in the first mission, 
thus reducing total WIP time across both missions. 

elated Work 
The PEBL approach extends previous work in EBL 
[Mitchell et aL, 1986, Minton, 1988a, DeJong and 
Mooney, 19861 by applying it to a real-world prob- 
lem and by adding an empirical component to con- 
firm plausible explanations. In the real-world domain 
of payload processing scheduling, contention for a bot- 
tleneck resource is only plausibly chronic. This ob- 
servation inspired the integration of plausibility into 
EBL, and ultimately, the creation of PEBL. The 
PEBL method is similar to other empirical learn- 
ing techniques [Pazzani et al., 1986, Danyluk, 1989, 
Hirsh, 1989, Mooney and Ourston, 19891. However, 
our empirical component is not used to make induc- 
tive leaps. Rather, the target concept itself cannot be 
proved without a distribution of examples. 

In the PEBL framework, the decision to create a rule 
is determined by the expected cost to solution quality, 
the conditional probabilities associated with plausible 
implications, and the expected match cost of applying 
a rule. Prior work [Minton, 1988b] in learning search 
control rules calculates the utility of a rule as a func- 
tion of the frequency of application, the match cost and 
the efficiency gain. This is similar to work in learn- 
ing macro-operators [Iba, 19891; a macro-operator is 
deemed useful if its expanded length does not exceed 
some threshold, and if it appears in a successful solu- 
tion path. Since our system does not create rules from 
every plausible explanation, we avoid having to reject 
useless or incorrect knowledge. 

Finally, we extend previous work in scheduling us- 
ing multiple perspectives [Smith and Ow, 19851 by ap- 
plying machine learning techniques to minimize the 
changes in the search strategy to the most critical 
points in the search space. 

Conclusions and Future Work 
In the domain of scheduling, the balance between pro- 
gram efficiency and solution quality is essential. As 
our preliminary results are promising, we plan to thor- 
oughly test these ideas on a set of comprehensive exper- 
iments. We will incorporate some look-ahead process- 
ing for resource selection and investigate other variable 
commitment search strategies. We will repeat the tests 
shown above, this time randomly varying the resource 
capacities. We intend to further analyze the character- 
istics of a good interleaving of tasks across missions. If 
we can incorporate these characteristics into the do- 
main theory, we can then create search control rules 
that are likely to minimize WIP time. Because the 
number of generated search control rules effects the 
utility of the learned knowledge, accurately deciding 
whether a rule will be useful is essential. We intend to 
replace our current implementation of D,,ef UJ-explan 
as a simple threshold, by adding heuristic measures to 

determine good solutions, and by extending the do- 
main theory to include conditional probabilities that 
conjectured implications will be proven. 

In the future, we plan to extend our work in machine 
learning and scheduling. We intend to apply PEBL to 
different search frameworks (e.g., constraint-based sim- 
ulated annealing [Zweben, 19901) and will investigate 
the idea of forming macro-constraints. Although indi- 
vidual constraints may not be restrictive, small sub- 
sets can effectively prune the search space. The appli- 
cation of these macro-constraints may quickly restrict 
the possible values for a variable. Other ideas include 
learning constraint ordering to find failure points early 
in the search process. 
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