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Abstract 
A significant problem in designing mobile robot control 
systems involves coping with the uncertainty that arises 
in moving about in an unknown or partially unknown 
environment and relying on noisy or ambiguous sensor 
data to acquire knowledge about that environment. We 
describe a control system that chooses what activity to 
engage in next on the basis of expectations about how 
the information returned as a result of a given activ- 
ity will improve its knowledge about the spatial layout 
of its environment. Certain of the higher-level compo- 
nents of the control system are specified in terms of 
probabilistic decision models whose output is used to 
mediate the behavior of lower-level control components 
responsible for movement and sensing. The control sys- 
tem is capable of directing the behavior of the robot in 
the exploration and mapping of its environment, while 
attending to the real-time requirements of navigation 
and obstacle avoidance. 

Exploration and Navigation 
We are interested in building systems that construct 
and maintain representations of their environment for 
tasks involving navigation. Such systems should ex- 
pend effort on the construction and maintenance of 
these representations commensurate with expectations 
about their value for immediate and anticipated tasks. 
Such systems should employ expectations about the in- 
formation returned from sensors to assist in choosing 
activities that are most likely to improve the accuracy 
of its representations. Finally, in addition to reasoning 
about the future consequences of acting, such systems 
must attend to the immediate consequences of acting in 
a changing environment: consequences that generally 
cannot be anticipated and hence require some amount 
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of continuous attention and commitment in terms of 
computational resources. 

We start with the premise that having a map of your 
environment is generally a good thing if you need to 
move between specific places whose locations are clearly 
indicated on that map. The more frequent your need to 
move between locations, the more useful you will prob- 
ably find a good map. If you are not supplied with 
a map and you find yourself spending an inordinate 
amount of time blundering about, it might occur to 
you to build one, but the amount of time you spend in 
building a map will probably depend upon how much 
you anticipate using it. Once you have decided to build 
a map, you will have to decide when and exactly how 
to go about building it. Suppose that you are on an er- 
rand to deliver a package and you know of two possible 
routes, one of which is guaranteed to take you to your 
destination and a second which is not. By trying the 
second route, you may learn something new about your 
environment that may turn out to be useful la.ter, but 
you may also delay the completion of your errand. 

Huey, the robot used in our experiments, is built al- 
most entirely from off-the-shelf components: a 1%inch 
diameter synchro-drive base from Real World Interface 
(Dublin, New Hampshire), a sonar ring subsystem from 
Denning Mobile Robotics (Wilmington, Massachusetts) 
equipped with 8 Polaroid ultrasonic sensors, and an 
80286-based IBM/AT compatible computer with 2M of 
memory, a 3-inch floppy, and a serial interface card, run- 
ning the QNX operating system from Quantum Soft- 
ware (Kanata, Ontario). The various microprocessors 
on Huey communicate through serial lines. Huey can 
operate autonomously using on-board power and com- 
puting, or tethered to a Unix workstation. 

Huey’s ultrasonic sensors provide it with information 
about the distance to nearby objects. With a little care, 
Huey can detect the presence of a variety of geometric 
features using these sensors. In gathering information 
about the office environment, Huey will drive up to a 
surface to be investigated, align one of the sensors to 
the right or to the left of its direction of travel along the 
surface, and then move parallel to that surface looking 
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for abrupt changes in the information returned by the 
aligned sensor that would indicate some geometric fea- 
ture such as a 90° corner. In doing this, Huey keeps 
track of the accumulated error in its movement and the 
variation in its sensor data to assign a probability to 
whether or not a feature is present. 

Huey has strategies for checking out many simple ge- 
ometric features found in typical office environments; 
we refer to these strategies as feature detectors. The 
complete set of feature detectors used by Huey and the 
details concerning their implementation are described 
in [Randazza, 19891. Each feature detector is realized 
as a control process that directs the robot’s movement 
and sensing. On the basis of the data gathered during 
the execution of a given feature detector, a probability 
distribution is determined for the random va.ria.ble cor- 
responding to the proposition that the feature is present 
at a specific location. 

Huey is designed to explore its environment in order 
to build up a. representation of that environment suit- 
able for route planning. In the course of exploration, 
Huey induces a graph that captures certain qualitative 
features of its environment [Kuipers and Byun, 1988, 
Levitt et al., 1987, Basye et al., 19891. In addition to de- 
tecting geometric features like corners and door jambs, 
Huey is able to classify locations. In particular, Huey is 
able to distinguish between corridors and places where 
corridors meet or are punctuated by doors leading to 
offices, labs, and storerooms. A corridor is defined as 
a piece of rectangular space bounded on two sides by 
uninterrupted parallel surfaces 1.5 to 2 meters apart 
and bounded on the other two sides by ports indicated 
by abrupt changes in one of the two parallel surfaces. 
The ports signal locally distinctive places (LDPs) (after 
[Kuipers and Byun, 19881) which generally correspond 
to hallway junctions. Uninterrupted corridors are rep- 
resented as arcs in the induced graph while junctions 
are represented as vertices. Junctions are further parti- 
tioned into classes of junctions (e.g., L-shaped junctions 
where two corridors meet at right angles, or T-shaped 
junctions where one corridor is interrupted by a second 
perpendicular corridor). Huey is given a set of junction 
classes that it uses to classify and the label the locations 
encountered during exploration. 

In the following sections, we consider two of the main 
decision processes that comprise Huey’s control system, 
but first we consider briefly the overall architecture in 
which these decision processes are embedded. 

Planning and Control 
Huey’s control system is composed of a set of decision 
processes running concurrently under a multi-tasking 
prioritized operating system. There is no shared state 
information; all communication is handled by inter- 
process message passing. Run-time process arbitration 
is handled by dynamically altering the process priori- 
ties. Coordination among processes is achieved through 
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Figure 1: Huey’s Control Processes 

a set of message-passing protocols. 
The different processes that make up Huey’s con- 

troller are partitioned into levels (see Figure 1). For 
each level, there is a corresponding arbitrator designed 
to coordinate the different processes located at that 
level. At Level 0, we find the processes responsible for 
control of the different sensor/effecter systems on board 
the mobile base. Each Level 0 process is completely in- 
dependent of the other processes, so no arbitration is 
needed. At Level 1, we find the processes responsible for 
the low-level control of Huey. Level 1 processes are co- 
ordinated using a simple priority scheme: the obstacle 
avoidance process always takes priority over the other 
Level 1 processes. The activities of the feature recog- 
nition and corridor following processes are coordinated 
by higher-level processes. 

Currently, Huey has only one Level 2 process, the LDP 

classifier, but, as we increase Huey’s capabilities, we 
anticipate several additional processes on this level. At 
Level 3, we find the two processes responsible for Huey’s 
higher-level behaviors: the task manager in charge of 
running user-specified errands, and the geographer in 
charge of exploration and map building. The geogra- 
pher (roughly) implements the algorithms in [Basye et 
al., 19891. The task manager is a very simple route 
planner. The activities of these two processes are co- 
ordinated by a Level 4 decision process that takes into 
account the possible costs and benefits to be derived 
from different strategies for mixing exploration and er- 
rand running. To get a better idea of how Huey han- 
dles some of its higher-level decision making, we now 
describe the decision processes at Levels 2 and 4. 

Classifying Locally Distinctive Places 
Upon exiting a corridor through a port, Huey will want 
to determine what sort of LDP it has entered. If Huey 
is in a well-explored portion of its environment, this 
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variables, a decision node corresponding to actions that 
the robot might take, and a vabu~ node representing the 
expected utility of invoking the different feature detec- 
tors in various circumstanc&. The chance nodes include 
a hypothesis variable, H, that can take on values from 
C, and a set of boolean variables of the form, Xf,y, used 
to represent whether or not the feature f is present at 
location w. Each Xj,w is conditioned on the hypothe- 
sis H according to the distribution Pr(Xj,w ]Ci) deter- 
mined by whether or not the class requires the feature 
at the specified location. . . The decision node, Pt, mdr- 

Figure 2: LDP-classification module’s influence diagram 

determination should match Huey’s expectations as in- 
dicated in its map. If, on the other hand, Huey is in 
some unknown or only partially-explored area, this de- 
termination will be used to extend the map, possibly 
adding new vertices or identifying the current LDP with 
existing vertices. In this section, we describe how Huey 
classifies the LDPs encountered during exploration. 

Let L be the set of all locally distinctive places in the 
robot’s environment, C = (Cl, C’s,. . . , Cn) be a set of 
equivalence classes that partitions L, and F be a set of 
primitive geometric features (e.g., convex and concave 
corners, flat walls). Each class in C can be character- 
ized as a set of features in F that stand in some spatial 
relationship to one another. As Huey exits a port, a 
local coordinate system is set up with its origin on the 
imaginary line defined by the exit port and centered in 
the corridor. The space about the origin enclosing the 
LDP is divided into a set of equi-angular wedges W. For 
each feature/wedge pair (f, w) in F x W, we define a 
specialiaed feature detector df,, that is used to deter- 
mine if the current LDP satisfies the feature f at location 
w in the coordinate system established upon entering 
the LDP. Let D be the set of all such feature detectors 
plus no-op, a pseudo-detector that results in no new 
information and takes no time or effort to execute. 

Huey’s LDP-classification module maintains a a prob- 
a.bilistic assessment of the hypotheses concerning the 
class of the current LDP given the evidence acquired 
thus far. At any given time, Huey will have tried some 
number of feature detectors. Let Pt be the pool of de- 
tectors available for use at time t; Pt is just D less the 
set of detectors executed up until t in classifying the 
current LDP. The LDP-classification module is respon- 
sible for choosing the next feature detector to invoke 
from the set Pt. It does so using a decision model cast 
in terms of an influence diagram [Howard and Math- 
eson, 19841. The details are described in [Chekaluk, 
19891; in the following, we highlight the main points. 

The LDP-classification module’s influence diagram in- 
cludes a set of chance nodes corresponding to random 

cates the feature detectors available for use at time t, 
and the 
ing each 

value node, V, represents the utility of invok- 
feature detector. V is dependent only upon 

the hypothesis and decision nodes. The predecessors of 
Pt are just the feature detectors invoked so far, thereby 
indicating temporal precedence and informational de- 
pendence. A graphical representation of the influence 
diagram is shown in Figure 2. 

The utility of invoking each detector is based on (i) 
the ability of the detector to discriminate among the hy- 
potheses, (ii) the cost of deploying the detector, (iii) the 
probability that the current best hypothesis is correct, 
and (iv) the cost of misidentifying the LDP. The first 
two are used to select from among D - (no-op) and the 
last two are used to choose between the best detector 
from D - {no-op) and no-op. The LDP-classification 
module selects from D - (no-op), using the function, 
p : Pt x H + !J?, defined by ~(dj,~, h) = 

nlDiscrim(dj,,,,) - nzCost(dj,, , h), 
where nl and ~2 are constants used for scaling, 
Co~t(djp, h) is a function of the expected time 
spent in executing dj,, for an LDP of a given Class, 
and Discrim(dj,, ) is the discrimination function of 
[Cameron and Durrant-Whyte, 19881 adapted for our 
application, and defined by 

2 Pr(C;) c 1 Pr(dj+, = vIG) - Pr(dj,W = v)I, 
i=l uao,11 

where dj+ = 11 is meant to represent the proposition 
that the detector dj,, returns the value ‘u. The terms in 
the above formula are easily obtained. Pr(dj,, = v]C;) 
is the distribution associated with the corresponding 
Xj,W node, and Pr(dj,w = V) can be calculated using 

Pr(dj,, = V) = 2 Pr(df,, = 71lCi) Pr(Ci) 
i=l 

The LDP-classification module evaluates the influence 
diagram using Agogino and Rama.murthi’s [1988] algo- 
rithm to obtain a decision policy and an expected value 
function for choosing from among D - (no-op). The 
LDP-classification module can also choose to do nothing 
by selecting no-op, thereby committing to the class Ci 
with the highest posterior probability given the infor- 
mation returned by the feature detectors invoked thus 
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far. The actual decision model used by Huey is some- 
what more complicated than the one described here; in 
particular, Huey has an additional set of chance nodes 
corresponding to micro features, the set of feature de- 
tectors is more extensive than indicated here, and the 
current system allows for a feature detector to be in- 
voked multiple times. 

Expected Value of Exploration 
We have experimented with several decision models for 
reasoning about the expected value of exploration. In 
the simple model presented in this section, we assume 
that the system of junctions and corridors that make 
up Huey’s environment can be registered on a grid so 
that every corridor is aligned with a grid line and ev- 
ery junction is coincident with the intersection of two 
grid lines. In the following, the set of junction types, J, 
corresponds to all possible configurations of corridors 
incident on the intersection of two grid lines. Intersec- 
tions with at least one incident corridor correspond to 
LDPs. Since we also assume that Huey knows the di- 
mensions of the grid (i.e., the number of z and y grid 
lines), Huey can enumerate the set of possible maps 
M = (MI, M2, . . .t M,), where a map corresponds to 
an assignment of a junction type to each intersection of 
grid lines. For most purposes, we can think of a map 
as a labeled graph. 

We restrict M by making a number of assumptions 
about office buildings of the sort that Huey will find it- 
self in (e.g., all LDPs are connected). To further restrict 
M; Huey engages in an initial phase of task-driven ex- 
ploration. Each task specifies a destination location in 
a, y grid coordinates. Huey computes the shortest path 
assuming that all intersections have as many coincident 
corridors as is consistent with what is known about the 
intersection and its adjacent intersections. Huey then 
follows this path, acquiring additional information as 
it moves through unknown intersections until it either 
finds its path blocked, in which case it recomputes the 
shortest path to the goal taking into account its new 
knowledge, or it reaches the goal. 

Huey continues in this task-driven exploration phase 
until it is likely-based on the spatial distribution of 
known locations-that all locations have been visited 
at least once. From this point on, given a task to move 
to specific location, it is likely that Huey will be able 
to compute a path through known territory. Huey now 
faces the decision whether to take the known path or to 
try an alternative path through unknown territory. In 
the model considered here, Huey has to choose between 
taking the shortest path through known territory, and 
trying the shortest path consistent with what is known. 
In the latter case, Huey will learn something new, but 
it may end up taking longer to complete its task. 

Let H be a random variable corresponding to the 
actual configuration of the environment; H takes on 
values from M. Let Js,v be a random variable corre- 

Figure 3: The probabilistic model for map building 

sponding to the junction type of the intersection at the 
coordinates, (2, y), in the grid; Jz,y can take on values 
from the set C defined previously. Let Xj,w be as pre- 
viously defined, a boolean variable corresponding the 
presence of a feature at a particular position. Let S& 
be a random variable corresponding to a possible sens- 
ing action taken at the coordinates, (z, y), in the grid. 
Let I correspond to the set of sensing actions taken 
thus far. The complete probabilistic model is shown in 
Figure 3. 

In our simple model, Huey has to decide between the 
two alternatives, PK and Pu, corresponding to paths 
through known and unknown territory. To compute 
P+flq, J+(H) is assumed to be uniform, Pr( Ja,y I H) 
and J+(.& I Jlo,y) are determined by the geometry, 
and Pr(S,,, IXjtw) is determined experimentally. Let 
T = (Tl,Ta,..., T,.) denote the set of all tasks corre- 
sponding to point-to-point traversals, and E( ITi 1) de- 
note the expected number of tasks of type Ti. Let 
Cost(Ti, Mj, Mk) be the time required for the task Ti 
using the map Mj, given that the actual configuration 
of the environment is Mk; if Mj is a subgraph of Mk, 
then Cost(T;, Mj, Mk) is just the length of the shortest 
path in Mjs Let T* denote Huey’s current task. For 
evaluation purposes, we assume that Huey will take at 
most one addition al exploratory step. 

To complete the decision model, we a means 
of computing the expected value of PK and Pu. In 
general, the value of a given action is the sum of the 
immediate costs related to T* and the costs for expected 
future tasks. Let 

Futures(M;,l) = xE(ITjI)Cost(q, M;, M;), 
j=l 

where Mf = Margmax,~r M,II)- 
If classification is i per ect, Huey correctly classifies 

any location it passes through, and ME is the minimal 
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assignment consistent with what it has classified so far. 
In this case, the expected value of PK is 

Cost(T*, M*, -) + Futures( -, I). 

If classification is imperfect, the expected value of PK 
is 

5 Pr(Mj ]r) [Cost(T*, M*, Mj) + Futures(Mj, E)] . 
j=l 

Handling Pv is just a bit more complicated. Suppose 
that Huey is contemplating exactly one sensing action 
that will result in one of several possible observations 
01, - - - t 0,, then the expected value of Pu is 

2 Pr(Mj ]E) Cost(T*‘, M*, Mj) + 
j=l 

73 731 

probability tables l/a where s is the number of junc- 
tion types. If Huey ever detects that ME = I, then 
it assumes that it has excluded the real map, and dy- 
namically adjusts its decision model by computing a 
new sample space for H guided by the results of the 
exploratory actions taken thus far. 

Designing Robot Control Systems 

C Pr(Oi) >: Pr(Mj ]Oi, &)Futures(lClj, [Oi, r]) 
i=l j=l 

where T*’ is a modification of T* that accounts for the 
proposed exploratory sensing action. 

We use Jensen’s [1989] variation on Lauritxen and 
Spiegelhalter’s [1988] algorithm to evaluate the network 
shown in Figure 3. The time required for evaluation 
is determined by the size of the sample spaces for the 
individual random variables and the connectivity of the 
network used to specify the decision model. In the case 
of a singly-connected’ network, the cost of computation 
is polynomial in the number of nodes and the size of the 
largest sample space-generally the space of possible 
maps. The network shown in Figure 3 would be singly- 
connected if each feature, Xf,w, had at most one parent 
corresponding to a junction, Jm,y; a network of this form 
with 100 possible maps can be evaluated in about 10 
seconds, assuming an 8 x 8 grid. 

Our approach to designing Huey’s control system is 
outlined as follows. We begin by considering Huey’s 
overall decision problem, determining an optimal deci- 
sion procedure according to a precisely stated decision- 
theoretic criteria, neglecting computational costs. We 
use an influence diagram to represent the underlying de- 
cision model and define the optimal procedure in terms 
of evaluating this model. 

Huey’s overall decision problem involves several com- 
ponent problems associated with specific classes of 
events occurring in the environment. These component 
decision problems include what action to take when ap- 
proached by an unexpected object in a corridor, what 
sensor action to take next when classifying a junction, 
and what path to take in combining exploration and 
task execution. Each of these problems is recurrent. 

In the case of a multiply-connected network, the cost 
of computation is a function of the product of the sixes 
of the sample spaces for the nodes in the largest clique of 
the graph formed by triangulating the DAG correspond- 
ing to the original network. By making use of the infor- 
mation gathered in the initial exploratory phase, Huey 
is able to reduce the connectivity of the network used 
to encode the decision model. The multiply-connected 
networks that Huey currently uses have around 50 pos- 
sible maps, and require on the order of a few minutes 
to evaluate. 

The space of possible maps chosen may not include 
the map correspo&mg to the actual configuration of 
the environment. To handle such possible omissions. 
we add a special value, I, to the sample space for H, 
and make all of the Pr( Jz,ar ]I) entries in the conditional 

‘A network is said to be singly-connected if there is at 
most one directed path between any two nodes; otherwise, 
it is said to be multiply connected [Pearl, 19881. 

Problems involving what sensor action to take in 
classification or what path to take in navigation are 
predictably recurrent. For instance, during classifica- 
tion each sensor action takes about thirty seconds to 
a minute, so the robot has that amount of time to 
decide what the next action should be if it wishes to 
avoid standing idle lost in computation. The frequency 
with which choices concerning what path to take occur 
is dependent on how long Huey takes to traverse the 
corridor on route to the next LDP. With the current 
mobile platform operating in the halls of the computer 
science department, moving between two consecutive 
LDPs takes about four minutes. The problem of decid- 
ing what to do when approached by an unexpected ob- 
ject occurs unpredictably, and the time between when 
the approaching object is detected and when the robot 
must react to avoid a collision is on the order of a few 
seconds. 

By making various (in)dependence assumptions and 
eliminating noncritical variables from the overall com- 
plex decision problem, we are able to decompose the 
globally optimal decision problem into sets of simpler 
component decision problems. Each of the sets of com- 
ponent problems are solved by a separate module. The 
computations carried out by these modules are op- 
timized using a variety of techniques to take advan- 
tage of the expected time available for decision making 
[Kanazawa and Dean, 19891. The different decision pro- 
cedures communicate by passing probability distribu- 
tions back and forth. For instance, the module respon- 
sible for making decisions regarding exploration and the 
module responsible for classifying LDPs pass back and 
forth distributions regarding the junction types of LDPs. 

1014 ROBOTICS 



Conclusions and Related Work 
The original designs for Huey’s control system were in- 
fluenced by the design of the Hilare robot [Chatila and 
Laumond, 19851. The lower-levels of the control system 
rely little upon the existence of a global clock and ad- 
here for the most part to the specifications of Brooks’ 
subsumption architecture [Brooks, 19861. Our use of in- 
fluence diagrams and Bayesian decision theory was in- 
spired by recent work on decision-theoretic control for 
visual interpretation and sensor placement [Cameron 
and Durrant-Whyte, 1988, Hager, 1988, Levitt et al., 
19881. The design of the geographer module was based 
on the work of Kuipers [Kuipers and Byun, 19881 and 
Levitt [Levitt et al., 19871 on learning maps of large- 
scale space, and our own extensions to handle uncer- 
tainty [Basye et al., 19891. The design of the module re- 
sponsible for coordinating exploration and errand run- 
ning was based on an application of information value 
theory [Howard, 19661. 

Huey’s control system combines high-level decision 
masking with low-level control and sensor interpreta- 
tion to provide for navigation, real-time obstacle avoid- 
ance, and exploration in an unfamiliar environment. 
The basic controller handles multiple asynchronous pro- 
cesses communicating via simple message-passing pro- 
tocols. The architecture supports a variety of arbitra- 
tion schemes from fixed-priority processor scheduling 
to decision-theoretic control. This paper emphasizes 
two decision processes: one responsible for reasoning 
about the uncertainty inherent in dealing with noisy 
and ambiguous sensor data, and a second responsible 
for assessing the expected value of various exploratory 
actions. Our basic approach to designing robot control 
systems involves constructing a decision model for the 
overall problem and then decomposing it into compo- 
nent models guided by the time criticality of the asso- 
ciated decision problems. 
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