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Abstract 

Three key components of an autonomous intelli- 
gent system are planning, execution, and learning. 
This paper describes how the Soar architecture 
supports planning, execution, and learning in un- 
predictable and dynamic environments. The tight 
integration of these components provides reactive 
execution, hierarchical execution, interruption, on 
demand planning, and the conversion of deliber- 
ate planning to reaction. These capabilities are 
demonstrated on two robotic systems controlled 
by Soar, one using a Puma robot arm and an 
overhead camera, the second using a small mobile 
robot with an arm. 

Introduction 
The architecture of an intelligent agent that interacts 
with an external environment has often been decom- 
posed into a set of cooperating processes including 
planning, execution and learning. Few AI systems 
since STRIPS [Fikes e2 al., 19721 have included all 
of these processes. Instead, the emphasis has often 
been on individual components, or pairs of compo- 
nents, such as planning and execution, or planning 
and learning. Recently, a few systems have been im- 
plemented that incorporate planning, execution, and 
learning [Blythe & Mitchell, 1989; Hammond, 1989; 
Langley et al., 19891. 

Soar [Laird et al., 19871 is one such system. It tightly 
couples problem solving and learning in every task it 
attempts to execute. Problem solving is used to find 
a solution path, which the learning mechanism gener- 
alizes and stores as a plan in long-term memory. The 
generalized plan can then be retrieved and used during 
execution of the task (or on later problems). This ba- 
sic approach has been demonstrated in Soar on a large 
number of tasks [Rosenbloom et ai., 19901; however, 
all of these demonstrations are essentially internal - 
both planning and execution occur completely within 
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the scope of the system. Thus they do not involve di- 
rect execution in a real external environment and they 
safely ignore many of the issues inherent to such envi- 
ronments. 

Recently, Soar has been extended so that it can in- 
teract with external environments [Laird et al., 1990b]. 
What may be surprising is that Soar’s basic structure 
already supports many of the capabilities necessary to 
interact with external environments - reactive execu- 
tion, hierarchical execution, interruption, on demand 
planning, and the conversion of deliberate planning to 
reaction. 

In this paper, we present the integrated approach 
to planning, execution, and learning embodied by the 
Soar architecture. We focus on the aspects of Soar 
that support effective performance in unpredictable en- 
vironments in which perception can be uncertain and 
incomplete. Soar’s approach to interaction with ex- 
ternal environments is distinguished by the following 
three characteristics: 

Planning and execution share the same architecture 
and knowledge bases. This provides strong con- 
straints on the design of the architecture - the reac- 
tive capabilities required by execution must also be 
adequate for planning - and eliminates the need to 
explicitly transfer knowledge between planning and 
execution. 

External actions can be controlled at three levels, 
from high-speed reflexes, to deliberate selection, to 
unrestricted planning and problem solving. 

Learning automatically converts planning activity 
into control knowledge and reflexes for reactive exe- 
cution. 

Throughout this presentation we demonstrate these 
capabilities using two systems. The first is called Robo- 
Sour [Laird et al., 1989; Laird et al., 199Oa]. Robo-Soar 
controls a Puma robot arm using a camera vision sys- 
tem as shown in Figure 1. The vision system provides 
the position and orientation of blocks in the robot’s 
work area, as well as the status of a trouble light. 
Robo-Soar’s task is to align blocks in its work area, 
unless the light goes on, in which case it must immedi- 
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Figure 1: Robo-Soar system architecture. 

ately push a button. The environment for Rob&oar 
is unpredictable becaqse the light can go on at any 
time, and an outside agent may intervene at any time 
by moving blocks in the work area, either helping or 
hindering Robo-Soar’s efforts to align the blocks. In 
addition, Robo-Soar’s perception of the environment 
is incomplete because the robot arm occludes the vi- 
sion system while a block is being grasped. There is 
no feedback as to whether a block has been picked up 
until the arm is moved out of the work area. 

The second system, called Hero-Soar, controls a 
Hero 2000 robot. The Hero 2000 is a mobile robot 
with an arm for picking up objects and sonar sensors 
for detecting objects in the environment. Hero-Soar’s 
task is to pick up cups and deposit them in a waste 
basket. Our initial demonstrations of Soar will use 
Robo-Soar. At the end of the paper we will return to 
Hero-Soar and describe it more fully. 

Execution 
In Soar, all deliberate activity takes place within the 
context of goals or subgoals. A goal (or subgoal) is at- 
tempted by selecting and applying operators to trans- 
form an initial state into intermediate states until a 
desired state of the goal is reached. For Robo-Soar, 
one goal that arises is to align the blocks in the work 
area. A subgoal is to align a pair of blocks. Within 
a goal, the first decision is the selection of a problem 
space. The problem space determines the set of oper- 

ators that are available in a goal. In Robo-Soar, the 
problem space for manipulating the arm consists of op- 
erators such as open-gripper and move-gripper. 

The second decision selects the initial state of the 
problem space. For goals requiring interaction with an 
external environment, the states include data from the 
system sensors, as well as internally computed elabora- 
tions of this data. In Robo-Soar, the states include the 
position and orientation of all visible blocks and the 
gripper, their relative positions, and hypotheses about 
the positions of occluded blocks. Once the initial state 
is selected, decisions are made to select operators, one 
after another, until the goal is achieved. 

Every decision made by Soar, be it to select a prob- 
lem space, initial state, or operator for a goal, is based 
on preferences retrieved from Soar’s long-term produc- 
tion memory. A preference is an absolute or relative 
statement of the worth of a specific object for a spe- 
cific decision. The simplest preference, called uccept- 
able, means that an object should be considered for a 
decision. Other preferences help distinguish between 
the acceptable objects. For example, a preference in 
Robo-Soar might be that it is better to select operator 
move-gripper than operator close-gripper. 

A preference is only considered for a decision if it has 
been retrieved from the long-term production memory. 
Productions are continually matched against a work- 
ing memory - which contains the active goals and 
their associated problem spaces, states, and operators 
- and when matched, create preferences for specific 
decisions. For example, a production in Robo-Soar 
that proposes the close-gripper operator might be: 
If the problem space is robot-arm and 

the gripper is open and surrounds a block 
then create an acceptable preference 

for the close gripper operator. 

Once an operator is proposed with an acceptable 
preference, it becomes a candidate for selection. The 
selection of operators is controlled by productions that 
create preferences for candidate operators. For exam- 
ple, the following production prefers opening the grip- 
per over moving a block that is in place. 

If the goal is to move block A next to block B and 
the problem space is robot-arm and 
block A is next to block B and 
the gripper is closed and surrounds block A 

then create a preference that opening the gripper 
is better than withdrawing the gripper. 

Arbitrary control knowledge can be encoding as pro- 
ductions so that Soar is not constrained to any fixed 
method. The exact method is a result of a synthesis of 
all available control knowledge [Laird et al., 19861. 

Soar’s production memory is unusual in that it fires 
all matched production instantiations in parallel, and 
it retracts the actions of production instantiations that 
no longer match, as in a JTMS [Doyle, 19791.’ Thus, 

‘Retraction in Soar was introduced in version 5. Earlier 
versions ofSoar did not, retract the actions of productions. 
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Problem space: Puma Arm 

Problem space: Selection 

Problem space: Puma Arm 

Problem space: Selection 

Figure 2: Example of planning in Robo-Soar to move a block. Squares represent states, while horizontal arcs 
represent operator applications. Downward pointing arcs are used to represent the creation of subgoals, and 
upward pointing arcs represent the termination of subgoals and the creation of results. 

sufficient preferences have been created to allow the 
decision procedure to make a single choice, the sub- 
goal is automatically terminated and the appropriate 
selection is made. 

If there is more than a single point of indecision on 
the path to the goal, then it is necessary to create a 
longer term plan. If other decisions are underdeter- 
mined, then they will also lead to impasses and as- 
sociated subgoals during the look-ahead search. The 
result is a recursive application of the planning strat- 
egy to each decision in the search where the current 
knowledge is insufficient. 

Figure 2 shows a trace of the problem solving for 
Robo-Soar as it does look-ahead for moving a single 
block. At the left of the figure, the system is faced 
with an indecision as to which Puma command should 
used first. In the ensuing impasse, it performs a look- 
ahead search to find a sequence of Puma commands 
that pickup and move the block. Because of the size 
of the search space, Robo-Soar uses guidance from a 
human to determine which operators it should evalu- 
ate first [Laird et al., 19891. When a solution is found, 
preferences are created to make each of the decisions 
that required a subgoal, such as best(approach) and 
best (move-above) in the figure. Unfortunately, these 
preferences cannot directly serve as a plan because 
they are associated with specific planning subgoals that 
were created for the look-ahead search. These prefer- 
ences are removed from working memory when their 
associated subgoals are terminated. 

At this point, Soar’s learning mechanism, called 
chunkring, comes into play to preserve the control 
knowledge that was produced in the subgoals. Chunk- 
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ing is based on the observation that: (1) an impasse 
arises because of a lack of directly available knowledge, 
and (2) problem solving in the associated subgoal pro- 
duces new information that is available to resolve the 
impasse. Chunking caches the processing of the sub- 
goal by creating a production whose actions recreate 
the results of the subgoal. The conditions of the pro- 
duction are based on those working-memory elements 
in parent goals that were tested by productions in the 
subgoal and found necessary to produce the results. 
This is a process very similar to explanation-based 
learning [Rosenbloom & Laird, 19861. 

When chunking is used in conjunction with the 
planning scheme described above, Rob&oar learns 
new productions that create preferences for operators. 
Since the preferences were created by a search for a 
solution to the task, the new productions include all 
of the relevant tests of the current situation that are 
necessary to achieve the task. Chunking creates new 
productions not only for the original operator decision, 
but also for each decision that had an impasse in a sub- 
goal. As a result, productions are learned that create 
sufficient preferences for making each decision along 
the path to the goal. Once the original impasse is re- 
solved, the productions learned during planning will 
apply, creating sufficient preferences to select each op- 
erator on the path to the goal. This is shown in Figure 
2 as the straight line of operator applications across 
the top of figure after the planning is complete. 

In Robo-Soar, the productions learned for aligning 
blocks are very general. They ignore all of the details of 
the specific blocks because the planning was done using 
a abstract problem space. Similarly, the productions 



preferences and working memory elements exist only 
when they are relevant to the current situation as dic- 
tated by the conditions of the productions that created 
them. For example, there may be many productions 
that create preferences under different situations for a 
given operator. 

Once the relevant preferences have been created by 
productions, a fixed decision procedure uses the pref- 
erences created by productions to select the current 
problem space, the initial state, and operators. The 
decision procedure is invoked when Soar’s production 
memory reaches quiescence, that is, when there are no 
new changes to working memory. 

Once an operator is selected, productions sensitive 
to that operator can fire to implement the operator’s 
actions. Operator implementation productions do not 
retract their actions when they no longer match. By 
nature they make changes to the state that must per- 
sist until explicitly changed by other operators. For 
an internal operator, the productions modify the cur- 
rent state. For an operator involving interaction with 
an external environment, the productions augment 
the current state with appropriate motor commands. 
The Soar architecture detects these augmentations and 
sends them directly to the robot controller. For both 
internal and external operators, there is an additional 
production that tests that the operator was success- 
fully applied and signals that the operator has termi- 
nated so that a new operator can be selected. The 
exact nature of the test is dependent on the operator 
and may involve testing both internal data structures 
and feedback from sensors. 

At this point, the basic execution level of Soar has 
been defined. This differs from the execution level of 
most systems in that each control decision is made 
through the run-time integration of long-term knowl- 
edge. Most planning systems build a plan, and follow it 
step by step, never opening up the individual decisions 
to global long-term knowled 

‘i 
e. Other “reactive” learn- 

ing systems, such as Theo Blythe & Mitchell, 1989; 
Mitchell et al., 19901 and Schoppers’ Universal plans 
[Schoppers, 1986] create stimulus-response rules that 
do not allow the integration at run-time of control 
knowledge. Soar extends this notion of run-time com- 
bination to its operator implementations as well, so 
that an operator is not defined declaratively as in 
STRIPS. This will be expanded later to include both 
more reflexive and more deliberate execution. 

Planning 
In Soar, operator selection is the basic control act for 
which planning can provide additional knowledge. For 
situations in which Soar has sufficient knowledge, the 
preferences created for each operator decision will lead 
to the selection of a single operator. Once the oper- 
ator is selected, productions will apply it by making 
appropriate changes to the state. However, for many 
situations, the knowledge encoded as productions will 

be incomplete or inconsistent. We call such an un- 
derdetermined decision an impasse. For example, an 
impasse will arise when the preferences for selecting 
operators do not suggest a unique best choice. The 
Soar architecture detects impasses and automatically 
creates subgoals to determine the best choice. Within 
a subgoal, Soar once again casts the problem within 
a problem space, but this time the goal is to deter- 
mine which operator to select. Within the subgoal, 
additional impasses may arise, leading to a goal stack. 
The impasse is resolved, and the subgoal terminated, 
when sufficient preferences have been added to working 
memory so that a decision can be made. 

To determine the best operator, any number of 
methods can be used in the subgoal, such as draw- 
ing analogies to previous problems, asking an outside 
agent, or various planning strategies. In Soar, the 
selection of a problem space for the goal determines 
which approach will be taken, so that depending on 
the available knowledge, many different approaches are 
possible. This distinguishes Soar from many other sys- 
tems that use only a single planning technique to gen- 
erate control knowledge. 

Robo-Soar uses an abstract look-ahead planning 
strategy. Look-ahead planning requires additional do- 
main knowledge, specifically, the ability to simulate 
the actions of external operators on the internal model 
of the world. As expected, this knowledge is encoded 
as productions that directly modify the internal state 
when an operator is selected to apply to it. 

The internal simulations of operators do not repli- 
cate the behavior of the environment exactly, but are 
abstractions. In Rob&oar, these abstractions are pre- 
determined by the productions that implement the op- 
erators, although in other work in Soar abstractions 
have been generated automatically based on ignoring 
impasses that arise during the look-ahead search [Un- 
ruh & Rosenbloom, 19891. For Robo-Soar, an abstract 
plan is created to align a set of blocks by moving one 
block at a time. This level completely ignores moving 
the gripper and grasping blocks. This plan is later re- 
fined to movements of the gripper by further planning 
once the first block movement has been determined. 
Even this level is abstract in that it does not simu- 
late exact sensor values (such as block A is at location 
3.4, 5.5) but only relative positions of blocks and the 
gripper (block A is to the right of block B). 

Planning in Robo-Soar is performed by creating an 
internal model of the environment and then evaluat- 
ing the result of applying alternative operators using 
available domain knowledge. The exact nature of the 
search is dependent on the available knowledge. For 
some tasks, it may be possible to evaluate the re- 
sult of a single operator, but for other tasks, such as 
Robo-Soar, evaluation may be possible only after ap- 
plying many operators until a desired (of failed) state 
is achieved. Planning knowledge converts the evalua- 
tions computed in the search into preferences. When 
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rect execution. The plan consists of the preferences 
stored in these control rules, and the rule conditions 
which determine when the preferences are applica- 
ble. 
Expressive planning language. 
The expressibility of Soar’s plan language is a func- 
tion of: (1) the fine-grained conditionality provided 
by embedding the control knowledge in a set of rules; 
and (2) the preference language. The first factor 
makes it easy to encode such control structures as 
conditionals, loops, and recursion. The second fac- 
tor makes it easy to not only directly suggest the 
appropriate operator to select, but also to suggest 
that an operator be avoided, or that a partial order 
holds among a set of operators. This differs from sys- 
tems that use stimulus-response rules in which the 
actions are commands to the motor system [Mitchell 
et al., 1990; Schoppers, 19861. In Soar, the actions 
of the productions are preferences that contribute 
to the decision as to which operator to select. Thus 
Soar has a wider vocabulary for expressing control 
knowledge than these other systems. 
On-demand planning. 
Soar invokes planning whenever knowledge is insuf- 
ficient for making a decision and it terminates plan- 
ning as soon as sufficient knowledge is found. Be- 
cause of this, planning is always in service of execu- 
tion. Also because of this, planning and replanning 
are indistinguishable activities. Both are initiated 
because of indecision, and both provide knowledge 
that resolves the indecision. 
Learning improves future execution and plan- 
ning. 
Once a control production is learned, it can be used 
for future problems that match its conditions. These 
productions improve both execution and planning by 
eliminating indecision in both external and internal 
problem solving. The effect is not unlike the utiliza- 
tion of previous cases in case-based reasoning [Ham- 
mond, 19891. This is in contrast to other planning 
systems that build “situated control rules” for pro- 
viding reactive execution of the current plan, but do 
not generalize or store them for future goals [Drum- 
mond, 19891. 
Run- time combination of multiple plans. 
When a new situation is encountered, all relevant 

learned for moving the gripper ignore the exact names 
and positions of the blocks, but are sensitive to the 
final relative positions of the blocks. 

The ramifications of this approach to planning are 
as follows: 
1. Planning without monolithic plans. 

In classical planning, the plan is a monolithic data 
structure that provides communication between the 
planner and the execution module. In Soar, a mono- 
lithic declarative plan is not created, but instead a 
set of control productions are learned that jointly di- 

productions will fire. It makes no difference in which 
previous problem the productions were learned. For 
a novel problem, it is possible to have productions 
from many different plans contribute to the selec- 
tion of operators on the solution path (unlike case- 
based reasoning). For those aspects of the problem 
not covered by what has been learned from previous 
problems, on-demand planning is available to fill in 
the gaps. 
It is this last observation that is probably most im- 

portant for planning in uncertain and unpredictable 
environment. By not committing to a single plan, but 
instead allowing all cached planning knowledge to be 
combined at run-time, Soar can respond to unexpected 
changes in the environment, as long as it has previously 
encountered a similar situation. If it does not have suf- 
ficient knowledge for the current situation, it will plan, 
learn the appropriate knowledge, and in the future be 
able to respond directly without planning. 

Interruption 
The emphasis in our prior description of planning was 
on acquiring knowledge that could be responsive to 
changes in the environment during execution. This ig- 
nores the issue of how the system responds to changes 
in its environment during planning. Consider two sce- 
narios from Robo-Soar . In the first scenario, one of 
the blocks is removed from the table while Robe-Soar 
is planning how to align the blocks. In the second, 
a trouble light goes on while Robo-Soar is planning 
how to align the blocks. This light signals that Robo- 
Soar must push a button as soon as possible. The key 
to both of these scenarios is that Soar’s productions 
are continually matched against all of working mem- 
ory, including incoming sensor data, and all goals and 
subgoals. When a change is detected, planning can be 
revised or abandoned if necessary. 

In the first example, the removal of the block does 
not eliminate the necessity to plan, it just changes the 
current state, the desired state (fewer blocks need to be 
aligned) and the set of available operators (fewer blocks 
can be moved). The change in the set of available op- 
erators modifies the impasse but does not eliminate 
it, Within the subgoal, operators and data that were 
specific to the removed block will be automatically re- 
tracted from working memory. The exact effect will 
depend on the state of the planning and its dependence 
on the eliminated block. In the case where an outside 
agent suddenly aligned all but one of the blocks, and 
Robo-Soar had sufficient knowledge for that specific 
case, the impasse would be eliminated and the appro- 
priate operator selected. 

In the second example, we assume that there ex- 
ists a production that will direct Robo-Soar to push 
a button when a light is turned on. This production 
will test for the light and create a preference that the 
push-button operator must be selected. When the 
next operator decision is made, there is no longer a 
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tie, and the push-button operator is selected. Inter- form approach is that all the decision making and plan- 
ruption of planning can be predicated on a variety of 
stimuli. For example, productions can keep track of 

ning methods also apply to these “goals” (abstract 
operators like search-for-object). For example, if 

the time spent planning and abort the planning if it 
is taking too much time. Planning would be aborted 
by creating a preference for the best action given the 
currently available information. One disadvantage of 
this scheme is that any partial planning that hi not 
been captured in chunks will be lost. 

Hierarchical Planning and Execution 

there is an abstract internal simulation of an operator 
such as pickup-cup, it can be used in planning for the 
top goal in the same way planning would be performed 
at more primitive levels. a 

A second advantage of treating incomplete operator 
applications as goals is that even seemingly primitive 
acts, such as move-arm can become goals, providing 
hierarchical execution. This is especially important 
when there is uncertainty as to whether a primitive ac- 
tion will complete successfully. Hero-Soar has exactly 
these characteristics because its sensors are imperfect 
and because it sometimes loses motor commands and 
sensor data when communicating with the Hero robot. 
Hero-Soar handles this uncertainty by selecting an op- 
erator, such as move-arm, and then waiting for feed- 
back that the arm is in the correct position before ter- 
minating the operator. While the command is execut- 
ing on the Hero hardware, a subgoal is created. In this 
subgoal, the wait operator is repeatedly applied, con- 
tinually counting how long it is waiting. If appropriate 
feedback is received from the Hero, the move-arm op- 
erator terminates, a new operator is selected, and the 
subgoal is removed. However, if the motor command or 
feedback was lost, or there is some other problem, such 
as an obstruction preventing completion of the opera- 
tor, the waiting continues. Productions sensitive to the 
selected operator and the current count detect when 
the operator has taken longer than expected. These 
productions propose operators that directly query the 
feedback sensors, retry the operator, or attempt some 
other recovery strategy. Because of the relative compu- 
tational speed differences between the Hero and Soar 
on an Explorer II+, Hero-Soar spends approximately 
30% of its time waiting for its external actions to com- 
plete. 

In our previous Robo-Soar examples, the set of op- 
erators corresponded quite closely to the motor com- 
mands of the robot controller. However, Soar has no 
restriction that problem space operators must directly 
correspond to individual actions of the motor system. 
For many problems, planning is greatly simplified if it 
is performed with abstract operators far removed from 
the primitive actions of the hardware. For execution, 
the hierarchical decomposition provided by multiple 
levels of operators can provide important context for 
dealing with execution errors and unexpected changes 
in the environment. 

Soar provides hierarchical decomposition by creat- 
ing subgoals whenever there is insufficient knowledge 
encoded as productions to implement an operator di- 
rectly. In the subgoal, the implementation of the ab- 
stract operator is carried out by selecting and applying 
less abstract operators, until the abstract operator is 
terminated. 

To demonstrate Soar’s capabilities in hierarchical 
planning and execution we will use our second system, 
Hero-Soar. Hero-Soar searches for cups using sonar 
sensors. The basic motor commands include position- 
ing the various parts of the arm, opening and clos- 
ing the gripper, orienting sonar sensors, and moving 
and turning the robot. A more useful set includes op- 
erators such as search-for-object, center-object, 
pickup-cup, and drop-cup. The execution of each of 
these operators involves a combination of more primi- 
tive operators that can only be determined at run-time. 
For example, search-for-an-object involves an ex- 
ploration of the room until the sonar sensors detect an 
object. 

In Hero-Soar, the problem space for the top-most 
goal consists of just these operators. Control knowl- 
edge selects the operators when they are appropri- 
ate. However, once one of these operators is se- 
lected, an impasse arises because there are no relevant 
implementation productions. For example, once the 
search-for-object operator is selected, a subgoal is 
generated and a problem space is selected that contains 
operators for moving the robot and analyzing sonar 
readings. 

, 
Operators such as search-for-object would be 

considered goals in most other systems. In contrast, 
goals in Soar arise only when knowledge is insufficient 
to make progress. One advantage of Soar’s more uni- 

Hierarchical execution is not unique to Soar. 
Georgeff and Lansky have used a similar approach in 
PRS for controlling a mobile robot [Georgeff & Lansky, 
19871. In PRS, declarative procedures, called Knowl- 
edge Areas (KAs) loosely correspond to abstract op- 
erators in Soar. Each KA has a body consisting of 
the steps of the procedure represented as a graphic 
network. Just as Soar can use additional abstract op- 
erators in the implementation of an operator, a KA 
can have goals as part of its procedure which lead to 
additional KAs being invoked. PRS maintains reactiv- 
ity by continually comparing the conditions of its KAs 
against the current situation and goals, just as Soar is 
continually matching it productions. A significant dif- 
ference between PRS and Soar is in the representation 
of control knowledge and operators. Within a KA, the 
control is a fixed declarative procedure. Soar’s control 
knowledge is represented as preferences in productions 
that can be used for any relevant decision. Thus the 
knowledge is not constrained to a specific procedure, 
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and will be used when the conditions of the produc- 
tion that generates the preference match the current 
situation. In addition, new productions can be added 
to Soar through learning, and the actions of these pro- 
ductions will be integrated with existing knowledge at 
run-time. 

Reactive Execution 
Hierarchical execution provides important context for 
complex activities. Unfortunately it also exacts a cost 
in terms of run-time efficiency. In order to perform a 
primitive act, impasses must be detected, goals cre- 
ated, problem spaces selected, and so on, until the 
motor command is generated. Execution can be per- 
formed more efficiently by directly selecting and apply- 
ing primitive operators. However, operator application 
has its own overheads. The actions of an operator will 
only be executed after the operator has been selected 
following quiescence, thus forcing a delay. The advan- 
t age of these two approaches is that they allow knowl- 
edge to be integrated at run-time, so that a decision is 
not based on an isolated production. 

Soar also supports direct reflex actions where a pro- 
duction creates motor commands without testing the 
current operator. These productions act as reflexes for 
low level responses, such as stopping the wheel motors 
when an object is directly in front of the robot. Along 
with the increase responsiveness comes a loss of con- 
trol; no other knowledge will contribute to the decision 
to stop the robot. 

The ultimate limits on reactivity rest with Soar’s 
ability to match productions and process prefer- 
ences. Unfortunately, there are currently no fixed time 
bounds on Soar’s responsiveness. Given Soar’s learn- 
ing, an even greater concern is that extended plan- 
ning and learning will actually reduce responsiveness as 
more and more productions must be matched [Tambe 
& Newell, 19881. R ecent results suggest that these 
problems can be avoided by restricting the expressive- 
ness of the production conditions [Tambe & Rosen- 
bloom, 19891. 

Although there are no time bounds, Soar is well 
matched for both Hero-Soar and Robo-Soar. In nei- 
ther case does Soar’s processing provide the main bot- 
tleneck. However, as we move into domains with more 
limited time constraints, further research on bounding 
Soar’s execution time will be necessary. 

Discussion 
Perhaps the key reason that Soar is able to exhibit 
effective execution, planning (extended, hierarchical, 
and reactive), and interruption, is that it has three dis- 
tinct levels at which external actions can be controlled. 
These levels differ both in the speed with which they 
occur and the scope of knowledge that they can take 
into consideration in making a decision. At the low- 
est level, an external action can be selected directly 
by a production. This is the fastest level - Soar can 

fire 40 productions per second on a TI Explorer II+ 
while controlling the Hero using 300 productions - 
but the knowledge utilized is limited to what is ex- 
pressed locally in a single production.2 This level is 
appropriately described as reflexive behavior - it is 
fast, uncontrollable by other knowledge, and difficult 
to change. 

At the middle level, an external action can be se- 
lected through selecting an operator. This is some- 
what slower - in the comparable situation as above, 
only 10 decisions can be made per second - but it 
can take into account any knowledge about the cur- 
rent problem solving context that can be retrieved 
directly by firing productions (without changing the 
context). It allows for the consideration and compar- 
isons of actions before a selection is made. This level is 
appropriately described as a dynamic mixture of top- 
down (plan-driven) and bottom-up (data-driven) be- 
havior. It is based on previously-stored plan fragments 
(learned control rules) and the current situation, and 
can dynamically, at run-time, adjudicate among their 
various demands. This level can be changed simply by 
learning new plan fragments. 

At the highest level, an external action can be se- 
lected as a result of extended problem solving in sub- 
goals. This can be arbitrarily slow, but potentially 
allows any knowledge in the system - or outside of 
it, if external interaction is allowed - to be taken into 
consideration. This level is appropriately described as 
global planning behavior. 

Soar’s learning is closely tied into these three lev- 
els. Learning is invoked automatically whenever the 
knowledge available in the bottom two levels is in- 
sufficient. Learning moves knowledge from planning 
to the middle level of deliberate action and, also 
to the bottom level of reflexes. Without learning, 
one could attempt to combine the bottom and mid- 
dle layers by precompiling their knowledge into a 
fixed decision network as in REX [Kaelbling, 1986; 
Rosenschein, 19851. However, for an autonomous sys- 
tem that is continually learning new control knowledge 
and operators [Laird et al., 199Oa], the only chance to 
bring together all of the relevant knowledge for a deci- 
sion is when the decision is to be made. 

The integration of planning, execution, and learning 
in Soar is quite similar to that in Theo because of the 
mutual dependence upon impasse-driven planning and 
the caching of plans as productions or rules. Schop- 
pers’ Universal Plans also caches the results of plan- 
ning; however, Schoppers’ system plans during an ini- 
tial design stage and exhaustively generates all possible 
plans through back-chaining. In contrast, Theo and 
Soar plan only when necessary, and do not generate all 

2Hero-Soar is limited in absolute response time by de- 
lays in the communication link between the Hero and the 
Explorer, and the speed of the Hero central processor. The 
actual response time of Hero-Soar to a change in its envi- 
ronment is around .5 seconds. 
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possible plans; however, Theo as yet does not support 
interruption, nor can it maintain any history. All de- 
cisions must be based on its current sensors readings. 
Soar is further distinguished from Theo in that Soar 
supports not only reactive behavior and planning, but 
also deliberative execution in which multiple sources 
of knowledge are integrated at run-time. This middle 
level of deliberate execution is especially important in 
learning systems when planning knowledge is combined 
dynamically at run-time. 
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