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Abstract 
Current explanation-based generalization (EBG) tech- 
niques can perform badly when the problem being 
solved involves recursion. Often an infinite series of 
learned concepts are generated that correspond to the 
expansion of recursive solutions over every finite depth. 
Previous attempts to address the problem, such as 
Shavlik’s generalization-to-N EBG method, are overly 
reluctant to expand recursions; this reluctance can lead 
to inefficient rules. In this paper EBG is viewed as a 
program transformation technique on logic programs. 
Within that framework an improved operationality cri- 
terion for controlling the expansion of recursions is 
presented. This criterion prevents certain infinite and 
combinatorially explosive rule classes from being gen- 
erated, yet permits expansion in some useful circum- 
stances, allowing more efficient rules to be learned. 

Introduction 
Despite the promise of machine learning as a tech- 
nique for making it easier to get knowledge into ma- 
chines, the current status of EBG [Mitchell et al., 1986; 
Mooney and Bennett, 19861 learning techniques is such 
that it is often much harder to write a program which 
an EBG-based learning system will transform into 
something reasonable than it is to write that “reason- 
able” program directly. It is not the case that EBG 
systems can take any, or even most, inefficient encod- 
ings of a task and turn out an efficient version; rather it 
is sometimes the case that there exists sume encoding 
of a task for which an EBG system can do something 
reasonable. If EBG systems are to become a useful 
technology they must transcend this limitation. Re- 
cursions in the initial program or rule set supplied to 
an EBG system are a common cause of undesirable 
learned rules. For example Minton’s PRODIGY sys- 
tem [Minton, 19881, operating in the blocks world do- 
main, can learn rules for constructing towers 2 blocks 
high, 3 blocks, high, and so on. Etzioni [Etzioni, 19901 
makes this same observation, but does not provide a 
solution. The problem of learning rules which are ap- 
plicable to similar problems regardless of their size has 
been called the generalization-to-N problem. [Shavlik, 
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19891 has presented a modification of EBG that per- 
mits such rules to be learned. The change involves 
making the EBG algorithm more reluctant to unfold 
definitions. This paper presents a more general so- 
lution to the problem of controlling the unfolding of 
recursion, which was implemented in an EBG-engine 
called RECEBG. 

The issue of recursion control extends beyond the 
problem of simply generalizing to N, however; the work 
described here was motivated by a different problem 
involving recursion and EBG. An important technique 
for specifying search control knowledge to a problem 
solver involves providing some sort of progress met- 
ric to be used for evaluation of intermediate states of 
problem solving. Heuristic search algorithms such as 
A* are based on this principle. Frequently such met- 
rics work by counting some aspect of the state, which 
means they are recursively defined on the state rep- 
resentation. For example, in simplifying algebraic ex- 
pressions, the metric of expression size can be used 
to impose directionality on the application of a set of 
undirected equality rules. When search control knowl- 
edge is provided in this manner, it is often possible to 
statically evaluate the effects of the available opera- 
tors on the value of the metric in order to learn search 
control for the operators. For example, one could stat- 
ically determine that the equality rule X*1=X reduces 
expression size when used as a rewrite rule in the left- 
to-right direction, but not in the reverse direction. If 
this fact can be established in general for all applica- 
tions of the rule, then it is not necessary to evaluate 
the size of every expression before and after applica- 
tion of the rule in order to see if progress is being made 
- in effect, the evaluation of the metric is performed 
once ‘at compile time’ (or ‘learning time’) rather than 
repeatedly at run-time. 1 In order to perform such 
compile-time evaluation of recursive metrics, it is nec- 
essary to unfold recursions. In the example, one would 

‘Such precomputation of parts of a program at compile- 
time is known as partial evaluation of a program. Several 
authors have recently pointed out the close relationship 
between partial evaluation and EBG.[van Harmelen and 
Bundy, 19881 
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need to count the expression sizes on the left and right 
hand sides of the rewrite rule. This in turn requires un- 
folding the definition of the expression sire metric over 
the terms on each side of the equation. Since these 
terms contain variables, the unfolding of the metric is 
only partial, and the compile time value of the met- 
ric is not a number but an algebraic expression. The 
effects of the rule on the metric can nontheless be as- 
sessed by reasoning about alegebraic inequalities, such 
as whether size(X)+2 > size(X), must be true. 

In summary we have the observation that unfolding 
of recursions must be limited in order to prevent the 
generation of infinite rule sets, yet it must be permitted 
in order to allow static evaluation of recursive proper- 
ties where possible. This paper presents a strategy for 
controlling the unfolding of recursions which attempts 
to satisfy both of these goals. We will see that there are 
limits on solving this problem in general - a strong ver- 
sion of it is equivalent to the halting problem - but that 
there are incomplete solutions of demonstrable practi- 
cal utility. This paper first describes a model of EBG 
as transformation of logic programs, then presents the 
modifications to the operationality criterion of EBG 
that control unfolding. Finally we describe the per- 
formance of a series of EBG-like systems on a static 
metric evaluation learning problem, including SOAR, 
a simple PROLOG-EBG engine, a PROLOG partial 
evaluator, and the RECEBG system presented here, 
and show that only the last adequately handles the 
problem. 

EBG as Transformation 
of PROLOG Programs 

In this paper we view EBG as a technique for trans- 
forming logic programs [Prieditis and Mostow, 1987; 
Hirsh, 1987; van Harmelen and Bundy, 19881, specifi- 
cally pure PROLOG programs. The advantages of this 
model of EBG are several. Pure PROLOG programs 
have a very simple structure that is convenient to an- 
alyze, yet they are expressively as or more powerful 
than any other formalism to which EBG techniques 
have been applied. A PROLOG program is simply an 
AND/OR tree, augmented with recursion and variable- 
binding mat hinery. This may be contrasted, for ex- 
ample, with the languages used by EBL-systems such 
as PRODIGY. PRODIGY specifies programs as sets 
of operators with first-order pre- and post-conditions, 
plus separate sublanguages for specifying domain the- 
ories and search control rules. The language is con- 
siderably more complex without being more expres- 
sively powerful. PROLOG has the additional advan- 
tage of being better known and more widely available, 
so that program transformation algorithms expressed 
relative to PROLOG can be more readily understood 
and tested by others. 

The relative simplicity of PROLOG as a program- 
ming language carries over to program transforma- 
tions on the language. EBG has a very simple de- 

scription in terms of PROLOG programs [van Harme- 
len and Bundy, 19881: it corresponds to repeated ap- 
plication of a program transformation I will call ex- 
pansion, which means the replacement of a subgoal 
by one of its definitions. 2 Since PROLOG goals may 
have more than one than one definition, more than one 
such substitution is possible. Eg. given p(X) :-q(X), 
q(X) :-r(X) and q(X) :-s(X), expansion of the defini- 
tion of q within the definition of p generates two new 
definitions of p: p(X) :-r(X) and p(X) :-s(X). Ex- 
haustive application of this transformation converts 
nonrecursive PROLOG programs to disjunctive nor- 
mal form. 3 Expansion of recursive programs can 
generate infinitely many expansions or simply fail to 
terminate. 

Note that this model captures only certain aspects of 
EBG, chiefly learning from success. In order to capture 
other aspects, notably learning from failure, one must 
consider transformations that reorder conjuncts and 
rules (see eg. [Etzioni, 19901). 

The RECEBG Operationality Criterion 

Within the model of EBG set forth in [Mitchell et al., 
19861 and [Keller, 19861 expansion is controlled by an 
operutionulity criterion, which determines which pred- 
icates may be replaced by their definitions during the 
creation of learned rules. The operationality criterion 
controls the level of generality of the learned rules: if it 
is reluctant to expand, the rules produced will be more 
general; if too eager, the rules will be more specialized. 
In order to permit possible nonexpansion of recursive 
definitions, the basic EBG algorithm must be modified 
to allow for the possibility that more than one learned 
rule will be produced from a single example. For exam- 
ple, suppose that a call to a recursively defined predi- 
cate called subgoal occurs somewhere in the middle of 
a computation of a predicate called goal. If the deci- 
sion is made not to expand the occurrence of subgoal, 
then two rules may be learned: one for goal, contain- 
ing an unexpanded reference to subgoal, and one for 
subgoal, which captures the specialized aspects of the 
example with respect to subgoal. [Shavlik, 19891 also 
describes this modification. Once the algorithm has 
been modified in this way to permit nonexpansion of 
recursions, the interesting question is when to expand. 

The following example will be used to elucidate the 
operationality criterion: 

2Expansion is the PROLOG analog of the X-calculus 
operation of P-reduction. The term unfolding is also widely 
used for this transformation. 

3Such exhau st ve expansion in general causes an expo- i 
nential blow-up in program size, which is certain to increase 
the time to fail a goal and very likely to increase the av- 
erage time to succeed. This highlights the importance of 
the operationality criterion for controlling the application 
of this potentially dangerous transformation. 
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goal(X) :- . . . ,getlist(Y) ,member(X,Y) ,... . 
member (A, [A I Rest] > . 
member(A, [BIRest]) :- member(A,Rest). 
Here a nonrecursive predicate, called goal, contains a 
reference to the recursively defined predicate member. 
The list argument to member is supplied by a second 
predicate called getlist whose definition is not shown. 
It is important to distinguish between references to a 
recursive predicate that appear outside of the predi- 
cate’s definition, such as the call to member inside goal, 
and recursive calls occurring within a predicate’s defi- 
nition, such as the call to member in the second clause 
of member. We will refer to the former as external culls, 
and the latter as internal culls. The following sections 
explain the different components of the operationality 
criterion. 

Rule#l: Never Expand Internal Calls 
Expansion of internal calls can license an infinite 
number of learned rules, corresponding to the in- 
finitely many possible finite recursion depths. In 
the PRODIGY blocks-world example, such expansion 
leads to rules for 2-towers, S-towers, etc. In the 
case of member, it leads to additional clauses such 
as member(A, [B,A/T])., member(A, [B,C,AIT])., 
member (A, [B, C ,D, A I Tl > . , etc. The assumption that 
the cost of matching such rules will remain small as 
their number grows without bound is questionable. 
Rule#l says to never do this, that such expansions 
will not, in general, be a win over simply keeping the 
compact recursive definition around. Even if recursion 
depth is bounded, if a predicate has several recursive 
clauses in its definition, expansion of internal calls can 
generate explosively many learned rules: in fact, BD 
learned rules, where B is the branching factor - i.e., 
number of disjuncts - and D is the depth of recur- 
sion. In the algebraic equation solving domain that 
was studied in this research, this effect led to learned 
rules that were formed by composing primitive alge- 
braic rewrite rules so that the example equation could 
be solved in a single rule; such rules were highly specific 
and very numerous. 

Rule#l, in conjunction with the algorithmic modifi- 
cations that allow multiple learned rules from a single 
example, is equivalent to Shavlik’s generalization to N 
technique. 

Rule#2: Well-Founded Expansion 
of External Calls 

Overly eager expansion of external calls can poten- 
tially reproduce all of the problems arising from ex- 
pansion of internal calls, by creating new defini- 
tions of the caller instead of the recursive predi- 
cate. For example we could generate the follow- 
ing rules for goal by expanding the calls that led 
to the infinite set of rules for member shown above: 
goal(X) :- . . . , getlist([XiT]), . . . . . 
goal(X) :- . . . , getlist([A,XIT]), . . . . . etc. 

However, if expansion of getlist were to result in a 
binding of the list variable Y to a list such as [a,b] , 
as in goal(X) :- . . . , member(X, [a,b]), . . . . then 
expanding the call to member would be a good thing, 
because the predicate could be satisfied at compile (or 
learning) time. (Two different rules could be generated 
by such an expansion, in which X would be bound in 
turn to a and to b.) 

The problem is to find a way to license those expan- 
sions which can perform useful work at compile time, 
without opening the door to infinite rule sets in the 
caller. The solution used in RECEBG is to allow the 
expansion of an external call where that expansion can 
be shown to be making progress. The technique is sim- 
ilar to the approach used in [Boyer and Moore, 19791 
theorem prover to show that inductive proofs are valid; 
the same idea is used in proving termination of pro- 
grams. The key idea is that in order for the expansion 
to be safe, there must exist a well-founded ordering on 
the arguments to the recursive predicate which is de- 
creasing over the expansion, and which has a smallest 
value. 4 Finding such an ordering in general is equiv- 
alent to being able to show whether any program will 
terminate; i.e., it is equivalent to the halting problem. 
However, in practice a few simple heuristics are capa- 
ble of generating progress metrics for a broad class of 
common problems. For programs that manipulate list 
structure, a structural induction metric which counts 
the size of the (partially instantiated) list structure is 
usually sufficient to provide a well-founded ordering. 
Progress metrics for programs which count down to 
zero or count up to a fixed value can also be defined. 
Together these metrics are sufficient to prove termina- 
tion for the class of bounded loop programs, i.e., those 
programs that can be written using only for-loop-type 
iteration constructs. 

The structural induction metric in RECEBG counts 
the number of leaves in a term’s expression tree, with 
variables and atoms counting as one. To determine 
whether an external call is well-founded, RECEBG 
compares the size of the arguments in the call with 
the size of the arguments in the recursive call, i.e., the 
recursive call in the body of the predicate after the 
head has been unified with the external call. This cri- 
terion can easily be improved, since a recursion is well 
founded if any argument (or subset of the arguments) 
is getting smaller, which may be true even when the 
size of all of the arguments together is remaining con- 
stant - eg., list reverse. Another simple extension 
would be handling of counter controlled loops, where 
< on the natural numbers provides the well-founded 
ordering. 

Rule#2 says that external calls can be expanded if a 
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well-founded ordering can be found on any of the argu- 
ments. For example, if expansion of getlist resulted 
in Y being bound to [A ,B , Xl , the second argument to 
the member call would be [A,B ,X1 before expansion, 
and [B ,X] in the new call resulting from the expan- 
sion (assuming that A was not equal to X in the exam- 
ple). Since [B ,X] has fewer list elements than [A ,B , Xl 
the expansion is making progress, and therefore can be 
carried out safely. 

Note that an external call containing only variables, 
such as member (X, Y) , would never be expanded under 
this rule, while an call containing partially instanti- 
ated variables, such as member(X, [Y, Z] ) , will be ex- 
panded. In the former case, however, expansion of 
other predicates that share the variable Y could special- 
ize it so that the call to member would become expand- 
able. Therefore whenever a variable is specialized by 
expansion during the EBG process, any unexpanded 
recursive calls must be rechecked to see if they have 
become expandable. Note also that such variable spe- 
cializations are determined by the code only, they are 
not supplied by the example. The example enters in 
only in the selection of control flow paths through the 
code. The result is that calls are expanded only to the 
extent warranted by the variable specializations in the 
learned rule, rather than the bindings in the example. 

Rule#3: Forced Termination Expansion 

The trickiest aspect of the expansion control concerns 
the conditions under which, when the example chose 
the terminal case in an external call, the learned rule 
should incorporate that choice rather than simply re- 
taining the call to the recursive predicate. Eg., suppose 
that during an call of member(X,Y) , the correspond- 
ing goal in the example was member (1, [l ,21> , which 
succeeds immediately. Should the call be expanded, 
eliminating the call to member and binding Y to [Xl 
in the learned rule? Unwanted expansions yield overly 
specific learned rules that incorporate too much detail 
from the example, while missed opportunities to ex- 
pand can lead to inefficient rules that fail to exploit the 
information provided by the example. The inefficiency 
can extend well beyond the predicate in question, since 
the failure to expand one predicate can cause variables 
to go unspecialized, leading to a failure to expand other 
predicates via Rule #2. 

Examination of numerous examples suggests that 
sometimes expanding the terminal case is the right 
thing to do, while other times retaining the call leads to 
better rules. The feature that distinguishes those cases 
where expansion is desirable is that in those cases, the 
terminal branch is the only logically possible choice, at 
the level of the learned rule rather than the example. 
In other words, the recursive branch(es) can be stati- 
cally shown to be contradictory, so that the recursive 
branch can never be taken. Rule#3 says that if this can 
be proved, then the recursive call should be replaced 
by its terminal case definition. 

Proving the applicability of Rule#3 requires stati- 
cally showing that the recursive definitions are inap- 
plicable. The example cannot be appealed to to assist 
in this proof, because the proof must hold across all 
examples. It is not possible to provide a complete ca- 
pability for detecting forced termination, short of pro- 
viding a complete theorem prover. However, numerous 
simple cases can be recognized, which provide consid- 
erable leverage in practice. The easiest refutations are 
obtained when the call fails to unify with the heads of 
the recursive clauses, as occurs in the most common 
PROLOG recursion cliche, where p( Cl > cannot match 
p( [H 1 T] ) . If no recursive clause can unify, termina- 
tion is forced. In addition, RECEBG contains a small 
set of simplification rules which can sometimes sim- 
plify conjuncts in the recursive clause to false after the 
head has been unified with external call, thus showing 
the inapplicability of the clause. These rules provide a 
poor-man’s theorem prover; adding strong typing and 
static type-checking machinery would be a useful ex- 
tension of this idea. Incompleteness in the reasoner’s 
ability to refute the recursive branches causes Rule#S 
to fail to apply in places where it ought to, resulting in 
inefficient, overly general learned rules. If one must err, 
it is better to err on the side of overly general rules, 
because there are usually fewer of them than overly 
specific rules, and the effect on performance is likely 
to be less bad. 

Evaluating RECEBG 
This section describes the outcome of attempts to solve 
a learning problem involving complex recursion unfold- 
ings on four different EBG-like systems: the SOAR 
learning architecture, a simple EBG-engine for pure 
PROLOG, a partial evaluator for pure PROLOG, and 
finally the RECEBG system that incorporates the op- 
erationality criterion described above. We first de- 
scribe the target problem. 

The Isolation Example 
PRESS [Bundy, 19831 is a program for solving alge- 
braic equations. It is notable in that it provides a 
coherent theory of search control for the application of 
algebraic rewrite rules. In PRESS, the rewrite rules 
of algebra are grouped into sets called strategies, each 
of which helps achieve a different subgoal of the task 
of solving an equation. Here we will consider only one 
such strategy, called Isolation, which applies to equa- 
tions that contain a single occurence of the unknown 
on the left hand side, and no occurrences on the right 
hand side. Isolation strips away away function appli- 
cations from the left hand side until the unknown is 
isolated. At that point the equation is solved. Isola- 
tion rules work by applying the inverse of the function 
being eliminated to both sides of the equation. Eg. 

A+B=C =+ A=C-B 
A*B=C a A=C/B 
sin(A) = B j A = arcsin 
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PRESS’s search-control theory can be viewed as a se- 
quence of loops, each of which applies operators until 
some metric of badness is reduced to zero. In the case 
of the isolation strategy, the metric is depth of nesting 
of the unknown on the left-hand side. 

The problem of learning search control for an op- 
erator given a progress metric can be formulated as 
follows: form new “search-controlled” operators from 
the original uncontrolled operator by adding to its pre- 
conditions the weakest additional constraints that will 
guarantee that the operator application reduces the 
metric. For example, if the operator is the rewrite rule 
A+B=C 3 A=C-B and the metric is depth of nesting of 
the unknown on the LHS, the additional precondition 
would be that the unknown is a subterm of A. To do 
this, the learner must statically evaluate the operators’ 
effects on the metric’s value. Below we describe at- 
tempts to implement this behavior in 4 different EBG- 
engines. 

PRESS-SOAR 
PRESS-SOAR is an attempt to learn PRESS-style 
search control within SOAR. SOAR [Laird et al., 1987; 
Rosenbloom and Laird, 19861 is a problem-solver that 
incorporates an EBG-style learning component. The 
intent was to provide the system with algebraic oper- 
ators - rewrite rules - together with a metric for as- 
sessing progress, and have it learn the conditions under 
which the operators make progress in reducing the met- 
ric. The metric used was the depth-of-nesting metric 
appropriate for isolation. In PRESS-SOAR problem 
solving begins in a problem space containing only rules 
with the desired search control knowledge; this space 
is initially empty. When no operator is applicable, an 
impasse occurs, invoking a promiscuous-proposal prob- 
lem space. In this space any rewrite rule matching the 
expression can apply, but a check must be performed 
to verify that the rule application does in fact reduce 
depth of nesting before the rule will be selected. The 
goal was to have SOAR’s chunking machinery chunk 
over these impasses to yield rewrite rules which are 
only considered in circumstances where they reduce 
depth of nesting. 

The early versions of PRESS-SOAR which func- 
tioned correctly apart from chunking did not generate 
the desired chunks. Instead they generated radically 
overspecific chunks, which incorporated many of the 
features of the particular problem instances that SOAR 
had been exposed to, including such features as the 
entire left hand side term structure, or the particular 
nesting depth before and after rewriting. Developing a 
version of PRESS-SOAR which produced the desired 
chunks required careful attention to what information 
was computed before versus during the impasse. In 
general, to get desired chunks in SOAR, one must 
ensure that all the “compile time” computations oc- 
cur within an impasse. In effect the impasse/multiple 

problem space mechanisms in SOAR function to allow 
the programmer to determine which parts of compu- 
tation should occur “at compile time”, thereby allow- 
ing the programmer to define an operationality crite- 
rion tailored to the problem at hand. The question of 
how to automatically determine operationality is thus 
closely related to the question of how to automatically 
organize knowledge into separate problem spaces. 

PROEBG: A PROLOG EBG-Engine 
PROEBG is a simple EBG-engine for pure PROLOG, 
closely modelled on the ebg program presented in [van 
Harmelen and Bundy, 1988]. It builds a new disjunct 
for a goal by finding the set of primitives evaluated in 
the course of solving an example. The results contain 
no calls to defined functions, and tend to contain many 
trivial wasteful steps - eg., goals that are obviously 
true by inspection, regardless of how the variables are 
bound - that are simplified in a postprocessing step. 
% Apply rewrite rules that reduce the vneasure, until done. 
isolate(X,X=Exp,X=Exp). 
isolate(X,LHS=RHS,Solution) :- 

not(LHS=X), 
rule(LHS=RBS,NeuLHS=NewRHS), 
don(X,LHS,Don), 
don(X,NewLHS,NewDon), 
NewDon < Don, 
isolate(X,NewLHS=NewRHS,Solution). 

don(Var,Var,O). 
don(Var,Trm,Don) :- 

Trm 8.. cop I Argsl , 
member(Sub,Args). 
don(Var,Sub,D), 
Don is D+l. 

rule(A+B=C,A=C-B). rule(A+B=C,B=C-A). 
rule(A*B=C,A=C/B). . . . 

PROEBG was applied to the PROLOG version 
of isolate shown above. From the standpoint of 
the isolation search-control learning task, PROEBG 
was a disappointment. Its problems were very sim- 
ilar to those of PRESS-SOAR: unwanted incorpora- 
tion of specific details of the examples resulting in 
undergeneral chunks. A rule learned by PROEBG 
is essentially a composition of all the rewrite rules 
used in solving the example. For example, given 
the goal isolate(x,3*~+2=y,Result), it would learn 
isolate(X,A*X+B=C,X=(C-B)/A). 

PROPE: A PROLOG Partial Evaluator 
PROPE is a partial evaluator for pure PROLOG pro- 
grams written by the author. To the simple peval 
code of described in [van Harmelen and Bundy, 19881, 
PROPE adds the full RECEBG operationality crite- 
rion, plus some algebraic simplification capabilities. 
Note however that a partial evaluator, unlike an EBG 
engine, performs its analysis statically, without benefit 
of an example. 
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The problem with PROPE was that, although it 
was able to generate the desired rules, it generated 
too many learned rules, many of which corresponded 
to computations that could never occur. For exam- 
ple, when expanding the rule A+B=C + A=C-B inside 
isolate, it was able to perform well-founded expan- 
sions of the don predicate over the equations A+B=C 
and A=C-B. The predicate member is expanded two dif- 
ferent ways within the first call to don - one assumes 
that X is a subterm of A, the other, B. The second call 
to don assumes X is a subterm of A. Hence, one pair of 
assumptions will be impossible: 

isolate(X,A+B=C,New) :- . . . , 
don(X,B,I), 
don(X,A, J>, 
I < J,... . 

The problem is that PROEBG lacks some knowledge 
about these equations, namely, that there is only one 
occurence of X and that if it is a subterm of a rule 
variable before rewriting, it will be a subterm of that 
same variable after rewriting. Both domain knowledge 
and some reasoning ability are required to prove that 
the execution paths corresponding to these “impossi- 
ble” rules contained contradictory assumptions. Here 
we see the EBG advantage over partial evaluation: by 
focussing attention on paths that are known to be re- 
alizable, EBG gets the equivalent of theorem-proving 
power and domain-knowledge from the world cheaply. 

RECEBG 
RECEBG incorporates the inproved operationality cri- 
terion within an example-guided framework. In addi- 
tion to the modified operationality criterion described 
above, RECEBG incorporates a Fortuitous Unification 
Rude, which allows it to collapse 2 calls to the same 
predicate when those calls return identical results in 
an example. This rule allows the two calls to don in 
isolate to be reduced to a single call, after expansion 
has rendered their arguments identical. RECEBG also 
requires some post-EBG simplification of algebraic in- 
equalities in learned rules. 

RECEBG is able to produce the desired rules by ex- 
panding recursions at compile time as much as possi- 
ble, while restricting its attention to logically possible 
control-flow paths because of the example guidance. 
For example, the rule learned to govern the isolation 
of sum-terms is: 

isolate(X,A+B=C,New) :- 
don(X,A,I), 
isolate(X,A=C-B,New). 

Note that the output I of don is no longer used; the 
call to don now functions only to ensure that A contains 
X. Similar rules are learned for the other operators. 

Conclusions 
Recursive predicates are not well-handled by current 
EBG systems. A simple-minded, overly eager opera- 
tionality criterion can produce an infinite number of 
overly specific learned rules that incorporate too much 

example detail and provide very little coverage. An 
operationality criterion which is overly conservative 
about expanding recursions will avoid these infinities 
but be condemned to repeatedly computing at run- 
time results which could be computed at learning time. 
A partial evaluator which statically expands recursions 
as much as possible can generate large numbers of spu- 
rious learned rules due to lack of domain knowledge 
and/or theorem proving power. An EBG engine that 
opportunistically expands recursions at learning time 
was exhibited which avoids all of these pitfalls. 
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