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Abstract 
This paper gives an overview of a natural language 
dialogue system called PRAGMA. This system contains 
a number of novel and important features, as well as 
integrating previous work into a unified mechanism. 
The most important advance that PRAGMA represents 
compared with previous systems is the high degree 
of bidirectional@ employed in its design. A single 
grammar is used for interpretation and generation, 
and the same knowledge sources are used for plan 
recognition and response generation. The system is also 
flexible, in that it generates useful extended responses, 
not only to queries which allow the user’s plan to be 
inferred, but also to queries which do not allow this. 

1. Introduction 
One of the most important and challenging areas of 
research in artificial intelligence is the design and 
construction of natural language dialogue systems. This 
task is one of the hardest artificial intelligence has to 
offer, since the overall goal is the implementation 
of a fully capable and fluent conversational partner. 
Research into the issues involved in building such a 
system is important for three main reasons. Firstly, it 
serves as an ideal context for the investigation of basic 
issues in natural language processing (e.g. syntax, 
semantics, parsing and generation) and artificial intelli- 
gence (e.g. knowledge representation, theorem proving, 
planning and plan recognition). Secondly, it is an 
important application area, in the form of natural 
language interfaces to database systems, explanation 
facilities for expert systems and interactive advisory 
services such as online help systems. Lastly, in terms of 
linguistic inquiry, it allows us to test existing theories 
of language and communication and to propose and test 
new ones by giving these substance in the form of a 
working computational model. 

This paper describes a natural language dialogue 
system which contains many novel and significant 
features, as well as integrating previous work from 
heterogenous sources into a unified mechanism. The 
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system is called PRAGMA, which is an acronym 
for ‘Plan Recognition And Generation of Meaningful 
Answers.’ The most important advance that PRAGMA 
represents compared with previous systems is the high 
degree of bidirectionality employed. A single unification 
grammar with Montague semantics (Montague, 1974; 
Dowty, Wall and Peters, 1981) is used for literal 
interpretation and tactical generation (i.e. sentence real- 
isation from a representation of content and thematic 
organisation). Also, the same sources of information 
about possible plans, the domain, and the user’s beliefs 
are used to perform plan recognition and strategic 
generation (i.e. planning the content and thematic 
organisation of an appropriate response). 

Apart from this high degree of bidirectionality, there 
are three other aspects of the PRAGMA system which 
are novel and important. Firstly, we use a linguistically 
well-motivated set of functional features to specify 
the thematic organisation of a sentence. Secondly, the 
strategic generation component of the system provides 
useful extended responses, not only to queries which 
allow the user’s plan to be inferred, but also to queries 
which do not allow this. Lastly, we use a special 
algorithm for comparison of logical forms which solves 
the problem of logical form equivalence (Appelt, 1987; 
Shieber, 1988; Calder, Reape and Zeevat, 1989). 

The overall organisation of PRAGMA is shown in 
Figure 1. The Grammar Development Environment 
(Briscoe et al., 1987; Carroll et al., 1988) was used to 
define the bidirectional grammar and also acts as the 
major part of the literal interpretation component of the 
system. The propositional content of sentences is 
represented using standard first-order logical forms. 
Considered as a single unit, the logical form and 
functional features of a sentence are known as the 
logical message of that sentence. 

The plan recognition algorithm used in PRAGMA is 
based on research by Litman and Allen (1987) and 
Allen (1987). If plan recognition is successful, four 
significant pieces of information are inferred: the user’s 
discourse plan, discourse goal, domain plan, and 
domain goal. If plan recognition is unsuccessful, only 
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Figure 1 The Organisation of the System 

the user’s discourse plan and discourse goal are in- 
ferred. The output from the plan inference process, 
together with the logical message of the user’s input 
sentence, is referred to as the fur2 meaning of the 
sentence. 

The strategic generation component of the system 
can deal with two types of dialogue. Task-oriented 
dialogues are handled by examining the user’s domain 
plan and planning speech acts to enable or disable this 
where appropriate. An example of this type of inter- 
action with PRAGMA is given below. 

Where is Pizzaland? 
It’s in Regent Street, but it isn’t open today. 
Is the Pizza Hut open today? 
No, but Pizza Express is. 
I don’t know where that is. 
It’s in St. Andrew’s Street. 
OK, thanks. 

the case of dialogues where no specific domain 
plan can be inferred, the functional features of the 
user’s query are used as a guide to the construction of 
appropriate extended responses. An example of this 
type of dialogue is shown below. 

Who designed Trinity’s library? 
It was designed by Wren. 
Was Trinity founded by Wren? 
No, it was founded by Henry the Eighth. 
Did Wren found King’s? 
No, it was Henry the Sixth who founded King’s. 

PRAGMA is written in Common Lisp and runs on a 
Hewlett Packard 9000 Series workstation under the 
HP-UX operating system. On average, a dialogue 
consisting of a single question and answer pair takes 
about 4 seconds of CPU time to run to completion. 

The next four sections of the paper describe each of 
the processing components of PRAGMA. To demon- 
strate how the system works, a single example will be 
traced through each of these stages. The example to be 
used for this purpose is as follows: 

Q: Is the Pizza Hut open today? 
A: No, but Pizza Express is. 

The final section of the paper briefly compares the 
work reported here with previously reported dialogue 
systems, evaluates PRAGMA, and discusses some 
directions for further research. 
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2. Literal Interpretation 
The Grammar Development Environment (GDE) is a 
powerful software tool which facilitates the design and 
construction of large natural language grammars. Since 
it includes efficient facilities for parsing sentences and 
extracting the logical forms from the resulting parse 
trees, it is also used as the main part of the literal 
interpretation component of PRAGMA. The grammati- 
cal formalism employed by the GDE is similar to 
GPSG (Gazdar et al., 1985). This is compiled by the 
GDE to form a unification grammar consisting of a set 
of phrase structure rules whose categories are feature 
complexes. A simplified version of Montague seman- 
tics, similar to that used by Rosenschein and Shieber 
(1982), is used to compute the logical forms of sen- 
tences from their parse trees. 

The logical message formalism used for the 
intermediate representation of a sentence consists of a 
logical form plus a set of functional features. The 
notion of functional features is suggested by Appelt 
(1987), but he does not suggest a taxonomy; the work 
reported by Levine (1989) and in more detail by Levine 
and Fedder (1989) attempts to provide this. The 
purpose of these features is to provide the information 
contained in a sentence which is not reflected in the 
logical form, since this is important in both interpret- 
ation and generation. Five functional features are used 
in PRAGMA: theme, linguistic focus, emphasis, sen- 
tence type, and tense. The first three of these are the 
most important, and are adapted from the research of 
Quirk et al. (1985). 

In interpretation, the values of the functional features 
must be computed from the parse tree and logical form 
of the input sentence. The sentence level node of the 
parse tree contains three syntactic features: the sentence 
type (e.g. declarative), the tense (past or present), and 
the sentence style (e.g. passive). The sentence style is 
then used in conjunction with the logical form to 
determine the values of the three remaining features. 
For the example under consideration, the output from 
the literal interpretation module is shown below. 

Logical form = se.open(pizza-hut,e) A on(e,today) 
Sentence type = yes/no question 
Tense = present 
Theme = pizza-hut 
Linguistic focus = today 
Emphasis = false 

3. Plan Recognition 
In order to perform plan recognition, we must first 
decide what kind of planning activity is going on in the 
mind of the user. The assumptions that we make about 

the nature of this process are as follows. The user has a 
domain goal and is constructing a domain plan to 
achieve this goal using the plan library. The plan 
library is a collection of action schemata and is 
assumed to be shared knowledge between the user and 
the system. The system is assisting the user in the 
process of constructing a domain plan, since the user 
has incomplete and possibly inaccurate knowledge of 
the domain. The system has complete and accurate 
knowledge of the domain, but incomplete knowledge 
about the user’s beliefs. The user needs to select an 
appropriate plan and then instantiate it so that it can be 
executed. During the plan construction process, the user 
may be considering a plan which cannot be proved 
valid or invalid given the incomplete nature of the 
user’s knowledge. The user will want to know whether 
such an undecidable plan is valid or not. This means 
that the user will have a discourse goal of the form 
knowif(user,p) or knowref(user,x,p(x)); the former 
arises from the need to find out whether the constraints 
on an action are true or false, the latter from the need 
to instantiate the variables of an action schema. The 
user then uses the plan library to construct a discourse 
plan to achieve the discourse goal, executes the first 
surface speech act of this discourse plan, and then waits 
for the system’s response. 

Having made these assumptions, the plan inference 
process can then proceed as follows. The system uses 
the plan library and its knowledge of the user’s beliefs 
to infer the user’s discourse plan and hence the user’s 
discourse goal. By knowing how discourse goals relate 
to domain plans under construction, the system can then 
attempt to infer the user’s domain plan, and hence the 
user’s domain goal. 

The formalism used for defining the plan library is 
based on that used by Litman and Allen (1987). Action 
schemata are defined by a header, a set of constraints, a 
set of preconditions, a list of effects, and a hierarchical 
decomposition. An example domain plan operator for 
the action of eating at a restaurant is shown below 
(actions are shown in capital letters to distinguish them 
from predicates and functions, and schema variables are 
shown with initial capital letters). 

Header: EAT-OUT (Agent ,Rest , Food ,Time) 
Constr: Zle.serve(Rest,Food,e) 

ge.open(Rest,e) A on(e,Time) 
Precond: 3e.have(Agent,Price,e) A on(e,Time) 
Effects: -Je.hungry(Agent,e) A on(e,Time) 
Decomp: MOVE (Agent ,Place ,Time) 

PURCHASE (Agent ,Rest ,Food ,Time) 
EAT(Agent,Food,Time) 

Where: Price: 3e.cost(Food,Price,e) 
Place: -Je.in(Rest,Place,e) 
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Plan recognition is performed by identifying the 
surface speech act of the user’s input by examining 
the logical form and sentence type, and then using 
decomposition chaining followed by plan instantiation 
with respect to the mutual beliefs of the user and the 
system. These are defined, along with the system’s 
knowledge of the domain and of the user’s beliefs, 
using a simple epistemic theorem prover based on the 
design given by Allen (1987: 435ff). 

For our example query, the inferred discourse plan is 
an askif action, as shown below. The constant ‘prop’ is 
used here to represent the logical form of the input 
query, i.e. Ye.open(pizza-hut,e) A on(e,today). 

Header: ASKIF( user,pragma,prop) 
Constr: knowif ( pragma , prop) 
Effects: knowif (user, prop) 
Decomp: REQUEST(user,pragma, 

INFORMIF(pragma,user,prop)) 
INFORMIF(pragma,user,prop) 

The user’s discourse goal is thus identified as 
knowif( user,prop). This implies that it should be 
untied against the constraints of the plan schemata for 
the domain plan to be inferred. The eat-out action is 
thus identified, decomposition chaining is attempted, 
and the plan is instantiated using the information that it 
is shared knowledge that the Pizza Hut serves pizza. 
The important parts of inferred domain plan are shown 
below. 

Header: EAT-OUT(user,pizza-hut,pizza,today) 
Constr: ge.serve(pizza-hut,pizza,e) 

Ye.open(pizza-hut,e) A on(e,today) 
Precond . . . 
Effects: -Je.hungry(user,e) A on(e,today) 
Decomp: . . . 
Where: . . . 

Thus, the user’s domain goal is identified as the 
effect of this plan, i.e. not to be hungry today. All the 
plans and goals inferred collected together with the 
logical message Tom which they were inferred to form 
the full meaning of the user’s input query. 

4. Strategic Generation 
The strategic generation component of the system 
performs four tasks. Firstly, it expands out the inferred 
discourse plan with respect to its knowledge of the 
domain; this dictates the surface speech act of the first 
part of the response. Secondly, it attempts to provide 
additional useful information based on the user’s 
domain plan (if one has been inferred) and the 
functional features of the user’s input. Thirdly, having 
decided on the content of its response, it computes the 

values of the functional features of the output so that 
the resulting utterance is natural and appropriate. Lastly, 
it computes the skeletal logical form of the output from 
the full logical form; this involves applying pronominal- 
isation and verb phrase ellipsis when these are 
appropriate. 

The module used for computing extended responses 
based only on the functional features of the question is 
described by Levine (1989) and in more detail by 
Levine and Fedder (1989). In essence, the linguistic 
focus is regarded as the element of the logical form that 
the user is most unsure about and so this can be used 
as a guide to the construction of an appropriate 
follow-up query. The problem with this work is that it 
is not always possible for the user to phrase the query 
in such a way that the most uncertain element will be 
identified as the linguistic focus and the most certain 
element identified as the theme; English syntax only 
allows a certain amount of flexibility in the thematic 
forms it provides. Hence, it is necessary to use the 
plan-based approach in preference to the thematic 
approach, and only to use the latter when the former 
fails. 

The plan-based approach to strategic generation 
attempts to assist in the achievement of the user’s 
domain goal. PRAGMA attempts to do this by a 
process of plan verification and repair in the context of 
the user’s query. The algorithm employed can be 
described briefly as follows. The inferred discourse plan 
dictates the first part of the system’s response. If the 
first part of the response implies that the domain plan is 
valid where in fact it is not valid, the system must 
inform the user that the plan will not work. An 
example of this type of response is shown below. 

Q: Where is Pizzaland? 
A: It’s in Regent Street, but it isn’t open today. 

If the first part of the response implies that the plan 
does not work, then the second part of the response 
should try to suggest an alternative plan. If no 
alternative plan is possible, then the second part of the 
response should address this instead. The suggestion of 
the alternative plan is constrained by the user’s domain 
goal and discourse goal. The domain goal may not 
be altered. If the discourse goal is of the form 
knowif( user,p) and p is false, then the user is probably 
interested in some related true proposition, p’. This 
related true proposition may be found by considering 
(a) which variants of p lead to reasonable plans, (b) 
how high up in a plan the terms in p are instantiated, 
and (c) the thematic organisation of the user’s input. 
The system can then inform the user ‘lp, but p’.’ 
In this situation, ‘but’ should be inserted between 
disablement-enablement pairs if the theme of the 
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response is different to the theme of the query. For 
enablement-disablement pairs, ‘but’ should always be 
inserted. 

For the example under consideration, PRAGMA first 
finds that the Pizza Hut is closed today and so the first 
part of the response is ‘No,’ which disables the plan the 
user is considering. It then tries to enable a different 
but related plan. It finds that ‘today’ cannot be varied, 
since this is present in the user’sVdomain goal; however 
‘pizza-hut’ can be varied and so this is replaced by a 
variable in the plan. The system then tries to verify this 
plan against its domain knowledge and this succeeds, 
with the variable being bound to ‘pizza-express’ in the 
process. The logical message of the output is then 
constructed, as shown below. 

Logical form = 
No, but 3 e . open (pizza-express, e) A on (e , today) 

Sentence type = declarative 
Tense = present 
Theme = pizza-express 
Linguistic focus = pizza-express 
Emphasis = false 

Finally, the full logical form is reduced to the 
skeletal logical form. For the example, this means that 
verb phrase ellipsis is applied by constructing a logical 
form containing a predicate which realises as the 
appropriate verb phrase anaphor. 

5. Tactical Generation 
The tactical generation component of PRAGMA 
consists of two modules. The first uses the functional 
features of the output logical message to compute the 
sentence style, essentially reversing the process carried 
out during interpretation. The second module is the 
sentence generator (originally designed and imple- 
mented by Lee Fedder), which operates by forming 
trees top-down, breadth-first. This process is guided by 
the syntactic features attached to the sentence level 
node, but some semantic information from the goal 
logical form is also used to cut down the search space. 

One of the biggest difficulties in using a bidirec- 
tional grammar in a dialogue system is the problem of 
logical form equivalence. This occurs when the tactical 
generator is presented with a logical form which is 
logically equivalent to but syntactically distinct from 
one for which the grammar defines a set of surface 
forms. For example, this may occur because logical 
connectives are associative and commutative. The 
problem also arises with stative sentences like ‘Trinity 
is a college’ if the stative verb is translated as the 
predicate ‘equal’ to maintain compositionality in the 
semantics of the grammar. 

However, the problem of logical form equivalence 
can be solved relatively easily for the sentence 
generator used in PRAGMA, since it only attempts to 
equate the goal logical form with the constructed 
logical form when tree formation is complete. Hence, 
what is required is an algorithm which converts these 
&t-order logical forms into a standard format so that 
unification can then be applied. The algorithm used in 
PRAGMA to do this can be described as follows. First 
the logical form is skolemised and converted into 
Kowalski normal form; this process is described by 
Bundy (1983). Equalities are then massaged out of the 
resulting expression by replacing one side of an 
equality by the other when this is appropriate. A strict 
ordering is imposed on which side of the equality is 
eliminated to preserve information content: constants 
replace variables and skolems, variables replace 
skolems, skolem constants replace skolem functions, 
and skolem functions of arity n replace skolem 
functions of arity greater than n. Tautologies are then 
removed from the ifs and thens of all the clauses, and 
clauses with empty thens are removed. The ifs and 
thens of all the clauses are then sorted by alphabetical 
ordering, and the clauses are then sorted by similar 
means. The resulting expression is now in the standard 
form required, since all variants of the original logical 
form will convert to this standard form. 

For the example under consideration, the final 
natural language response produced by PRAGMA is 
‘No, but Pizza Express is.’ This is only one example of 
the variety of useful extended responses that PRAGMA 
is capable of producing, but it is hoped that this 
example demonstrates the basic workings of the system. 

6. Conclusions and Further Research 
The research reported here uses ideas from previously 
reported dialogue systems, such as those reported by 
Allen (1983), Kaplan (1983), and Wahlster et al. 
(1983), and integrates these ideas into a single system. 
However, it also represents a significant advance over 
these systems because of the high degree of bidirection- 
ality employed. 

The idea of a fully bidirectional system is yet to be 
rcalised, since the theory on which PRAGMA is built 
restricts it to being a supplier of cooperative responses. 
The next important step is to have two identically built 
systems conversing in natural language in order to 
achieve some task. A simple version of this would be 
to have one system emulate the user’s behaviour as 
described in Section 3. 

The plan recognition algorithm used in PRAGMA 
will only work well in domains where the plan library 
can be assumed to be shared knowledge. For the 
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domain used in PRAGMA this is a reasonable 
assumption, but this will not always be the case, as 
demonstrated by Pollack (1986). An interesting piece of 
further research would involve the construction of a 
system which allowed Pollack’s work to run alongside 
the work reported here. 
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