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Abstract 
This paper presents an e’xplanation-based learning strategy 
for learning general plans for use in an integrated approach to 
planning. The integrated approach augments a classical plan- 
ner with the ability to defer achievable goals, thus preserving 
the construction of provably-correct plans while gaining the 
ability to utilize runtime information in planning. Proving 
achievability is shown to be possible without having to deter- 
mine the actions to achieve the associated goals. A learning 
strategy called contingent explanation-based learning uses 
conjectured variables to represent the eventual values of plan 
parameters with unknown values a priori, and completers to 
determine these values during execution. An implemented 
system demonstrates the use of contingent EBL in learning a 
general completable reactive plan for spaceship acceleration. 

Introduction 
The planning problem may be characterized as the problem 
of determining an ordered sequence of actions which when 
executed from a given initial state will achieve a given goal. 
In classical planning [Chapman87, Fikes7 1, Stefik8 11, plans 
are determined completely prior to execution by using infer- 
ence to predict the effects of actions and essentially construct 
proofs of goal achievement. Provided a classical planner has 
perfect a priori knowledge, its plans are guaranteed to 
achieve the given goals. Unfortunately, real world domains 
can rarely be characterized perfectly. Reactive planning 
[Agre87, Firby87, Schoppers87;Suchman87] is an alterna- 
tive approach which makes no predictions about the future 
andinsteadrepeats a cycle of evaluating the environment and 
determining an appropriate action. Reactive planning thus 
solves the extended prediction problem faced by classical 
planning [Shoham86] simply by eliminating it. Because 
reactive planning is essentially a hill-climbing approach, 
however, one wrong reaction may delay or prevent a reactive 
planner from achieving its goals. Furthermore, reactive plan- 
ners must also be hand-tailored to achieve the desired behav- 
ior. Thus, while machine learning strategies have been suc- 
cessfully applied to classical planners in various domains 
[Chien89, Fikes72, Hammond86, Minton851, only prelimi- 
nary work has been done in learning reactive rules [Blythe89, 
Schoppers871. 
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The planning approach presented in this paper integrates 
classical planning and reactive planning to solve some of 
their limitations while retaining their merits. In this integra- 
tion, a classical planner is augmented with the ability to defer 
goals guaranteed to be achievable, thus enabling the use of 
runtime information without sacrificing the provably-cor- 
rect nature of plans. The integrated approach also retains the 
learning abilities of classical planning through contingent 
explanation-based learning, a strategy which enables learn- 
ing general plans for use in the integrated approach. 

An Integrated Approach To Planning 
Given an initial state description I and a goal state description 
G, the planning problem involves the determination of a plan 
P consisting of a sequence of actions which when executed 
from the initial state will achieve a goal state. 1 Here we con- 
sider the case wherein a planner has access only to partial 
state descriptions and thus needs to reason about sets of states 
rather than individual states. 

Determining a plan in the integrated approach takes place 
in two stages. Prior to execution, a compktable partial plan 
is constructed. That is, the plan may be incomplete, but it is 
guaranteed that the missing components can be determined 
during execution. The plan is then completed during execu- 
tion, possibly with the use of information which becomes 
available then. Since the plan is completable, any deferred 
goals are guaranteed to be satisfied during execution. 

Let states(S) be the set of states satisfying the partial state 
description S, and PR(p) and EF(p) the precondition and ef- 
fect state descriptions of an action or action sequence p. Giv- 
en initial and goal state descriptions I and G, the first stage 
consists of determining a sequence of subplans Q = 
{qm,...,qd such that: 

states(I) c states(ql) AND states(q,) c states(G) AND 
achievablc(EF(qi),PR(qi+l),) for all qiE {ql,...,qn-1) 

where achievability is defined as follows: 
achievable(Sl&) iff V SE states(S1) 3 a plan p which 

when executed from s will result in a state in states(S2). 
Note that proving achievability does not require determining 
a precise plan but rather proving only the existence of a plan. 

1. To simplify the presentation, the planning problem is charac- 
terized as determining completely-ordered action sequences. 
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Q may thus be provably correct even while being only par- 
tially-determined. 

The second stage consists of determining a set of subplans 
R = {rl, r2, . . . . r-1 > to complete Q, that is: 
- V qiE {ql,...&-1 } executing ri in the effect state Of Cl; E- 

suits in a precondition state for the subplan qi+l. 
Because achievability proofs for R were constructed in the 
first stage, it is guaranteed that subplans will be found for 
achieving the deferred goals. The final plan P is thus 
{91,rl,q2rr2r...,qrr-l,rn-l,q,}.2 

Proving Achievability 
The integrated approach is naturally limited by the achievab- 
ility constraint on deferred goals. However, it provides a so- 
lution to an interesting group of planning problems. There 
are many problems in relatively well-behaved domains 
where enough a priori information is available to enable the 
construction of almost complete plans. There are also certain 
kinds of information which are difficult to predict a priori but 
can trivially be gathe=d during execution. In these cases, a 
planner which constructs plans completely a priori faces an 
extremely difficult task, while a planner which leaves every- 
thing to be dynamically determined by reacting to the execu- 
tion environment loses the goal-directed behavior provided 
by a priori planning. A planner in the integrated approach 
faces neither problem, with its ability to defer achievable 
goals and utilize runtime information in its planning. 

An important criterion for the success of the integrated ap- 
proach is proving achievability without having to determine 
actions to achieve the associated deferred goal. Isolating the 
issue of proving achievability provides two important advan- 
tages: 1) the option of deferring planning decisions simpli- 
fies a priori planning, and 2) the use of execution-time infor- 
mation lessens a planner’s reliance on perfect knowledge 
prior to execution. Consider the problem of whipping cream 
An a priori computation of the precise time interval over 
which to whip the cream in order to achieve soft peaks would 
have to account for a whole host of factors, such as the chang- 
ing temperature of the cream, the speed of the beaters, and the 
humidity in the kitchen. In contrast, monitoring for the de- 
sired consistency at execution time, as would be done in the 
integrated approach, is a fairly simple task. Three classes of 
problems have been identified wherein achievability proofs 
can be constructed without determining the actions to 
achieve the associated goals. 
Repeated Actions and Terminal Goal Values. The first class 
of problems involves repeated actions towards a terminal 
goal value, such as hammering a nail all the way into a piece 
of wood or completely unloading a clothes-dryer. The ach- 
ievability proof for this class of problems lies in the notion of 
incremental progress, with every execution of an action re- 
sulting in a state nearer to the goal state until the goal is 
reached, in which case the action has no effect. For example, 
every action of pulling clothes out of the dryer will result in 
less clothes being in the dryer until the goal of the dryer being 

2. Cases with (ro,q,,.. . } or { . . ..qn.rn+l } can be treated similarly. 

completely empty is reached. Instead of being precomputed, 
the precise number of repetitions needed can thus be deter- 
mined at execution time by repeatedly performing the un- 
loading action until the dryer is empty. 
Continuously-Changing Ouantities and Intermediate Goal 
Values The second class of problems involves continuously- 
changing quantities and intermediate goal values, such as 
whipping cream until soft peaks form or accelerating to some 
higher velocity. Proving achievability for this class of prob- 
lems involves reasoning about the achievability of the limits 
on the value of a continuously-changing quantity, which 
guarantees the achievability of all the values within those 
limits. For example, whipping cream until stiff peaks form 
can be achieved by running the whipping process over some 
time interval, thus the intermediate soft-peaks stage is 
achievable by running the whipping process over some 
smaller time interval. During execution, this smaller interval 
can be dynamically determined by monitoring the cream for 
the desired consistency. 
Multivle Ovvortunities The third class of problems involves 
multiple opportunities, such as choosing a paper cup for cof- 
fee or deciding which gas station to stop at on a long trip. The 
achievability proof for these problems depends upon the ex- 
istence of several objects of some type needed to achieve the 
goal. For example, the state of having a clean, graspable cup 
at the time of getting coffee is achievable if there is a stack of 
cups in the cabinet from which one may be chosen. Thus, 
complicated reasoning about particular cups can be avoided 
by deferring the cup choice until the cups are in sight and one 
can be chosen trivially. 

Achievability proofs are implemented as rule schemata, 
which are second-order predicate calculus rules which serve 
as templates from which to derive first-order predicate cal- 
culus rules for use in theorem-proving. Figure 1 shows an 
example of such a rule schema for the class of problems in- 
volving continuously-changing quantities and intermediate 
goal values, as well as a rule derived from that schema for in- 
creasing quantities. The reasoning embodied by this schema, 
also known as the Intermediate Value Theorem in calculus, 
is as follows. Let q be a continuous quantity having a value 
vg at some time t(-~ Also let it be the case that certain condi- 
tions 8 being true over some interval (to t2) will result in q 
having some other value v2 at time t2. Then for all values v1 
between vg and v2 there exists some time tl within the inter- 
val (to t2) such that if 8 holds over the interval (to tl), q will 
have the value v1 at tl. This reasoning as applied to an in- 
creasing quantity is depicted graphically in Figure 2 . 

Learning Reactive Plans 
In the integrated approach, a plan is partially constructed 
prior to execution and completed during execution. We call 
such a plan a reactiveplan. The integrated approach requires 
that all deferred goals be achievable, hence the plans are com- 
pletable reactive plans. The learning objective is to learn 
general completable reactive plans from observation. 

Explanation-based learning (EBL) is a knowledge-inten- 
sive procedure by which general concepts may be learned 
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Intermediate Value Rule Schema 
[‘d 6 

[VqvOv2tOt2 
((value q v0 to) AND 
(continuous q) AND 
((0 [to t2]) + (value q v2 t2)) ) 

+ 
[Vvl 

(between vl v0 v2) 
+ [3 tl (within tl (to t2)) AND 

((0 00 W> --+ (value 9 vl W I I I I 

Intermediate Value Rule for An Increasing Quantity 
[vqvov2tot2vl 

( (value q v0 to) AND 
(continuous q) AND 
( (qualitative-behavior q increasing (to t2)) 
-+ (value q v2 t2)) 
(between vl v0 v2) ) 

[3 tl (within tl [to t2]) AND 
( (qualitative-behavior q increasing (to tl)) 
+ (value q vl tl) ) ] ] 

Figure 1. Sample Rule Schema and Derived Rule. 

to fi t2 

time 
Figure 2. Reasoning about intermediate values 

for an increasing quantity. 

from an example of the concept [DeJong86, Mitchell861. 
EBL involves constructing an explanation for why a particu- 
lar training example is an example of the goal concept, and 
then generalizing the explanation into a general functional 
definition of that concept or more general subconcepts. In 
planning, explanation and generalization may be carried out 
over situations and actions to yield macro-operators or gen- 
eral control rules. Here, we are interested in learning macro- 
operators or general plans. 

Reactive plans present a problem for standard explana- 
tion-based learning [Mooney86]. Imagine the problem of 
learning how to cross. After the presentation of an example, 
an explanation for how the crosser got to the other side of the 
street may be that the crossing took place through some sui- 
tably-sized gap between two cars. Unfortunately, the gener- 
alization of this explanation would then include the precon- 
dition that there be such a suitably-sized gap between some 
two cars-a precondition which for some future street-cros- 
sing can only be satisfied by reasoning about the path of po- 
tentially every car in the world over the time interval of the 

expected crossing! The basic problem is that standard expla- 
nation-based learning does not distinguish between planning 
decisions made prior to execution and those made during ex- 
ecution. After execution, an explanation may thus be con- 
structed using information which became available only dur- 
ing execution, yielding a generalization unlikely to be useful 
in future instances. 

Contingent explanation-based learning &es two main 
modifications to standard explanation-based learning. The 
first is the introduction of conjectured variabEes into the 
knowledge representation to enable reasoning about def- 
erred achievable goals. The second is the addition of a com- 
pletion step which incorporates completers into the general 
plan for the execution-time completion of the partial plans 
derived from the general plan. 
Conjectured Variables. Reactive plans involve deferred 
goals and hence plan parameters whose values are deter- 
mined during execution. For example, in a reactive plan for 
hammering a nail all the way into a wooden plank, the precise 
number of pounding actions needed is unknown prior to ex- 
ecution. However, an achievability proof can be constructed, 
as discussed in the section on proving achievability, which 
guarantees that there exists some number of pounding ac- 
tions which will achieve the goal. A planner must be able to 
recognize such plan parameters which have undetermined 
values prior to execution and whose values must be deter- 
mined during execution. Contingent EBL uses conjectured 
variables for this purpose. A conjectured variable is a plan- 
ner-posed existential used in place of a precise parameter 
value prior to execution, thus acting as a placeholder for the 
eventual value of a plan parameter. The integrity of an expla- 
nation containing conjectured variables hinges upon whether 
or not values can be found for the conjectured variables- 
hence the term contingent explanation-based learning. 

In the integrated approach, a planner is restricted to intro- 
ducing conjectured variables only if achievability proofs can 
be constructed for the associated deferred goals. In the class 
of problems involving continuously-changing processes and 
intermediate goal values, for example, the achievability 
proof warrants the introduction of a conjectured variable re- 
garding the end of the time interval at which the goal value 
for a particular continuously-changing quantity will be 
reached. Such a conjectured variable, supported by an ach- 
ievability proof, is called a valid conjectured variable. Only 
valid conjectured variables are allowed into the domain 
knowledge of a system in the integrated approach. Thus, a 
system may reason with conjectured variables only by rea- 
soning about their achievability as well. For example, in at- 
tempting to find a binding for the cup in a get-coffee problem 
during explanation, a system may explain the achievability 
of determining a precise cup during execution by reasoning 
about multiple opportunities. It may thus unify the cup with 
a valid conjectured variable which would have no a priori 
value but whose achievability is guaranteed by information 
available to the system before execution. By disallowing a 
system from unrestrainedly using conjectured variables to fi- 
nesse the problem of requiring an explanation grounded in 
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initial data, the provably-comt nature of explanations and 
their generalizations is preserved. 
Comoletors. The second modification made by contingent 
explanation-basedlearning involves the incorporation of ad- 
ditional operators called completers into the general plan. 
Completors are responsible for determining a completion to 
a reactive plan by finding appropriate values for conjectured 
variables during execution. Since only valid conjectured 
variables are allowed in the integrated approach, every con- 
jectured variable in a general plan will have an accompany- 
ing achievability proof in the generalized explanation. This 
proof provides the conditions supporting the introduction of 
the conjectured variable, which are used in constructing an 
appropriate completer. 

There are currently three types of completers, one for each 
of the three types of achievability proofs discussed earlier. It- 
erators perform a particular action repeatedly until some 
goal is achieved. Monitors observe a continuously-changing 
quantity to determine when a particular goal value for that 
quantity has been reached. Filters look for an object of a par- 
ticular type. The contingent explanation-based learning al- 
gorithm is summarized in Figure 3. 

Input training example and goal concept 
Construct an explanation for why the example is an 

example of the goal concept 
If an explanation is successfully constructed 
Then 
Generalize and construct a general plan using: 
the goal (root) 
the preconditions (leaves) determining applicability 
the sequence of operators achieving the goal 

Identify the conjectured variables in the generalized 
explanation. 

If there are conjectured variables 
Then 
For every conjectured variable 
Identify the conditions supporting the introduction 

of the variable in the generalized explanation. 
Construct an appropriate completer using these 

conditions and including the plan components with 
this variable. 

Add completer to the operators of the general plan. 
Output general completable reactive plan. 

Else 
Output general non-reactive plan. 

Else 
Signal FAILURE. 

Figure 3. Contingent EBL Algorithm. 

Example 
A system written in Common LISP and running on an IBM 
RT Model 125 implements the integrated approach to plan- 
ning and learning reactive operators. The system uses a sim- 
ple interval-based representation and borrows simple quali- 
tative reasoning concepts from Qualitative Process Theory 
[Forbus84]. The system is thus able to reason about quantity 
values at time points as well as quantity behaviors over time 
intervals. For example, (value (velocity spaceship) 65 10) 
represents the fact that the spaceship is traveling at 65 m/s at 
time lo), and (behavior (velocity spaceship) increasing (10 

17)) represents the fact that the spaceship’s velocity was in- 
creasing fromtime 10 to 17). The system also uses amodified 
EGGS algorithm mooney86] in constructing and generaliz- 
ing contingent explanations. 

The system is given the task of learning how to achieve a 
particular goal velocity higher than some initial velocity- 
i.e. acceleration. The example presented to the system in- 
volves the acceleration of a spaceship froman initial velocity 
of 65 m/s at time 10 to the goal velocity of 100 m/s at time 
17.1576, with a fue-rockets action executed at time 10 and 
a stop-fxe-rockets action executed at time 17.1576. In ex- 
plaining the example, the system uses an intermediate value 
rules for an increasing quantity (see Figure 1) to prove the 
achievability of the goal velocity. It determines that the fol- 
lowing conditions hold: 1) velocity increases continuously 
while the rockets are on, 2) if the rockets are on long enough, 
the maximum velocity of 500 m/s will be reached, and 3) the 
goal velocity of 100 m/s is between the initial velocity of 65 
m/s and 500 m/s. There is thus some time interval over which 
the spaceship can be accelerated so as to achieve the goal. In 
this particular example, that time interval was (10 17.1576). 

The part of the explanation the system constructs regard- 
ing the achievement of the goal velocity at time 17.1576 is 
shown in Figure 4, together with its corresponding part in the 
generalized explanation. The general explanation yields a 

(value (vel ss 100.0 17.1576) 

-7&iZZZn 100.0 65.0 500.0) (value (vel ss) 65.0 10.0) 
(continuous (vel ss)) 1 

\ (qual-beh (vel ss) incr (10.0 17.576)) 
(-> (qual-beh (vel ss) incr (10.0 T+INF) 

(value (vel ss) 500.0 T+INF)) 
I 

SPECIFIC (max-val (vel ss) 500.0) 

(moving ?ss ?v 1 (?st ?et)) 
. 

,oit=sO ?vmax) (value (vel 33s) ?vO ?tl) 

(qual-beh (vel ?ss) incr (?tl !t)) \ 

(-> (qual-beh (vel ?ss) incr (?tl T+INF)) 
(value (vel ?ss) ?vmax T+INF)) 

I 
GENERAL (max-val (vel ?ss) ?vmax) 

Figure 4. Portions of reactive explanations. 

two-operator -fire-rockets and stop-fire-rockets-gener- 
al reactive plan. This plan contains the conjectured variable 
!t, which is the time the goal velocity is reached and the stop- 
fire-rockets action is performed. Using the conditions pro- 
vided by the achievability proof, a monitor operator is 
created for observing the increasing velocity during the ac- 
celeration process and indicating when the goal velocity is 
reached to trigger the stop-fire-rockets operator. 
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The system is also run in a non-reactive (classical plan- 
ning) mode on the same example. Here, the system uses 
equations derived from the principle of the conservation of 
linear momentum in order to explain the achievement of the 
goal velocity. This involves reasoning about various quanti- 
ties, including the combustion rate of fuel and the velocity of 
the exhaust from the spaceship, in order to determine the ac- 
celeration rate. Corresponding portions regarding the 
achievement of the goal velocity at time 17.1576 in the spe- 
cific and general explanations are shown in Figure 5. The 

(spec-val (vel (exh ss)) 

(value (vel ?veh) ?vf &t2) 

GENERAL 

Figure 5. Portions of non-reactive explanations. 

general explanation yields a general non-reactive plan also 
involving a fire-rockets operator and a stop-fire rockets op- 
erator. However in this plan, the time at which the stop-fire- 
rockets action is performed is precomputed using some set of 
equations rather than determined during execution. 

Reactive vs. Non-Reactive Acceleration Plan 

Consider the performance of the system using the general 
reactive plan vs. using the general non-reactive plan. Given 
the problem of achieving a goal velocity of vffrom the initial 
velocity of vi at titne ti, the system may construct either a 
reactive plan fromthe general reactive plan or a non-reactive 
plan from the general non-reactive plan (Figure 6). 

In computing the time at which to stop the rocket-firing, 
the non-reactive plan assumes a constant exhaust velocity 

I Reactive Plan 
[ fire-rockets at time ti I 

monitor increasing velocity for the goal 
value of vf, binding !t to the time this 
value is reached 

stop-fire-rockets at time .ft ] 

Non-Reactive Plan 
[ fire-rockets at time ti 

vf-vi 

wait for time t = e VemeM-M 
given vi = velocity at time ti 

vf = goal velocity 
ve = relative exhaust velocity 
me= burn rate 
M = initial mass of spaceship 

stop-fire-rockets at time tf= ti + t ] 

Figure 6. Reactive vs. Non-Reactive Acceleration Plans. 

and burn rate. Provided the expected values are accurate, it 
will achieve the goal velocity. However, if the actual values 
differ, the spaceship may not reach or may surpass the goal 
velocity. Even small deviations from the expected values 
could have devastating effects if a plan involved many such 
a priori computations, through which errors could get propa- 
gated and amplified. In contrast, the reactive plan makes no 
assumptions regarding the exhaust velocity and bum rate, 
and instead uses execution-time information to determine 
when to stop firing the rockets. It is thus more likely to 
achieve the goal velocity regardless of such variations. 

For a classical planner to correctly compute when to stop 
the rockets, it would have to completely model the rocket- 
firing process-including the fuel-to-oxygen ratio, com- 
bustion chamber dimensions, nozzle geometry, material 
characteristics, and so on. This intractability is avoided in the 
integrated approach through the deferment of planning deci- 
sions and the utilization of execution-time information in ad- 
dressing deferred decisions. 

The integrated approach does have its own limitations. A 
planner in this approach incurs the additional cost of proving 
achievability as well as completing plans during execution. 
There may thus be cases in which this cost will be higher than 
the cost incurred by a classical planner, in which case com- 
plete a priori planning may provide the better solution. How- 
ever, there are many planning problems which involve par- 
ticular goals difficult to plan for prior to execution but easy 
to address during execution. Furthermore, these problems 
have simple achievability proofs which do not require the 
kind of real-world modeling likely to lead to intractability. 
Iu these problems, the integrated approach provides an at- 
tractive alternative to complete a priori reasoning. 

Discussion And Conclusions 
The integrated approach to planning presented in this paper is 
an attempt to solve the individual limitations of classical 
planning and reactive planning through an integration which 
augments a classical planner with the option of deferring 
achievable goals. Achievability proofs, which preserve the 
provably-correct nature of plans, are currently required to be 
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absolute. However, the real world is rarely certain, and an im- 
portant area for future research is that of probabilistic achiev- 
ability proofs. The completers incorporated into learned gen- 
eral plans are responsible for gathering information for plan 
completion during execution. The system currently has sim- 
ple completers with minimal mntime responsibilities. How- 
ever, the identification of other classes of problems and the 
consideration of probabilistic achievability proofs will prob- 
ably require more complicated completers with greater plan- 
ning responsibilities. Another area for future work is in the 
addition of some quantitative knowledge to the system’s rea- 
soning abilitites. This is expected to extend the applicability 
of the system to more complicated problems and allow for a 
more thorough study of learning general reactive plans. 

This work relates in different ways to other work in vari- 
ous research areas. The problems arising from imperfect a 
priori knowledge in classical planning was recognized as 
early as the STRIPS system, whose PLANEX component 
employed an execution algorithm which adapted predeter- 
mined plans to the execution environment Fikes72]. Later 
work such as [Wilkins881 further addresses the problem of 
execution monitoring and failure recovery. The integrated 
approach to planning presented in this paper currently moni- 
tors execution only to complete the partial plans constructed 
prior to execution. However any monitoring and failure re- 
covery capabilities applicable to a classical planner can also 
be incorporated into this approach. The idea of integrating a 
priori planning and reactivity has also been investigated in 
other work [Cohen89, Tumey89J. The work presented in this 
paper differs primarily in that it focuses on the integration of 
planning and execution within a single plan rather than the 
integration of the planning and execution of multiple plans. 
The contingent explanation-based learning algorithm pres- 
ented in this paper was developed to allow for the learning of 
general reactive plans for use in the integrated approach. 
Other work on learning to be reactive [Blythe89] has been on 
learning stimulus-response rules such as that used in reactive 
planning. 

The planning approach described in this paper presents an 
integration of classical planning and reactive planning which 
provides for the construction of completable reactive plans. 
By constraining the deferred goals to only those which can 
be proven achievable, the integrated approach preserves the 
provably-correct nature of plans. Also, by utilizing informa- 
tion gathered during execution in addressing the deferred 
planning decisions, the integrated approach provides for sen- 
sitivity to the runtime environment. Contingent explanation- 
based learning extends standard explanation-based learning 
to enable general reactive plans to be learned from observa- 
tion, by allowing a distinction to be made between planning 
decisions made prior to execution and those made during ex- 
ecution. The use of completable reactive plans simplifies a 
priori planning as well as reduces the reliance on perfect a 
priori information, and euables the construction of plans 
guaranteed to have successful completions. 
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