
Becoming Increasingly Reactive 
Tom M. Mitchell 

School of Computer Science 
Carnegie Mellon University 

Pittsburgh, PA 15213 
Tom.Mitchell@cs.cmu.edu 

Abstract 

We describe a robot control architecture which 
combines a stimulus-response subsystem for rapid 
reaction, with a search-based planner for handling 
unanticipated situations. The robot agent continually 
chooses which action it is to perform, using the stimulus- 
response subsystem when possible, and falling back on the 
planning subsystem when necessary. Whenever it is 
forced to plan, it applies an explanation-based learning 
mechanism to formulate a new stimulus-response rule to 
cover this new situation and others similar to it. With 
experience, the agent becomes increasingly reactive as its 
learning component acquires new stimulus-response rules 
that eliminate the need for planning in similar subsequent 
situations. This Theo-Agent architecture is described, and 
results are presented demonstrating its ability to reduce 
routine reaction time for a simple mobile robot from 
minutes to under a second. 

1. Introduction and Motivation 
Much attention has focused recently on reactive 

architectures for robotic agents that continually sense their 
environment and compute appropriate reactions to their 
sense stimuli within bounded time (e.g., (Brooks, 1986, 
Agre and Chapman, 1987, Rosenschein, 1985)). Such 
architectures offer advantages over more traditional open- 
loop search-based planning systems because they can react 
more quickly to changes to their environment, and because 
they can operate more robustly in worlds that are difficult 
to model in advance. Search-based planning architectures, 
on the other hand, offer the advantage of more general- 
purpose (if slower) problem solving mechanisms which 
provide the flexibility to deal with a more diverse set of 
unanticipated goals and situations. 

This paper considers the question of how to combine the 
benefits of reactive and search-based architectures for 
controlling autonomous agents. We describe the Theo- 
Agent architecture, which incorporates both a reactive 
component and a search-based planning component. The 
fundamental design principle of the Theo-Agent is that it 
reacts when it can, plans when it must, and learns by 
augmenting its reactive component whenever it is forced to 
plan. When used to control a laboratory mobile robot, the 
Theo-Agent in simple cases learns to reduce its reaction 

time for new tasks from several minutes to less than a 
second. 

The research reported here is part of our larger effort 
toward developing a general-purpose learning robot 
architecture, and builds on earlier work described in 
(Blythe and Mitchell, 1989). We believe that in order to 
become increasingly successful, a learning robot will have 
to incorporate several types of learning: 

0 It must become increasingly correct at predicting 
the effects of its actions in the world. 

0 It must become increasingly reactive, by reducing 
the time required for it to make rational choices; 
that is, the time required to choose actions 
consistent with the above predictions and its goals. 

Q It must become increasingly perceptive at 
distinguishing those features of its world that 
impact its success. 

This paper focuses on the second of these types of 
learning. We describe how the Theo-Agent increases the 
scope of situations for which it can quickly make rational 
decisions, by adding new stimulus-response rules 
whenever it is forced to plan for a situation outside the 
current scope of its reactive component. Its explanation- 
based learning mechanism produces rules that recommend 
precisely the same action as recommended by the slower 
planner, in exactly those situations in which the same plan 
rationale would apply. However, the learned rules infer 
the desired action immediately from the input sense data in 
a single inference step--without considering explicitly the 
robot’s goals, available actions, or their predicted 
consequences. 

1.1. Related Work 
There has been a great deal of recent work on 

architectures for robot control which continually sense the 
environment and operate in bounded time (e.g., (Brooks, 
1986, Schoppers, 1987, Agre and Chapman, 1987)), 
though this type of work has not directly addressed issues 
of learning. Segre’s ARMS system (Segre, 1988) applies 
explanation-based learning to acquire planning tactics for a 
simulated hand-eye system, and Laird’s RoboSoar (Laird 
and Rosenbloom, 1990) has been applied to simple 
problems in a real hand-eye robot system. While these 
researchers share our goal of developing systems that are 

MITCHELL 1051 

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved. 



increasingly reactive, the underlying architectures vary 
significantly in the form of the knowledge being learned, 
underlying representations, and real response time. Sutton 
has proposed an inductive approach to acquiring robot 
control strategies, in his DYNA system (Sutton, 1990), and 
Pommerleau has developed a connectionist system which 
learns to control an outdoor road-following vehicle 
(Pommerleau, 1989). In addition to work on learning such 
robot control strategies, there has been much recent 
interest in robot learning more generally, including work 
on learning increasingly correct models of actions 
(Christiansen, et al., 1990, Zrimic and Mowforth, 1988), 
and work on becoming increasingly perceptive (Tan, 
1990). 

The work reported here is also somewhat related to 
recent ideas for compiling low-level reactive systems from 
high-level specifications (e.g., (Rosenschein, 1985)). In 
particular, such compilation transforms input descriptions 
of actions and goals into effective control strategies, using 
transformations similar to those achieved by explanation- 
based learning in the Theo-Agent. The main difference 
between such design-time compilation and the 
explanation-based learning used in the Theo-Agent, is that 
for the Theo-Agent learning occurs incrementally and 
spread across the lifetime of the agent, so that the 
compilation transformation is incrementally focused by the 
worlds actually encountered by the agent, and may be 
interleaved with other learning mechanisms which 
improve the agent’s models of its actions. 

The next section of this paper describes the Theo-Agent 
architecture in greater detail. The subsequent section 
presents an example of its use in controlling a simple 
mobile robot, the learning mechanism for acquiring new 
stimulus-response rules, and timing data showing the 
effect of caching and rule learning on system reaction 
time. The final section summarizes some of the lessons of 
this work, including features and bugs in the current design 
of the architecture. 

perform. The agent runs in a tight loop in which it 
repeatedly updates its sensor inputs, chooses a 
control action, begins executing it, then repeats this 
loop. 

e It reacts when it can, and plans when it must. 
Whenever it must choose an action, the system 
consults a set of stimulus-response rules which 
constitute its reactive component. If one of these 
rules applies to the current sensed inputs, then the 
corresponding action is taken. If no rules apply, 
then the planner is invoked to determine an 
appropriate action. 

l Whenever forced to plan, it acquires a new 
stimulus-response rule. The new rule recommends 
the action which the planner has recommended, in 
the same situations (i.e., those world states for 
which the same plan justification would apply), but 
can be invoked much more efficiently. Learning is 
accomplished by an explanation-based learning 
algorithm (BBC (Mitchell, et al, 1986)), and 
provides a demand-driven incremental compilation 
of the planner’s knowledge into an equivalent 
reactive strategy, guided by the agent’s 
experiences. 

l Every belief that depends on sensory input is 
maintained as long as its explanation remains valid. 
Many beliefs in the Theo-Agent, including its 
belief of which action to perform next, depend 
directly or indirectly on observed sense data. The 
architecture maintains a network of explanations 
for every belief of the agent, and deletes beliefs 
only when their support ceases. This caching of 
beliefs significantly improves the response time of 
the agent by eliminating recomputation of beliefs in 
the face of unchanging or irrelevant sensor inputs. 

e It determines which goal to attend to, based on the 
perceived world state, a predefined set of goal 
activation and satisfaction conditions, and given 
priorities among goals. 

2. The Theo-Agent Architecture 
The design of the Theo-Agent architecture is primarily 

driven by the goal of combining the complementary 
advantages of reactive and search-based systems. Reactive 
systems offer the advantage of quick response. Search- 
based planners offer the advantage of broad scope for 
handling a more diverse range of unanticipated worlds. 
The Theo-Agent architecture employs both, and uses 
explanation-based learning to incrementally augment its 
reactive component whenever forced to plan. In addition, 
the architecture makes widespread use of caching and 
dependency maintenance in order to avoid needless 
recomputation of repeatedly accessed beliefs. The primary 
characteristics of the Theo-Agent are: 

e It continually reassesses what action it should 

I I 

I 
I 
I 

1 OBSERVED.WORLD .-P'CHOSEN. 
I 4 +- - - - - - - - k --------------------------- ----es+ 4 

1 4 
SENSORS EFFECTORS 

Figure 2-l: Data Plow in a Theo-Agent 

1052 ROBOTICS 



Internal structure of agent: A Theo-Agent is defined 
by a frame structure whose slots, subslots, subsubslots, etc. 
define the agent’s beliefs, or internal statel. The two most 
significant slots of the agent are Chosen.Action, which 
describes the action the agent presently chooses to 
perform; and Observed.World, which describes the agent’s 
current perception of its world. As indicated in Figure 2-l 
the agent may infer its Chosen.Action either directly from 
its Observed.World, or alternatively from its current Plan. 
Its Plan is in turn derived from its Observed.World and 
Attended.To.Goal. The Attended.To.Goal defines the goal 
the agent is currently attempting to achieve, and is 
computed as the highest priority of its Active.Goals, which 
are themselves inferred from the Observed.World. 

Agent goals: Goals are specified to the agent by 
defining conditions under which they are active, satisfied, 
and attended to. For example, an agent may be given a 
goal Recharge.Battery which is defined to become active 
when it perceives its battery level to be less than 75%, 
becomes satisfied when the battery charge is lOO%, and 
which is attended to whenever it is active and the (higher 
priority) goal Avoid.Oncoming.Obstacle is inactive. 

Caching policy: The basic operation of the Theo-Agent 
is to repeatedly infer a value for its Chosen.Action slot. 
Each slot of the agent typically has one or more attached 
procedures for obtaining a value upon demand. These 
procedures typically access other slots, backchaining 
eventually to queries to slots of the Observed.World. 
Whenever some slot value is successfully inferred, this 
value is cached (stored) in the corresponding slot, along 
with an explanation justifying its value in terms of other 
slot values, which are in turn justified in terms of others, 
leading eventually to values of individual features in the 
Observed.World, which are themselves inferred by directly 
accessing the robot sensors. Values remain cached for as 
long as their explanations remain valid. Thus, the agent’s 
Active.Goals and Chosen.Action may remain cached for 
many cycles, despite irrelevant changes in sensor inputs. 
This policy of always caching values, deleting them 
immediately when explanations become invalid, and lazily 
recomputing upon demand, assures that the agent’s beliefs 
adapt quickly to changes in its input senses, without 
needless recomputation. 

Control policy: The Theo-Agent is controlled by 
executing the following loop: 

Do Forever: 
1. Sense and update readings for all eagerly sensed 

features of Observed.World, and delete any cached 
values for ZaziZy sensed features. 

2. Decide upon the current Chosen.Action 
3. Execute the Chosen.Action 

When the Chosen.Action slot is accessed (during the 
decision portion of the above cycle), the following steps 
are attempted in sequence until one succeeds: 

1. Retrieve the cached value of this slot (if available) 
2. Infer a value based on the available stimulus- 

response rules 
3. Select the first step of the agent’s Plan (inferring a 

plan if necessary) 
4. Select the default action (e.g., WAIT) 

Sensing policy: Each primitive sensed input (e.g., an 
array of input sonar data) is stored in some slot of the 
agent’s Observed.World. Higher level features such as 
edges in the sonar array, regions, region width, etc., are 
represented by values of other slots of the 
Observed.World, and are inferred upon demand from the 
lower-level features. The decision-making portions of the 
agent draw upon the entire range of low to high level 
sensory features as needed. In order to deal with a variety 
of sensing procedures of varying cost, the Theo-Agent 
distinguishes between two types of primitive sensed 
features: those-which it eagerly senses, and those which it 
lazily senses. Eagerly sensed features are refreshed 
automatically during each cycle through the agent’s main 
loop, so that dependent cached beliefs of the agent are 
retained when possible. In contrast, lazily sensed features 
are simply deleted during each cycle. They are 
recomputed only if the agent queries the corresponding 
slot during some subsequent cycle. This division between 
eagerly and lazily refreshed features provides a simple 
focus of attention which allows keeping the overhead of 
collecting new sense data during each cycle to a minimum. 

Learning policy: Whenever the agent is forced to plan 
in order to obtain a value for its ChosenAction, it invokes 
its explanation-based generalization routine to acquire a 
new stimulus-response rule to cover this situation. The 
details of this routine are described in greater detail in the 
next section. The effect of this learning policy is to 
incrementally extend the scope of the set of stimulus- 
response rules to fit the types of problem instances 
encountered by the system in its world. 

3. Example and Results 
This section describes the use of the Theo-Agent 

architecture to develop a simple program to control a Hero 
2000 mobile robot to search the laboratory to locate 
garbage cans*. In particular, we illustrate how goals and 
actions are provided to the robot with no initial stimulus- 
response rules, how it initially selects actions by 
constructing plans, and how it incrementally accumulates 
stimulus-response rules that cover its routine actions. 

The robot sensors used in this example include an 
ultrasonic sonar mounted on its hand, a rotating sonar on 

‘The Theo-Agen t is implemented on top of a generic frame-based 
problem solving and learning system called Theo (Mitchell, et al., 1990), 
which provides the inference, representation, dependency maintenance, 
and learning mechanisms. 

2A detailed description of the m.odified Hero 2000 robot used here is 
available in (Lin, et al., 1989). 

MITCHELL 1053 



its head, and a battery voltage sensor. By rotating its hand 
and head sonars it is able to obtain arrays of sonar readings 
that measure echo distance versus rotation angle. These 
raw sonar readings are interpreted (on demand) to locate 
edges in the sonar array, as well as regions, and properties 
of regions such as region width, distance, direction, and 
identity. The primitive sensing operations used in the 
present example include Battery, which indicates the 
battery voltage level, Sonarw, which measures sonar range 
with the wrist sonar pointed directly forward, and 
Sweep.Wrist.Roll, which obtains an array of sonar 
readings by rotating the wrist from left to right. Of these 
sensed features, Sonarw is eagerly sensed, and the others 
are lazily sensed. 

The robot actions here include Forward.10 (move 
forward 10 inches), Backward.10 (move backward 10 
inches), Face.The.Object (turn toward the closest sonar 
region in front of the robot), and Measure.The.Object 
(obtain several additional sonar sweeps to determine 
whether the closest sonar region in front of the robot is a 
garbage can). The.Object refers to the closest sonar region 
in front of the robot, as detected by the sense procedure 
Sweep.Wrist.Roll. 

This Theo-Agent has been tested by giving it different 
sets of initial goals, leading it to compile out different sets 
of stimulus-response rules exhibiting different behaviors. 
In the simple example presented here, the agent is given 
three goals: 

0 Goal.Closer: approach distant objects. This goal is 
activated when the Sonarw sense reading is 
between 25 and 100 inches, indicating an object at 
that distance. It is satisfied when Sonarw is less 
that 25 inches, and attended to whenever it is 
active. 

0 Goal.Further: back off from close objects. This is 
activated when Sonarw is between 3 and 15 inches, 
satisfied when Sonarw is greater than 15 inches, 
and attended to whenever it is active. 

* Goal.Identify.The.Object: determine whether the 
nearest sonar region corresponds to a garbage can. 
This is activated when there is an object in front of 
the robot whose identity is unknown, satisfied 
when the object identity is known, and attended to 
whenever it is active and GoaLCloser and 
Goal.Further are inactive. 

In order to illustrate the’ operation of the Theo-Agent, 
consider the sequence of events that results from setting 
the robot loose in the lab with the above goals, actions, and 
sensing routines: During the first iteration through its 
sense-decide-execute loop, it (eagerly) senses a reading of 
41.5 from Sonarw, reflecting an object at 41.5 inches. In 
the decide phase of this cycle it then queries its 
Chosen.Action slot, which has no cached value, and no 
associated stimulus-response rules. Thus, it is forced to 
plan in order to determine a value for Chosen.Action. 
When queried, the planner determines which goal the 
agent is attending to, then searches for a sequence of 

actions which it projects will satisfy this goal. Thus, the 
planner queries the Attending.To.Goal slot, which queries 
the Active.Goals slots, which query the ObservedWorld, 
leading eventually to determining that the 
Attending.To.Goal is GoaLCloser. The planner, after 
some search, then derives a two-step plan to execute 
Forward.10 two times in a row (this plan leads to a 
projected sonar reading of 21.5 inches, which would 
satisfy GoaLCloser). The inferred value for the 
Chosen.Action slot is thus Forward.10 (the first step of the 
inferred plan). 

The agent caches the result of each of the above slot 
queries, along with an explanation that justifies each slot 
value in terms of the values from which it was derived. 
This network of explanations relates each belief (slot 
value) of the agent eventually to sensed features of its 
Observed.World. 

In the above scenario the agent had to construct a plan in 
order to infer its Chosen.Action. Therefore, it formulates a 
new stimulus-response rule which will recommend this 
chosen action in future situations, without planning. The 
agent then executes the action and begins a new cycle by 
eagerly refreshing the Sonarw feature and deleting any 
other sensed features (in this case the observed Battery 
level, which was queried by the planner as it checked the 
preconditions for various actions). During this second 
cycle, the stimulus-response rule learned during the first 
cycle applies, and the agent quickly decides that the 
appropriate Chosen.Action in the new situation is to 
execute Forward.10. As it gains experience, the agent 
acquires additional rules and an increasing proportion of 
its decisions are made by invoking these stimulus-response 
rules rather than planning. 

3.1. Rule Learning 
The rule acquisition procedure used by the Theo-Agent 

is an explanation-based learning algorithm called EBG 
(Mitchell, et al, 1986). This procedure explains why the 
Chosen.Action of the Theo-Agent is justified, finds the 
weakest conditions under which this explanation holds, 
and then produces a rule that recommends the 
Chosen.Action under just these conditions. More 
precisely, given some Chosen.Action, ?Action, the Theo- 
Agent explains why ?Action satisfies the following 
property: 

Justified.Action(?Agent, ?Action) t 
(1) The Attending.To.Goal of the ?Agent is ?G 
(2) ?G is Satisfied by result of ?Agent’s plan 
(3) The tail of ?Agent’s plan will not succeed without 

first executing ?Action 
(4) ?Action is the first step of the ?Agent’s plan 

EBG constructs an explanation of why the 
Chosen.Action is a Justified.Action as defined above, then 
determines the weakest conditions on the Observed.World 

1054 ROBOTICS 



ct 

t 

(w0 measure.the.object prec.sat?) = nil 

<--expected.value-- 
(world159 previous.state) = w0 
(w0 battery) = 100 
<--observed.value-- 
(w0 battery observed-value) = 100 

(world159 the.object distance) = 22 
<--expected.value-- 
(world159 previous.state) = w0 
(w0 face.the.object prec.sat?) = t 
<--prolog-- 
(w0 battery) = 100 
<--observed.value-- 
(w0 battery observed.value) = 100 

(w0 the-object direction known?) = t 
(w0 the.object distance) = 22 
<--observed.value-- 
(w0 the.object distance 

observed.value) = 22 
(world159 the.object direction) = 0 
<--expected.value-- 
(world159 previous.state) = w0 
(w0 face.the.object prec.sat?) = t 
<--prolog-- 
(w0 battery) = 100 
<--observed.value-- 
(w0 battery observed.value) = 100 

(w0 the.object direction known?) = t 

under which this explanation will hold3. Consider, for 
example, a scenario in which the Hero agent is attending to 
the goal Goal.Identify.The.Object, and has constructed a 
two-step plan: Face.The.Object, followed by 
Measure.The.Object. Figure 3-l shows the explanation 
generated by the system for why Face.The.Object is its 
Justified.Action. In this figure, each line corresponds to 
some belief of the agent, and level of indentation reflects 
dependency. Each belief is written in the form (frame slot 
subslot subsubslot . ..)=value. and arrows such as “c-- 
observed.value--” indicate how the belief above and left of 
the arrow was inferred from the beliefs below and to its 
right. For example, the leftmost belief that the Hero’s 
Justified.Action is Face.The.Object, is supported by the 
three next leftmost beliefs that (1) the (Hero 
Attending.To.Goals)=Goal.Identify.Object, (2) the 
(World376 Goal.Identify.Object Satisfied?)=t, and (3) (WO 
Measure.The.Object Prec.Sat?)=nil. WO is the current 
Observed.World, World376 is the world state which is 
predicted to result from the agent’s plan, and Prec.Sat? is 
the predicate indicating whether the preconditions of an 
action are satisfied in a given world state. These three 
supporting beliefs correspond to the first three clauses in 
the above definition of Justified.Action4. Notice the third 
clause indicates that in this case the tail of the agent’s plan 
cannot succeed since the preconditions of the second step 
of the plan are not satisfied in the initial observed world. 

IF 
(1) Identity of The.Object in Observed.World 

is not Known 
(1) Sonarw in Observed.World = ?s 
(1) Not [3 < ?s < 151 
(1) Not [25 < ?s < 1001 
(2) Battery in Observed.World > 70 
(2) Distance to The.Object in Observed.World 

= ?dist 
(2) 15 <= ?dist <= 25 
(2,3) Direction to The-Object in Observed.Wor 

= ?dir 
(3) Not t-5 <= ?dir <= 51 

THEN 
Chosen.Action of Hero = Face-The-Object 

Figure 3-2: Rule for Explanation from Figure 3-l 

*Id 

produced by the Theo-Agent from the explanation of 
Figure 3-2 shows the english description of the rule 

<--prolog-- 
(w0 the-object direction) = 10 

Figure 3- l.- The number to the left of each rule 

<--observed.value-- 
(w0 the-object direction observed-value) = 10 

Figure 3-1: Explanation for 
(Hero Justified.Action) = Face.The.Object 

3Noticethatthethird clause inthedefinition ofJustified.Action requires 
that the first step of the plan be essential to the plan’s success. Without 
this requirement, the definition is too weak, and can produce rules that 
recommend non-essential actions such as WAIT, provided they can be 
followedbyotheractions thateventuallyachieverhegoal. 

4The fourth clause is not even made explicit, since this is satisfied by 
defining the rule postcondition to recommend the current action. 

MITCHELL 1055 



precondition indicates the corresponding clause of 
Justified.Action which is supported by this precondition. 
For example, the first four lines in the rule assure that the 
robot is in a world state for which it should attend to the 
goal Goal.Identify.Object (i.e., they assure that this goal 
will be active, and that all higher priority goals will be 
inactive). Of course this rule need not explicitly mention 
this goal or any other, since it instead mentions the 
observed sense features which imply the activation of the 
relevant goals. Similarly, the rule need not mention the 
plan, since it instead mentions those conditions, labeled (2) 
and (3), which assure that the first step of the plan will lead 
eventually to achieving the desired goal. 

In all, the agent typically learns from five to fifteen 
stimulus-response rules for this set of goals and actions, 
depending on its specific experiences and the sequence in 
which they are encountered. By adding and removing 
other goals and actions, other agents can be specified that 
will “compile out” into sets of stimulus-response rules that 
produce different behaviors. 

3.2. Impact of Experience on Agent Reaction Time 
With experience, the typical reaction time of the Theo- 

Agent in the above scenario drops from a few minutes to 
under a second, due to its acquisition of stimulus-response 
rules and its caching of beliefs. Let us define reaction time 
as the time required for a single iteration of the sense- 
decide-execute loop of the agent. Similarly, define sensing 
time, decision time, and execution time as the time required 
for the corresponding portions of this cycle. Decision time 
is reduced by two factors: 

l Acquisition of stimulus-response rules. Matching a 
stimulus-response rule requires on the order of ten 
milliseconds, whereas planning typically requires 
several minutes. 

l Caching of beliefs about future world states. The 
time required by planning is reduced as a result of 
caching all agent beliefs. In particular, the 
descriptions of future world states considered by 
the planner (e.g., “the wrist sonar reading in the 
world that will result from applying the action 
Forward.10 to the current Observed.World”) are 
cached, and remain as beliefs of the agent even 
after its sensed world is updated. Some cached 
features of this imagined future world may become 
uncached each cycle as old sensed values are 
replaced by newer ones, but others tend to remain. 

The improvement in agent reaction time is summarized 
in the timing data from a typical scenario, shown in table 
3-l. The first line shows decision time and total reaction 
time for a sense-decide-execute cycle in which a plan must 
be created. Notice that here decision time constitutes the 
bulk of reaction time. The second line of this table shows 
the cost of producing a very similar plan on the next cycle. 
The speedup over the first line is due to the use of slot 
values which were cached during the first planning 

1. Construct simple plan: 

2. Construct similar plan: 

3. Apply learned rules: 

Decision 
Time 

34.3 set 

5.5 set 

0.2 set 

Reaction 
Time 

36.8 set 

6.4 set 

0.9 set 

Table 3-I: Effect of Learning on Agent Response Time 

(Timings are in CommonLisp on a Sun3 workstation) 

episode, and whose explanations remain valid through the 
second cycle. The third line shows the timing for a third 
cycle in which the agent applied a set of learned stimulus- 
response rules to determine the same action. Here, 
decision time (200 msec.) is comparable to sensing time 
(500 msec) and the time to initiate execution of the robot 
action (200 msec.), so that decision time no longer 
constitutes the bulk of overall reaction time. The decision 
time is found empirically to re uire 80 + 14r msec. to test a 

9 set of r stimulus-response rules . 
Of course the specific timing figures above are 

dependent on the particular agent goals, sensors, training 
experience, actions, etc. Scaling to more complex agents 
that require hundreds or thousands of stimulus-response 
rules, rather than ten, is likely to require more 
sophisticated methods for encoding and indexing the 
learned stimulus-response pairings. Approaches such as 
Rete matching, or encoding stimulus-response pairings in 
some type of network (Rosenschein, 1985, Brooks, 
1986) may be important for scaling to larger systems. At 
present, the significant result reported here is simply the 
existence proof that the learning mechanisms employed in 
the Theo-Agent are sufficient to reduce decision time by 
two orders of magnitude for a real robot with fairly simple 
goals, so that decision time ceases to dominate overall 
reaction time of the agent. 

4. Summary, Limitations and Future Work 
The key design features of the Theo-Agent are: 
e A stimulus-response system combined with a 

planning component of broader scope but slower 
response time. This combination allows quick 
response for routine situations, plus flexibility to 
plan when novel situations are encountered. 

e Explanation-based learning mechanism for 
incrementally augmenting the stimulus-response 
component of the system. When forced to plan, the 
agent formulates new stimulus-response rules that 

SRules are simply tested in sequence with no sophisticated indexing or 
parallel match algorithms. 

1056 ROBOTICS 



produce precisely the same decision as the current 
plan, in precisely the same situations. 

0 The agent chooses its own goals based on the 
sensed world state, goal activation conditions and 
relative goal priorities. Goals are explicitly 
considered by the agent only when it must 
construct plans. As the number of learned 
stimulus-response rules grows, the frequency with 
which the agent explicitly considers its goals 
decreases. 

0 Caching and dependency maintenance for all 
beliefs of the agent. Every belief of the agent is 

. cached along with an explanation that indicates 
those beliefs on which it depends. Whenever the 
agent sense inputs change, dependent beliefs which 
are affected are deleted, to be recomputed if and 
when they are subsequently queried. 

0 Distinction between eagerly and lazily refreshed 
sense features. In order to minimize the lower 
bound on reaction time, selected sense features are 
eagerly updated during each agent cycle. Other 
features are lazily updated by deleting them and 
recomputing them if and when they are required. 
This provides a simple focus of attention 
mechanism that helps minimize response time. In 
the future, we hope to allow the agent to 
dynamically control the assignment of eagerly and 
lazily sensed features. 

There are several reasonable criticisms of the current 
TheoAgent architecture, which indicate its current 
limitations. Among these are: 

0 The kind of planning the TheoAgent performs may 
be unrealistically difficult in many situations, due 
to lack of knowledge about the world, the likely 
effects of the agent’s actions, or other changes in 
the world. One possible response to this limitation 
is to add new decision-making mechanisms beyond 
the current planner and stimulus-response system. 
For example, one could imagine a decision-maker 
with an evaluation function over world states, 
which evaluates actions based on one-step 
lookahead (similar to that proposed in Sutton’s 
DYNA (Sutton, 1990).). As suggested in 
(Kaelbling, 1986), a spectrum of multiple-decision 
makers could trade off response speed for 
correctness. However, learning mechanisms such 
as those used here might still compile stimulus- 
response rules from the decisions produced by this 
spectrum of decision-makers. 

l Although the TheoAgent learns to become 
increasingly reactive, its decisions do not become 
increasingly correct. The acquired stimulus- 
response rules are only as good as the planner and 
action models from which they are compiled. We 
are interested in extending the system to allow it to 
inductively learn better models of the effects of its 
actions, as a result of its experience. Preliminary 

results with this kind of learning using a hand-eye 
robot are described in (Christiansen, et al., 1990, 
Zrimic and Mowforth, 1988). 

* The current planner considers the correctness of its 
plans, but not the cost of sensing or effector 
commands. Therefore, the plans and the stimulus- 
response rules derived from them may refer to 
sense features which are quite expensive to obtain, 
and which contribute in only minor ways to 
successful behavior. For instance, in order to 
guarantee correctness of a plan to pick up a cup, it 
might be necessary to verify that the cup is not 
glued to the floor. The current system would 
include such a test in the stimulus-response rule 
that recommends the grasp operation, provided this 
feature was considered by the planner. We must 
find a way to allow the agent to choose which tests 
are necessary and which can be ignored in order to 
construct plausible plans that it can then attempt, 
and recover from as needed. 

t3 Scaling issues. As noted in the previous section, 
the current robot system requires only a small set of 
stimulus-response rules to govern its behavior. We 
must consider how the approach can be scaled to 
more complex situations. Some avenues are to (1) 
explore other strategies for indexing learned 
knowledge (e.g., index rules by goal, so that many 
subsets of rules are stored rather than a single set), 
(2) develop a more selective strategy for invoking 
learning only when the benefits outweigh the costs, 
and (3) consider representations of the control 
function that sacrifice expressive precision for 
fixed computational cost (e.g., fixed topology 
neural networks with constant response time). 

We believe the notion of incrementally compiling 
reactive systems from more general but slower search- 
based systems is an important approach toward extending 
the flexibility of robotic systems while still achieving 
respectable (asymptotic) response times. The specific 
design of the Theo-Agent illustrates one way to organize 
such a system. Our intent is to extend the current 
architecture by adding new learning mechanisms that will 
allow it to improve the correctness of its action models and 
its abilities to usefully perceive its world. These additional 
learning capabilities are intended to complement the type 
of learning presented here. 

Acknowledgements. This work is based on extensions 
to earlier joint work with Jim Blythe, reported in (Blythe 
and Mitchell, 1989). I am most grateful for Jim’s 
significant contributions to the design of the Theo-Agent. 
Thanks also to the entire Theo group, which produced the 
Theo system on which Theo-Agent is built. Theo provides 
the underlying inference, representation, and learning 

MITCHELL 1057 



mechanisms used by the Theo-Agent. Finally, thanks to 
Long-Ji Lin who developed a number of the routines for 
interfacing from workstations to the robot. This research 
is supported by DARPA under research contract 
NOOO14-85-K-0116 and by NASA under research contract 
NAGW- 1175. 

References 

IN 

I21 

[31 

[41 

151 

@I 

[71 

181 

Agre, P. and Chapman, D. 
Pengi: An Implementation of a Theory of Activity. 
In Proceedings of the National Conference on 

Artificial Intelligence, pages 268-272. Morgan 
Kaufmann, July, 1987. 

Blythe, J., and Mitchell, T. 
On Becoming Reactive. 
In Proceedings of the Sixth International Machine 

Learning Workshop, pages 255-259. Morgan 
Kaufmann, June, 1989. 

Brooks, R.A. 
A Robust Layered Control System for a Mobile 

Robot. 
IEEE Journal of Robotics and Automation 2(1), 

March, 1986. 

Christiansen, A., Mason, M., and Mitchell, T. 
Learning Reliable Manipulation Strategies without 

Initial Physical Models. 
In Proceedings of the IEEE International 

Conference on Robotics and Automation. IEEE 
Press, May, 1990. 

Kaelbling, L.P. 
An Architecture for Intelligent Reactive Systems. 
In M.P. Georgeff and A.L. Lansky (editor), 

Reasoning about Actions and Plans: 
Proceedings of the 1986 Workshop. Morgan 
Kaufmann , 1986. 

Laird, J.E. and Rosenbloom, P.S. 
Integrating Planning, Execution, and Learning in 

Soar for External Environments. 
In Proceedings of AAAI ‘90. AAAI, 1990. 

Lin, L., Philips, A., Mitchell, T., and Simmons, R. 
A Case Study in Robot Exploration. 
Robotics Institute Technical Report CMU- 

RI-89-00 1, Carnegie Mellon University, 
Robotics Institute, January, 1989. 

Mitchell, T.M., Keller, R.K., and Kedar-Cabelli, S. 
Explanation-Based Generalization: A Unifying 

View. 
Machine Learning 1(1), 1986. 

PI 

WI 

l3u 

In1 

r131 

iI41 

1151 

IX51 

Mitchell, T. M., J. Allen, P. Chalasani, J. Cheng, 
0. Etzioni, M. Ringuette, and J. Schlimmer. 
Theo: A Framework for Self-improving Systems. 
In VanLehn, K. (editor), Architectures for 

Intelligence. Erlbaum, 1990. 

Pommerleau, D.A. 
ALVINN: An Autonomous Land Vehicle In a 

Neural Network. 
In Touretzky, D. (editor), Advances in Nerual 

Information Processing Systems, Vol. 1. Morgan 
Kaufmann, 1989. 

Rosenschein, S. 
Formal Theories of Knowledge in AI and Robotics. 
New Generation Computing 3:345-357,1985. 

Schoppers, M.J. 
Universal Plans for Reactive Robots in 

Unpredictable Environments. 
In Proceedings of the Tenth International Joint 

Conference on Artificial Intelligence, pages 
1039-1046. AAAI, August, 1987. 

Segre, A.M. 
Machine Learning ofRobot Assembly Plans. 
Kluwer Academic Press, 1988. 

Sutton, R. 
First Results with DYNA, an Integrated 

Architecture for Learning, Planning, and 
Reacting. 

In Proceedings of AAAI Spring Symposium on 
Planning in Uncertain, Unpredictable, or 
Changing Environments, pages 136-140. AAAI, 
March, 1990. 

Tan, M. 
CSL: A Cost-Sensitive Learning System for Sensing 

and Grasping Objects. 
In Proceedings of the 1990 IEEE International 

Conference on Robotics and Automation. IEEE, 
May, 1990. 

Zrimic, T., and Mowforth, P. 
An Experiment in Generating Deep Knowledge for 

Robots. 
In Proceedings of the Conference on Representation 

and Reasoning in an Autonomous Agent. 1988. 

1058 ROBOTICS 


