
PRAGMA - A Flexible Bidirectional Dialogue System

John M. Levine

University of Cambridge, Computer Laboratory,
Pembroke Street, Cambridge CB2 3QG, England.

jml@uk.ac.cam.cl

Abstract
This paper gives an overview of a natural language
dialogue system called PRAGMA. This system contains
a number of novel and important features, as well as
integrating previous work into a unified mechanism.
The most important advance that PRAGMA represents
compared with previous systems is the high degree
of bidirectional@ employed in its design. A single
grammar is used for interpretation and generation,
and the same knowledge sources are used for plan
recognition and response generation. The system is also
flexible, in that it generates useful extended responses,
not only to queries which allow the user’s plan to be
inferred, but also to queries which do not allow this.

1. Introduction
One of the most important and challenging areas of
research in artificial intelligence is the design and
construction of natural language dialogue systems. This
task is one of the hardest artificial intelligence has to
offer, since the overall goal is the implementation
of a fully capable and fluent conversational partner.
Research into the issues involved in building such a
system is important for three main reasons. Firstly, it
serves as an ideal context for the investigation of basic
issues in natural language processing (e.g. syntax,
semantics, parsing and generation) and artificial intelli-
gence (e.g. knowledge representation, theorem proving,
planning and plan recognition). Secondly, it is an
important application area, in the form of natural
language interfaces to database systems, explanation
facilities for expert systems and interactive advisory
services such as online help systems. Lastly, in terms of
linguistic inquiry, it allows us to test existing theories
of language and communication and to propose and test
new ones by giving these substance in the form of a
working computational model.

This paper describes a natural language dialogue
system which contains many novel and significant
features, as well as integrating previous work from
heterogenous sources into a unified mechanism. The

964 NATURALLANGUAGE

system is called PRAGMA, which is an acronym
for ‘Plan Recognition And Generation of Meaningful
Answers.’ The most important advance that PRAGMA
represents compared with previous systems is the high
degree of bidirectionality employed. A single unification
grammar with Montague semantics (Montague, 1974;
Dowty, Wall and Peters, 1981) is used for literal
interpretation and tactical generation (i.e. sentence real-
isation from a representation of content and thematic
organisation). Also, the same sources of information
about possible plans, the domain, and the user’s beliefs
are used to perform plan recognition and strategic
generation (i.e. planning the content and thematic
organisation of an appropriate response).

Apart from this high degree of bidirectionality, there
are three other aspects of the PRAGMA system which
are novel and important. Firstly, we use a linguistically
well-motivated set of functional features to specify
the thematic organisation of a sentence. Secondly, the
strategic generation component of the system provides
useful extended responses, not only to queries which
allow the user’s plan to be inferred, but also to queries
which do not allow this. Lastly, we use a special
algorithm for comparison of logical forms which solves
the problem of logical form equivalence (Appelt, 1987;
Shieber, 1988; Calder, Reape and Zeevat, 1989).

The overall organisation of PRAGMA is shown in
Figure 1. The Grammar Development Environment
(Briscoe et al., 1987; Carroll et al., 1988) was used to
define the bidirectional grammar and also acts as the
major part of the literal interpretation component of the
system. The propositional content of sentences is
represented using standard first-order logical forms.
Considered as a single unit, the logical form and
functional features of a sentence are known as the
logical message of that sentence.

The plan recognition algorithm used in PRAGMA is
based on research by Litman and Allen (1987) and
Allen (1987). If plan recognition is successful, four
significant pieces of information are inferred: the user’s
discourse plan, discourse goal, domain plan, and
domain goal. If plan recognition is unsuccessful, only

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

Figure 1 The Organisation of the System

the user’s discourse plan and discourse goal are in-
ferred. The output from the plan inference process,
together with the logical message of the user’s input
sentence, is referred to as the fur2 meaning of the
sentence.

The strategic generation component of the system
can deal with two types of dialogue. Task-oriented
dialogues are handled by examining the user’s domain
plan and planning speech acts to enable or disable this
where appropriate. An example of this type of inter-
action with PRAGMA is given below.

Where is Pizzaland?
It’s in Regent Street, but it isn’t open today.
Is the Pizza Hut open today?
No, but Pizza Express is.
I don’t know where that is.
It’s in St. Andrew’s Street.
OK, thanks.

the case of dialogues where no specific domain
plan can be inferred, the functional features of the
user’s query are used as a guide to the construction of
appropriate extended responses. An example of this
type of dialogue is shown below.

Who designed Trinity’s library?
It was designed by Wren.
Was Trinity founded by Wren?
No, it was founded by Henry the Eighth.
Did Wren found King’s?
No, it was Henry the Sixth who founded King’s.

PRAGMA is written in Common Lisp and runs on a
Hewlett Packard 9000 Series workstation under the
HP-UX operating system. On average, a dialogue
consisting of a single question and answer pair takes
about 4 seconds of CPU time to run to completion.

The next four sections of the paper describe each of
the processing components of PRAGMA. To demon-
strate how the system works, a single example will be
traced through each of these stages. The example to be
used for this purpose is as follows:

Q: Is the Pizza Hut open today?
A: No, but Pizza Express is.

The final section of the paper briefly compares the
work reported here with previously reported dialogue
systems, evaluates PRAGMA, and discusses some
directions for further research.

LEVINE 965

2. Literal Interpretation
The Grammar Development Environment (GDE) is a
powerful software tool which facilitates the design and
construction of large natural language grammars. Since
it includes efficient facilities for parsing sentences and
extracting the logical forms from the resulting parse
trees, it is also used as the main part of the literal
interpretation component of PRAGMA. The grammati-
cal formalism employed by the GDE is similar to
GPSG (Gazdar et al., 1985). This is compiled by the
GDE to form a unification grammar consisting of a set
of phrase structure rules whose categories are feature
complexes. A simplified version of Montague seman-
tics, similar to that used by Rosenschein and Shieber
(1982), is used to compute the logical forms of sen-
tences from their parse trees.

The logical message formalism used for the
intermediate representation of a sentence consists of a
logical form plus a set of functional features. The
notion of functional features is suggested by Appelt
(1987), but he does not suggest a taxonomy; the work
reported by Levine (1989) and in more detail by Levine
and Fedder (1989) attempts to provide this. The
purpose of these features is to provide the information
contained in a sentence which is not reflected in the
logical form, since this is important in both interpret-
ation and generation. Five functional features are used
in PRAGMA: theme, linguistic focus, emphasis, sen-
tence type, and tense. The first three of these are the
most important, and are adapted from the research of
Quirk et al. (1985).

In interpretation, the values of the functional features
must be computed from the parse tree and logical form
of the input sentence. The sentence level node of the
parse tree contains three syntactic features: the sentence
type (e.g. declarative), the tense (past or present), and
the sentence style (e.g. passive). The sentence style is
then used in conjunction with the logical form to
determine the values of the three remaining features.
For the example under consideration, the output from
the literal interpretation module is shown below.

Logical form = se.open(pizza-hut,e) A on(e,today)
Sentence type = yes/no question
Tense = present
Theme = pizza-hut
Linguistic focus = today
Emphasis = false

3. Plan Recognition
In order to perform plan recognition, we must first
decide what kind of planning activity is going on in the
mind of the user. The assumptions that we make about

the nature of this process are as follows. The user has a
domain goal and is constructing a domain plan to
achieve this goal using the plan library. The plan
library is a collection of action schemata and is
assumed to be shared knowledge between the user and
the system. The system is assisting the user in the
process of constructing a domain plan, since the user
has incomplete and possibly inaccurate knowledge of
the domain. The system has complete and accurate
knowledge of the domain, but incomplete knowledge
about the user’s beliefs. The user needs to select an
appropriate plan and then instantiate it so that it can be
executed. During the plan construction process, the user
may be considering a plan which cannot be proved
valid or invalid given the incomplete nature of the
user’s knowledge. The user will want to know whether
such an undecidable plan is valid or not. This means
that the user will have a discourse goal of the form
knowif(user,p) or knowref(user,x,p(x)); the former
arises from the need to find out whether the constraints
on an action are true or false, the latter from the need
to instantiate the variables of an action schema. The
user then uses the plan library to construct a discourse
plan to achieve the discourse goal, executes the first
surface speech act of this discourse plan, and then waits
for the system’s response.

Having made these assumptions, the plan inference
process can then proceed as follows. The system uses
the plan library and its knowledge of the user’s beliefs
to infer the user’s discourse plan and hence the user’s
discourse goal. By knowing how discourse goals relate
to domain plans under construction, the system can then
attempt to infer the user’s domain plan, and hence the
user’s domain goal.

The formalism used for defining the plan library is
based on that used by Litman and Allen (1987). Action
schemata are defined by a header, a set of constraints, a
set of preconditions, a list of effects, and a hierarchical
decomposition. An example domain plan operator for
the action of eating at a restaurant is shown below
(actions are shown in capital letters to distinguish them
from predicates and functions, and schema variables are
shown with initial capital letters).

Header: EAT-OUT (Agent ,Rest , Food ,Time)
Constr: Zle.serve(Rest,Food,e)

ge.open(Rest,e) A on(e,Time)
Precond: 3e.have(Agent,Price,e) A on(e,Time)
Effects: -Je.hungry(Agent,e) A on(e,Time)
Decomp: MOVE (Agent ,Place ,Time)

PURCHASE (Agent ,Rest ,Food ,Time)
EAT(Agent,Food,Time)

Where: Price: 3e.cost(Food,Price,e)
Place: -Je.in(Rest,Place,e)

966 NATURALLANGUAGE

Plan recognition is performed by identifying the
surface speech act of the user’s input by examining
the logical form and sentence type, and then using
decomposition chaining followed by plan instantiation
with respect to the mutual beliefs of the user and the
system. These are defined, along with the system’s
knowledge of the domain and of the user’s beliefs,
using a simple epistemic theorem prover based on the
design given by Allen (1987: 435ff).

For our example query, the inferred discourse plan is
an askif action, as shown below. The constant ‘prop’ is
used here to represent the logical form of the input
query, i.e. Ye.open(pizza-hut,e) A on(e,today).

Header: ASKIF(user,pragma,prop)
Constr: knowif (pragma , prop)
Effects: knowif (user, prop)
Decomp: REQUEST(user,pragma,

INFORMIF(pragma,user,prop))
INFORMIF(pragma,user,prop)

The user’s discourse goal is thus identified as
knowif(user,prop). This implies that it should be
untied against the constraints of the plan schemata for
the domain plan to be inferred. The eat-out action is
thus identified, decomposition chaining is attempted,
and the plan is instantiated using the information that it
is shared knowledge that the Pizza Hut serves pizza.
The important parts of inferred domain plan are shown
below.

Header: EAT-OUT(user,pizza-hut,pizza,today)
Constr: ge.serve(pizza-hut,pizza,e)

Ye.open(pizza-hut,e) A on(e,today)
Precond . . .
Effects: -Je.hungry(user,e) A on(e,today)
Decomp: . . .
Where: . . .

Thus, the user’s domain goal is identified as the
effect of this plan, i.e. not to be hungry today. All the
plans and goals inferred collected together with the
logical message Tom which they were inferred to form
the full meaning of the user’s input query.

4. Strategic Generation
The strategic generation component of the system
performs four tasks. Firstly, it expands out the inferred
discourse plan with respect to its knowledge of the
domain; this dictates the surface speech act of the first
part of the response. Secondly, it attempts to provide
additional useful information based on the user’s
domain plan (if one has been inferred) and the
functional features of the user’s input. Thirdly, having
decided on the content of its response, it computes the

values of the functional features of the output so that
the resulting utterance is natural and appropriate. Lastly,
it computes the skeletal logical form of the output from
the full logical form; this involves applying pronominal-
isation and verb phrase ellipsis when these are
appropriate.

The module used for computing extended responses
based only on the functional features of the question is
described by Levine (1989) and in more detail by
Levine and Fedder (1989). In essence, the linguistic
focus is regarded as the element of the logical form that
the user is most unsure about and so this can be used
as a guide to the construction of an appropriate
follow-up query. The problem with this work is that it
is not always possible for the user to phrase the query
in such a way that the most uncertain element will be
identified as the linguistic focus and the most certain
element identified as the theme; English syntax only
allows a certain amount of flexibility in the thematic
forms it provides. Hence, it is necessary to use the
plan-based approach in preference to the thematic
approach, and only to use the latter when the former
fails.

The plan-based approach to strategic generation
attempts to assist in the achievement of the user’s
domain goal. PRAGMA attempts to do this by a
process of plan verification and repair in the context of
the user’s query. The algorithm employed can be
described briefly as follows. The inferred discourse plan
dictates the first part of the system’s response. If the
first part of the response implies that the domain plan is
valid where in fact it is not valid, the system must
inform the user that the plan will not work. An
example of this type of response is shown below.

Q: Where is Pizzaland?
A: It’s in Regent Street, but it isn’t open today.

If the first part of the response implies that the plan
does not work, then the second part of the response
should try to suggest an alternative plan. If no
alternative plan is possible, then the second part of the
response should address this instead. The suggestion of
the alternative plan is constrained by the user’s domain
goal and discourse goal. The domain goal may not
be altered. If the discourse goal is of the form
knowif(user,p) and p is false, then the user is probably
interested in some related true proposition, p’. This
related true proposition may be found by considering
(a) which variants of p lead to reasonable plans, (b)
how high up in a plan the terms in p are instantiated,
and (c) the thematic organisation of the user’s input.
The system can then inform the user ‘lp, but p’.’
In this situation, ‘but’ should be inserted between
disablement-enablement pairs if the theme of the

LEVINE 967

response is different to the theme of the query. For
enablement-disablement pairs, ‘but’ should always be
inserted.

For the example under consideration, PRAGMA first
finds that the Pizza Hut is closed today and so the first
part of the response is ‘No,’ which disables the plan the
user is considering. It then tries to enable a different
but related plan. It finds that ‘today’ cannot be varied,
since this is present in the user’sVdomain goal; however
‘pizza-hut’ can be varied and so this is replaced by a
variable in the plan. The system then tries to verify this
plan against its domain knowledge and this succeeds,
with the variable being bound to ‘pizza-express’ in the
process. The logical message of the output is then
constructed, as shown below.

Logical form =
No, but 3 e . open (pizza-express, e) A on (e , today)

Sentence type = declarative
Tense = present
Theme = pizza-express
Linguistic focus = pizza-express
Emphasis = false

Finally, the full logical form is reduced to the
skeletal logical form. For the example, this means that
verb phrase ellipsis is applied by constructing a logical
form containing a predicate which realises as the
appropriate verb phrase anaphor.

5. Tactical Generation
The tactical generation component of PRAGMA
consists of two modules. The first uses the functional
features of the output logical message to compute the
sentence style, essentially reversing the process carried
out during interpretation. The second module is the
sentence generator (originally designed and imple-
mented by Lee Fedder), which operates by forming
trees top-down, breadth-first. This process is guided by
the syntactic features attached to the sentence level
node, but some semantic information from the goal
logical form is also used to cut down the search space.

One of the biggest difficulties in using a bidirec-
tional grammar in a dialogue system is the problem of
logical form equivalence. This occurs when the tactical
generator is presented with a logical form which is
logically equivalent to but syntactically distinct from
one for which the grammar defines a set of surface
forms. For example, this may occur because logical
connectives are associative and commutative. The
problem also arises with stative sentences like ‘Trinity
is a college’ if the stative verb is translated as the
predicate ‘equal’ to maintain compositionality in the
semantics of the grammar.

However, the problem of logical form equivalence
can be solved relatively easily for the sentence
generator used in PRAGMA, since it only attempts to
equate the goal logical form with the constructed
logical form when tree formation is complete. Hence,
what is required is an algorithm which converts these
&t-order logical forms into a standard format so that
unification can then be applied. The algorithm used in
PRAGMA to do this can be described as follows. First
the logical form is skolemised and converted into
Kowalski normal form; this process is described by
Bundy (1983). Equalities are then massaged out of the
resulting expression by replacing one side of an
equality by the other when this is appropriate. A strict
ordering is imposed on which side of the equality is
eliminated to preserve information content: constants
replace variables and skolems, variables replace
skolems, skolem constants replace skolem functions,
and skolem functions of arity n replace skolem
functions of arity greater than n. Tautologies are then
removed from the ifs and thens of all the clauses, and
clauses with empty thens are removed. The ifs and
thens of all the clauses are then sorted by alphabetical
ordering, and the clauses are then sorted by similar
means. The resulting expression is now in the standard
form required, since all variants of the original logical
form will convert to this standard form.

For the example under consideration, the final
natural language response produced by PRAGMA is
‘No, but Pizza Express is.’ This is only one example of
the variety of useful extended responses that PRAGMA
is capable of producing, but it is hoped that this
example demonstrates the basic workings of the system.

6. Conclusions and Further Research
The research reported here uses ideas from previously
reported dialogue systems, such as those reported by
Allen (1983), Kaplan (1983), and Wahlster et al.
(1983), and integrates these ideas into a single system.
However, it also represents a significant advance over
these systems because of the high degree of bidirection-
ality employed.

The idea of a fully bidirectional system is yet to be
rcalised, since the theory on which PRAGMA is built
restricts it to being a supplier of cooperative responses.
The next important step is to have two identically built
systems conversing in natural language in order to
achieve some task. A simple version of this would be
to have one system emulate the user’s behaviour as
described in Section 3.

The plan recognition algorithm used in PRAGMA
will only work well in domains where the plan library
can be assumed to be shared knowledge. For the

968 NATURALLANGUAGE

domain used in PRAGMA this is a reasonable
assumption, but this will not always be the case, as
demonstrated by Pollack (1986). An interesting piece of
further research would involve the construction of a
system which allowed Pollack’s work to run alongside
the work reported here.

Acknowledgements
I would like to thank my supervisor, Steve Pulman,
for his expert advice and for suggesting the original
idea from which this research developed. I would also
like to thank Lee Fedder for allowing me to use
his generator, and for many useful discussions. This
research was funded by a studentship from the Science
and Engineering Research Council.

References
Allen, J. F. (1983) ‘Recognizing Intentions from Natural

Language Utterances,’ in Brady, M. and Berwick,
R. C. teds.) Computational Models of Discourse,
MIT Press, 107-166.

Allen, J. F. (1987) Natural Language Understanding,
Benjamin/Cummings.

Appelt, D. E. (1987) ‘Bidirectional Grammars and the
Design of Natural Language Generation Systems,’
Position Papers for TINLAP-3, Association for
Computational Linguistics, 206-212.

Briscoe, T., Grover, C., Boguraev, B. and Carroll, J.
(1987) ‘A Formalism and Environment for the
Development of a Large Grammar of English,’
IJCAI-87,703-708.

Bundy, A. (1983) The Computer Modelling of Math-
ematical Reasoning, Academic Press.

Calder, J., Reape, M. and Zeevat, H. (1989) ‘An
Algorithm for Generation in Unification Categorial
Grammar,’ Proceedings of the Fourth Conference of
the European Chapter of the ACL, 233-240.

Carroll, J., Boguraev, B., Grover, C. and Briscoe, T.
(1988) A Development Environment for Large
Natural Language Grammars, University of Cam-
bridge, Computer Laboratory, Technical Report No.
127.

Dowty, D. R., Wall, R. and Peters, S. (1981) An
Introduction to Montague Semantics, D. Reidel.

Gazdar, G., Klein, E., Pullum, G. K. and Sag, I. A.
(1985) Generalized Phrase Structure Grammar, Basil
Blackwell.

Kaplan, S. J. (1983) ‘Cooperative Responses from a
Portable Natural Language Database Query System,’
in Brady, M. and Berwick, R. C. (eds.) Computa-
tional Models of Discourse, MIT Press, 167-208.

Levine, J. M. (1989) ‘Taking Generation Seriously in a
Natural Language Question Answering System,’ Ex-
tended Abstracts Presented at the Second European
Natural Language Generation Workshop, Department
of Artificial Intelligence, University of Edinburgh,
45-51.

Levine, J. M. and Fedder, L. (1989) The Theory and
Implementation of a Bidirectional Question Answer-
ing System, University of Cambridge, Computer
Laboratory, Technical Report No. 182.

Litman, D. J. and Allen, J. F. (1987) ‘A Plan Recog-
nition Model for Subdialogues in Conversations,’
Cognitive Science I I, 163 -200.

Montague, R. (1974) ‘The Proper Treatment of
Quantification in Ordinary English,’ in Thomason,
R. H. ted.) Formal Philosophy: Selected Papers of
Richard Montague, Yale University Press, 247-270.

Pollack, M. E. (1986) ‘A Model of Plan Inference that
Distinguishes Between the Beliefs of Actors and
Observers,’ Proceedings of the 24th Annual Meeting
of the ACL, 207-214.

Quirk, R., Greenbaum, S., Leech, G. and Svartvik, J.
(1985) A Comprehensive Grammar of the English
Language, Longman.

Rosenschein, S. J. and S hieber, S. M. (1982) ‘Translat-
ing English into Logical Form,’ Proceedings of the
20th Annual Meeting of the ACL, 1-8.

Shieber, S. M. (1988) ‘A Uniform Architecture for
Parsing and Generation,’ Proceedings of the 12th
International Cor$erence on Computational Linguis-
tics, 614-619.

Wahlster, W., Marburger, H., Jameson, A. and
Busemann, S. (1983) ‘Over-Answering Yes-No
Questions: Extended Responses in a NL Interface to
a Vision System,’ IJCAI-83, 643-646.

LEVINE 969

