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Abstract 

The purpose of this paper is to characterize a 
constituent boundary parsing algorithm, using an 
information-theoretic measure called generalized 
mutual information, which serves as an alterna- 
tive to traditional grammar-based parsing meth- 
ods. This method is based on the hypothesis 
that constituent boundaries can be extracted from 
a given sentence (or word sequence) by analyz- 
ing the mutual information values of the part-of- 
speech n-grams within the sentence. This hypoth- 
esis is supported by the performance of an im- 
plementation of this parsing algorithm which de- 
termines a recursive unlabeled bracketing of un- 
restricted English text with a relatively low er- 
ror rate. This paper derives the generalized mu- 
tual information statistic, describes the parsing al- 
gorithm, and presents results and sample output 
from the parser. 

Introduction 
A standard approach to parsing a natural language 
is to characterize the language using a set of rules, 
a grammar. A grammar-based parsing algorithm 
recursively determines a sequence of applications of 
these rules which reduces the sentence to a single 
category. Besides determining sentence structure, 
grammar-based approaches can also identify attributes 
of phrases, such as case, tense, and number, and they 
are known to be extremely effective at characteriz- 
ing and classifying sentences. But these techniques 
are generally demonstrated using only a subset of the 
grammar of the language. In order for a grammar- 
based parser to be applied to unrestricted natural lan- 
guage text, it must account for most of the complexities 
of the natural language. Thus, one must first concisely 
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describe the bulk of the grammar of that language, an 
extremely difficult task. 

This characterization suggests that a solution to the 
problem of parsing unrestricted natural language text 
must rely on an alternative to the grammar-based 
approach. The approach presented in this paper is 
based on viewing part-of-speech sequences as stochas- 
tic events and applying probabilistic models to these 
events. Our hypothesis is that constituent boundaries, 
or “distituents,” can be extracted from a sequence of n 
categories, or an n-gram, by analyzing the mutual in- 
formation values of the part-of-speech sequences within 
that n-gram. In particular, we will demonstrate that 
the generalized mutual information statistic, an exten- 
sion of the bigram (pairwise) mutual information of 
two events into n-space, acts as a viable measure of 
continuity in a sentence. 

One notable attribute of our algorithm is that it ac- 
tually includes a grammar - a distituent grammar, to 
be precise. A distituent grammar is a list of tag pairs 
which cannot be adjacent within a constituent. For 
instance, noun prep is a known distituent in English, 
since the grammar of English does not allow a con- 
stituent consisting of a noun followed by a preposition. 
Notice that the nominal head of a noun phrase. may 
be followed by a prepositional phrase; in the context 
of distituent parsing, once a sequence of tags, such as 
(prep noun), is grouped as a constituent, it is consid- 
ered as a unit. 

Based on our claim, mutual information should de- 
tect distituents without aid, and a distituent grammar 
should not be necessary. However, the application of 
mutual information to natural language parsing de- 
pends on a crucial assumption about constituents in 
a natural language. Given any constituent n-gram, 
ala2.. . a,, the probability of that constituent occur- 
ring is usually significantly higher than the probability 
of ala2.. . a,a,+i occurring. This is true, in general, 
because most constituents appear in a variety of con- 
texts. Once a constituent is detected, it is usually very 
difficult to predict what part-of-speech will come next. 
While this assumption is not valid in every case, it 
turns out that a handful of cases in which it is invalid 
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are responsible for a majority of the errors made bY 
the parser. It is in these few cases that we appeal to 
the distituent grammar to prevent these errors: 

The distituent parsing algorithm is an example of a 
stochastic, corpus-based approach to parsing. In the 
past, a significant disadvantage of probabilistic parsing 
techniques has been that these methods were prone to 
higher than acceptable error rates. By contrast, the 
mutual information parsing method presented in this 
paper is based on a statistic which is both highly ac- 
curate and, in the cases where it is inaccurate, highly 
consistent. Taking advantage of these two attributes, 
the generalized mutual information statistic and the 
distituent grammar combine to parse sentences with, 
on average, two errors per sentence for sentences of 
15 words or less, and five errors per sentence for sen- 
tences of 30 words or less (based on sentences from a 
reserved test subset of the Tagged Brown Corpus, see 
footnote 1). Many of the errors on longer sentences re- 
sult from conjunctions, which are traditionally trouble- 
some for grammar-based algorithms as well. Further, 
this parsing technique is extremely efficient, parsing 
a 35,000 word corpus in under 10 minutes on a Sun 
4/280. 

tant at this point, since there are actually two statistics 
which are associated w rith the term “mutual informa- 
tion,” the second being an extension of the first. 

In his treatise on information theory, Transmission 
of Information (Fano 1961), Fano discusses the mutual 
information statistic as a measure of the interdepen- 
dence of two signals in a message. This bigram mutual 
information is a function of the probabilities of the two 
events: 

MZ(z, y) = log PxPy(ZY y, 
px (4PY (Y) * (1) 

Consider these events not as signals but as parts-of- 
speech in sequence in a sentence. Then an estimate of 
the mutual information of two categories, zy, is: 

# xy in corpus 

MZ(z,y) w log total # of bigrams in corpus 

#x 
>( 

- (2) # y 
corpus size corpus size > 

It should be noted at this point that, while many 
stochastic approaches to natural language processing 
that utilize frequencies to estimate probabilities suffer 
from sparse data, sparse data is not a concern in the 
domain of our algorithm. Sparse data usually results 
from the infrequency of word sequences in a corpus. 
The statistics extracted from our training corpus are 
based on tag n-grams for a set of 64 tags, not word 
n-grams.l The corpus size is sufficiently large that 
enough tag n-grams occur with sufficient frequency to 
permit accurate estimates of their probabilities. There- 
fore, the kinds of estimation methods of (n + 1)-gram 
probabilities using n-gram probabilities discussed in 
Katz (1987) and Church & Gale (1989) are not needed. 

This line of research was motivated by a series of 
successful applications of mutual information statis- 
tics to other problems in natural language processing. 
In the last decade, research in speech recognition (Je- 
linek 1985), noun classification (Hindle 1988), predi- 
cate argument relations (Church & Hanks 1989), and 

. I 

other areas have shown that mutual information statis- 
tics provide a wealth of information for solving these 
problems. 

In order to take advantage of context in determin- 
ing distituents in a sentence, however, one cannot re- 
strict oneself to looking at pairs of tokens, or bigrams; 
one must be able to consider n-grams as well, where n 
spans more than one constituent. To satisfy this con- 
dition, we can simply extend mutual information from 
bigrams to n-grams by allowing the events d: and y to 
be part-of-speech n-grams instead of single parts-of- 
speech. We will show that this extension is not suffi- 
cient for the task at hand. 

The second statistic associated with mutual informa- 
tion is what we will call “generalized mutual informa- 
tion,” because it is a generalization of the mutual in- 
formation of part-of-speech bigrams into n-space. Gen- 
eralized mutual information uses the context on both 
sides of adjacent parts-of-speech to determine a mea- 
sure of its distituency in a given sentence. We will 
discuss this measure below. 

While our distituent parsing technique relies on gen- 
eralized mutual information of n-grams, the founda- 
tions of the technique will be illustrated with the base 
case of simple mutual information over the space of 
bigrams for expository convenience. 

Notat ion 

Mutual Information Statistics 
Before discussing the mutual information parsing al- 
gorithm, we will demonstrate the mathematical basis 
for using mutual information statistics to locate con- 
stituent boundaries. Terminology becomes very impor- 

‘The corpus we use to train our parser is the Tagged 
Brown Corpus (Francis and Kucera, 1982). Ninety percent 
of the corpus is used for training the parser, and the other 
ten percent is used for testing. The tag set used is a subset 
of the Brown Corpus tag set. 

Before continuing with a mathematical derivation of 
the generalized mutual information statistic, some 
mathematical and statistical notation should be ex- 
nlained. 
A Many different probability functions will be referred 
to in this paper. Ps~, represents a probability function 
which maps the set 52 onto the interval [0, 11. In equa- 
tion 1, reference is made to three different probability 
functions: Px, Py , and Px,y . The subscripts of these 
functions indicate their domains, X, Y, and X x Y, re- 
spectively. However, these subscripts will be omitted 
from the remaining equations, since the domain of each 
probability function will be indicated by its arguments. 
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The subscripts and superscripts of the mutual infor- 
mation functions can also be somewhat confusing. The 
bigram mutual information function, denoted as MI, 
maps the cross-product of two event spaces onto the 
real numbers. MI, is a vector-valued function indi- 
cating the mutual information of any two parts of an 
n-gram, 21 . . . x,. The Kth component of this vector, 
1 5 k < 12, is MT:, representing the bigram mutual 
information of x1 . . . xk and xk+l . . .x,. The meaning 
of this vector function will be further explained in the 
next section. Finally, the generalized mutual informa- 
tion function of two adjacent elements xy in an n-gram 
is denoted by gMZ,(x, y). 

Mutual Informat ion 
The bigram mutual information of two events is a mea- 
sure of the interdependence of these events in sequence. 
In applying the concept of mutual information to the 
analysis of sentences, we are concerned with more than 
just the interdependence of a bigram. In order to take 
into account the context of the bigram, the interdepen- 
dence of part-of-speech n-grams (sequences of n parts- 
of-speech) must be considered. Thus, we consider an 
n-gram as a bigram of an nl-gram and an n2-gram, 
where nl + n2 = n. The mutual information of this 
bigram is 

MZ(nr-gram, n2-gram) = log 
P [n-gram] 

P[nr-gram]P[nz-gram] ’ 
(3) 

Notice that there are (n - 1) ways of partitioning 
an n-gram. Thus, for each n-gram, there is an (n - 1) 
vector of mutual information values. For a given n- 
gram xi . . . x,, we can define the mutual information 
values of x by: 

MZ;(xl . . . x:ra) = MZ(xl . . . xk,xk+l . . . Xn) (4) 

= log P(x, . . 
P(Xl . . - xn) 
- xk)p(xk+l * - * xn 

where 1 5 Ic < n. 
Notice that, in the above equation, for each Ml?:(x), 

the numerator, P(xr . . . xn), remains the same while 
the denominator, P(x, . . . xk)P(xk+r . . .x,), depends 
on L. Thus, the mutual information value achieves its 
minimum at the point where the denominator is max- 
imized. The empirical claim to be tested in this paper 
is that the minimum is achieved when the two compo- 
nents of this n-gram are in two different constituents, 
i.e. when xkxk+l is a distituent. Our experiments show 
that this claim is largely true with a few interesting ex- 
ceptions. 

The motivation for this claim comes from examin- 
ing the characteristics of n-grams which contain pairs 
of constituents. Consider a tag sequence, x1 . . . xn, 
which is composed of two constituents x1 . . . xk and 
xk+l . . . xn. since xl . . . xk is a constituent, xl . . . xk-1 
is very likely to be followed by xk. Thus, 

P(x, . . . xk) = P(x, . . .x&l). (6) 

By the same logic, 

P(xk+l s a s 2,) M P(xk+‘J s s e Xn). (7) 
On the other hand, assuming xk and zk+l are uncor- 
related (in the general case),- 

and 

P(xk . . . xn) < p(xk+l - - -xn) 

P(x, . . . xk+l) < P(xl . . . xk). 
Therefore, 

MZ(xl . . . xk, XL+1 . . - X:n) 

P(Xl . . .x,) 
= log P(Xl - - - xk)p(xk+l . . . Xn) 

M 
P(X1 . . . Xn) 

log P(Xl - - - xk-l)p(xk+l . . . Xn) 

’ 
P(Xl . . . xn) 

log P(x, . . . xk-l)p(x, . . . xn) 
= MZ(xl . . . xk-1, xk . . .X,). 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
By applying a symmetry argument and using induc- 
tion, the above logic suggests the hypothesis that, in 
the general case, if a distituent exists in an n-gram, 
it should be found where the minimum value of the 
mutual information vector occurs. 

There is no significance to the individual mutual in- 
formation values of an n-gram other than the mini- 
mum; however, the distribution of the values is signif- 
icant. If all the values are very close together, then, 
while the most likely location of the distituent is still 
where the minimum occurs, the confidence associated 
with this selection is low. Conversely, if these values 
are distributed over a large range, and the minimum is 
much lower than the maximum, then the confidence is 
much higher that there is a distituent where the mini- 
mum occurs. Thus, the standard deviation of the mu- 
tual information values of an n-gram is an estimate of 
the confidence of the selected distituent. 

Generalized Mutual Information 
Although bigram mutual information can be extended 
simply to n-space by the technique described in the 
previous section, this extension does not satisfy the 
needs of a distituent parser. A distituent parsing tech- 
nique attempts to select the most likely distituents 
based on its statistic. Thus, a straightforward ap- 
proach would assign each potential distituent a single 
real number corresponding to the extent to which its 
context suggests it is a distituent. But the simple ex- 
tension of bigram mutual information assigns each po- 
tential distituent a number for each n-gram of which 
it is a part. The question remains how to combine 
these numbers in order to achieve a valid measure of 
distituency. 

Our investigations revealed that a useful way to com- 
bine mutual information values is, for each possible 
distituent xy, to take a weighted sum of the mutual 
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information values of all possible pairings of n-grams 
ending with x and n-grams beginning with y, within 
a fixed size window. So, for a window of size w = 4, 
given the context xlx2xsx4, the generalized mUtUa1 in- 

formation of X2X3 : 

gMZ4(XlX2, X3X4), 

= hMZ(x2, X3) + k2MZ(x2, ~3x4) + (14) 
k3MZ(XlX2, X3) + k4Mr(XlX2, X3X4) (15) 

which is equivalent to 

(16) 
In general, the generalized mutual information of any 
given bigram xy in the context x1 . . . xi-ixyyr . . . yj-1 
is equivalent to 

n 
1% 

Xcrosses xy 

rI 
(17) 

\Xdoes not cross xy / 

This formula behaves in a manner consistent with 
one’s expectation of a generalized mutual information 
statistic. It incorporates all of the mutual information 
data within the given window in a symmetric man- 
ner. Since it is the sum of bigram mutual information 
values, its behavior parallels that of bigram mutual in- 
format ion. 

The weighting function which should be used for 
each term in the equation was alluded to earlier. The 
standard deviation of the values of the bigram mutual 
information vector of an n-gram is a valid measure of 
the confidence of these values. Since distituency is in- 
dicated by mutual information minima, the weighting 
function should be the reciprocal of the standard devi- 
ation. 

In summary, the generalized mutual information 
statistic is defined to be: 

= c 
X ends with xi 

&WV), (18) 

Y begins with yl 

where UXY is the standard deviation of the MZfxyI 
values within XY. 

The Parsing Algorithm 
The generalized mutual information statistic is the 
most theoretically significant aspect of the mutual in- 
formation parser. However, if it were used in a com- 
pletely straightforward way, it would perform rather 
poorly on sentences which exceed the size of the max- 
imum word window. Generalized mutual informat ion 
is a local measure which can only be compared in a 
meaningful way with other values which are less than 

a word window away. In fact, the further apart two po- 
tential distituents are, the less meaningful the compar- 
ison between their corresponding GMT values. Thus, 
it is necessary to compensate for the local nature of 
this measure algorithmically. 

He directed the cortege 
near Santa Monica. 

of autos to the 

Figure 1: Sample sentence from the Brown Corpus 

We will describe the parsing algorithm as it parses 
a sample sentence (Figure 1) selected from the section 
of the Tagged Brown Corpus which was not used for 
training the parser. The sample sentence is viewed by 
the parser as a tag sequence, since the words in the 
sentence are not accounted for in the parser’s statisti- 
cal model. The sentence is padded on both sides with 
w - 1 blank tags (where w is the maximum word win- 
dow size) so there will be adequate context to calculate 
generalized mutual information values for all possible 
distituents in the sentence. 

A bigram mutual information value vector and its 
standard deviation are calculated for each n-gram in 
the sentence, where 2 5-n 5 1O.2 If the frequency of an 
n-gram is below a certain threshold (< 10, determined 
experimentally), then the mutual information values 
are all assumed to be 1, indicating that no information 
is given by that n-gram. These values are calculated 
once for each sentence and referenced frequently in the 
parse process. 

Distituent pass 
pro verb 3.28 
verb det 3.13 
det noun 11.18 
noun prep 11.14 
prep noun 1.20 
noun prep 7.41 
prep det 16.89 
det noun 16.43 
noun prep 12.73 
prep noun 7.36 

DG 
3.28 
3.13 
11.18 
-00 
1.20 

IiG 
16.43 

iii 

Pass Pass 3 
3.28 3.28 

3.13 3.13 

8.18 

3.91 
10.83 

7.64 

2.45 

4.13 

Figure 2: Parse node table for sample sentence 

Next, a parse node is allocated for each tag in the 
sentence. A generalized mutual information value is 

2The optimal maximum word window size, w = 10, was 
determined experimentally. However, since there were only 
46 ll-grams and 15 12-grams which occurred more than 10 
times in the training corpus, it is obvious why virtually no 
information is gained by expanding this window beyond 10. 
By training the parser on a larger corpus, or a corpus with 
a higher average sentence length, the optimal maximum 
word window size might be larger. 

MAGERMAN AND MARCUS 987 



computed for each possible distituent, i.e. each pair 
of parse nodes, using the previously calculated bigram 
mutual information values. The resulting parse node 
table for the sample sentence is indicated by Pass 1 in 
the parse node table (Figure 2). 

At this point, the algorithm deviates from what one 
might expect. As a preprocessing step, the distituent 
grammar is invoked to flag any known distituents by 
replacing their (3MZ value with -oo. The results of 
this phase are indicated in the DG column in the parse 
node table. 

The first w tags in the sentence are processed using 
an n-ary-branching recursive function which branches 
at the minimum GMT value of the given window. The 
local minima at which branching occurs in each pass 
of the parse are indicated by italics in the parse node 
table. One should note that marginal differences be- 
tween 5;MZ values are not considered significant. So, 
for instance, the distituency of pro verb (3.28) is con- 
sidered equivalent to the distituency of verb det (3.13) 
in the sample sentence. This behavior results in n-ary 
trees instead of binary trees. 

Instead of using this tree in its entirety, only the 
nodes in the leftmost constituent leaf are pruned. The 
rest of the nodes in the window are thrown back into 
the pool of nodes. The same process is applied to the 
last u) remaining tags in the sentence, but this time the 
rightmost constituent leaf is pruned from the resulting 
parse tree. The algorithm is applied again to the left- 
most TN remaining tags, and then the rightmost zu tags, 
until no more tags remain. The first pass of the parser 
is complete, and the sentence has been partitioned into 
constituents (Figure 3). 

(He) (directed) (the cortege) (of autos) 
(to) (the dunes) (near Santa Monica) 

Figure 3: Constituent structure after Pass 1 

In pass 2, a parse node is assigned to each con- 
stituent unit determined from the first pass, GM1 val- 
ues are calculated for these parse nodes, and the left- 
right pruning algorithm is applied to them. 

The algorithm terminates when no new structure 
has been ascertained on a pass, or when the lengths 
of two adjacent constituents sum to greater than 20. In 
both cases, the parser can extract no more information 
about the distituency of the nodes from the statistics 
available. In the first case, the resulting distituency 
confidence values are too close together to determine 
distituency; and in the second case, since the word 
window can no longer span a potential distituent, the 
algorithm must give up. After the third pass of the 
algorithm, the sample sentence is partitioned into two 
adjacent constituents, and thus the algorithm termi- 
nates, with the result in figure 4. 

Processing only a word-window of information at a 
time and pruning the leftmost and rightmost leaves 

(He (directed ((the cortege) (of autos))) 
((to (the dunes)) 

(near Santa Monica))) 

Figure 4: Resulting constituent structure after Pass 3 

of the resulting subtrees are the keys to minimizing 
the error introduced by the use of a non-global, esti- 
mated statistic. Since we know that the parser tends 
to make errors, our goal is to minimize these errors. 
Finding constituents in the middle of a sentence re- 
quires locating two distituents, whereas finding them 
at the beginning or end of a sentence requires locating 
only one distituent. Thus, pruning constituents from 
the beginning and end of a tag sequence produces a far 
more accurate partitioning of the sentence than trying 
to guess them all at once. 

It is important to note that, on a given pass of the 
parser, many of the ‘constituents’ which are pruned are 
actually only single nodes. For instance, in the sample 
sentence, the first pass partitions the phrase “to the 
dunes” as “(to) (the dunes).” A subsequent pass of 
the parsing algorithm attaches the preposition to the 
noun phrase (although the parser has no knowledge 
of these constituent names). However, once the entire 
phrase is found to be a constituent, it is not scanned 
for any further structural information. Thus, if the 
first pass had grouped the phrase as “(to the dunes),” 
then the noun phrase within the prepositional phrase 
would never be marked as a constituent. 

As a result of this behavior, the prepositional phrase 
“near Santa Monica” will not attach to the noun phrase 
“the dunes” (or to the noun “dunes” as many lin- 
guists believe it should) once the prepositional phrase 
is formed. Therefore, the parser output for the sample 
sentence has one error. 

Results 
Evaluating the accuracy of a natural language parser 
is as difficult as writing a full grammar for that natural 
language, since one must make decisions about gram- 
mar rules in order to decide what is an error and what 
is not. Serious thought must be put into questions like: 
where does a conjunction bind in a conjunct, and does 
it matter? or where do prepositional phrases attach, 
and can we even decide? These very problems are the 
reason we sought an alternative to a grammar-based 
parser. Thus, while the error rate for short sentences 
(15 words or less) with simple constructs can be de- 
termined very accurately, the error rate for longer sen- 
tences is more of an approximation than a rigorous 
value. 

Our parser is very good at parsing short sentences 
of unrestricted text without conjunctions. On these 
sentences, the parser averages close to one error per 
sentence. However, if free text with conjunctions is 
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included, the performance falls to close to two errors 
per sentence. An error is defined as a misparse which 
can be corrected by moving one subtree. 

As one would expect, our parser’s performance is 
not as accurate for longer sentences, but it is certainly 
respectable. On sentences between 16 and 30 tokens 
in length, the parser averages between 5 and 6 errors 
per sentence. However, in nearly all of these longer 
sentences and many of shorter ones, at least one of the 
errors is caused by confusion about conjuncts, espe- 
cially sentences joined by conjunctions. Considering 
the parser is trained on n-grams with a word window 
no larger than 10 tokens, it is not surprising that it fails 
on sentences more than twice that size. Given a larger 
training corpus with a significant number of these long 
sentences, the maximum word window could be in- 
creased and the parser would undoubtedly improve on 
these longer sentences. 

The output from the mutual information parser is 
unique in that it gives both more and less information 
than most other statistical parsers. Most statistical 
parsers depend on internal grammar rules which al- 
low them both to estimate and to label sentence struc- 
ture. Once again, because of the complexity of natu- 
ral language grammars, these approaches can only ex- 
tract limited levels of structure. Hindle’s FIDDITCH 
parser (1988) attempts to extract not only sentence 
structure but also noun classifications using cooccur- 
rence of word pairs, another variation of bigram mu- 
t ual information. While his technique performs the 
noun classification task extremely well, it does not se- 
riously attempt to parse sentences completely, since its 
grammar cannot handle complex sentence structures. 
Our parser is capable of determining all levels of sen- 
tence structure, although it is incapable of labeling the 
resulting constituents. 

Conclusion 
The performance of this parsing algorithm demon- 
strates that a purely syntactic, stochastic technique 
can effectively determine all levels of sentence structure 
with a relatively high degree of accuracy. The most im- 
portant question to ask at this juncture is: where do 
we go from here? 

An immediate extension of this research would be 
to apply a simple grammar-based filter to each pass of 
our statistical parser to verify the validity of the con- 
stituents it determines. Applying a very simple gram- 
mar which defines only constituency of terminal sym- 
bols would eliminate many of the errors made by our 
parser. 

The implementation of an effective deterministic 
parsing algorithm, however, should not overshadow 
the real discovery of this research. The generalized 
mutual information statistic is a powerful statistical 
measure which has many other applications in natu- 
ral language processing. Bigram mutual information 
has been applied to many different problems requiring 

PI 

PI 

PI 

PI 

PI 

PI 

PI 

PI 

n-gram analysis. It would be interesting to reinvesti- 
gate these problems using generalized mutual informa- 
tion. In particular, Hindle’s noun classification work 
(Hindle 1988) and Ch urch’s part-of-speech assignment 
(Church 1988) might b enefit from this statistic. 

Another way in which this research might be used 
is as a supplement to a grammar-based parser. The 
distituent parsing method could be used in whole as 
a pre-processor to supply hints for a grammar-based 
parser; or it could be used incrementally in a bottom- 
up parsing technique to provide guidelines for search so 
that non-deterministic algorithms do not realize their 
worst-case inefficiency. 

Another interesting possibility is to use the general- 
ized mutual information statistic to extract a grammar 
from a corpus. Since the statistic is consistent, and its 
window can span more than two constituents, it could 
be used to find constituent units which occur with the 
same distribution in similar contexts. 

There are many problems in natural language pro- 
cessing which cannot be solved eficiently by grammar- 
based algorithms and other problems which cannot be 
solved accurately by stochastic algorithms. This re- 
search suggests that the solution to some of these prob- 
lems is a combination of both. 
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