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Abstract 

Surface discontinuities are detected in a sequence 
of images by exploiting physical constraints at 
early stages in the processing of visual motion. To 
achieve accurate early discontinuity detection we 
exploit five physical constraints on the presence of 
discontinuities: i) the shape of the sum of squared 
differences (SSD) error surface in the presence of 
surface discontinuities; G) the change in the shape 
of the SSD surface due to relative surface motion; 
G) distribution of optic flow in a neighborhood of 
a discontinuity; iv) spatial consistency of disconti- 
nuities; V) temporal consistency of discontinuities. 
The constraints are described, and experimental 
results on sequences of real and synthetic images 
are presented. The work has applications in the 
recovery of environmental structure from motion 
and in the generation of dense optic flow fields. 

Introduction 
The relative motion of surfaces can provide information 
about the presence of surface discontinuities. We de- 
tect these discontinuities over time by exploiting phys- 
ical constraints at early levels in the processing of vi- 
sual motion. As noted by Marr (Marr 1982), the hu- 
man visual system efficiently detects object boundaries 
using only relative surface motion as a cue. For ex- 
ample, figure 1 shows one image in a random dot se- 
quence, in which a square patch is translating with 
respect to a stationary background. Human observers 
easily detecting the boundary of the square when pre- 
sented with these images in sequence even when noise 
is added. Thus lines of discontinuity can provide evi- 
dence about the presence of surface discontinuities and 
the structure of the environment. 

In this paper five physical constraints on the pres- 
ence of discontinuities will be explored. We will de- 
scribe how these constraints can be exploited to detect 
lines of discontinuity from a sequence of densely sam- 
pled images. 

The first constraint is derived from the observation 
that multiple surfaces in relative motion will have dif- 

ferent best displacements between a pair of images. 
We use the standard sum of squared digerences (SSD) 
correlation measure for computing displacements. In 
the presence of surface discontinuities, the shape of the 
SSD surface provides information about the number, 
and relative motion of, the surfaces present (Anandan 
1987). In the simplest case, the surface is multi-modal 
with local minima corresponding to the motion of the 
surfaces at the discontinuity. 

While a multi-modal error surface indicates the pres- 
ence of a discontinuity, the aperture problem means 
that the absence of a multi-modal surface does not 
guarantee that no discontinuity is present. A second 
constraint uses information about how the intensity 
structure in an area of the image changes with mo- 
tion. This change is measured by comparing the SSD 
surface obtained under motion with a translation in- 
variant auto-correlation surface which would result if 
no motion were present. If a discontinuity is present, 
the shape of the surface will change with motion, while 
uniform motion will result in a surface with similar 
shape. 

A third constraint (neighborhood flow modality) ex- 
ploits the fact that if multiple surfaces are moving rel- 
ative to each other, then the optic flow will be differ- 
ent for each surface. This, in turn, will be reflected 
in a histogram of flow vectors within a neighborhood; 
the histogram will be multi-modal (Spoerri & Ullman 
1987). Naively applied, this approach has serious lim- 
itations but by using confidence measures (Anandan 
1989) associated with the flow field we can effectively 
exploit this constraint. 

The fourth constraint exploits the continuity of dis- 
continuities (Marr 1982). Discontinuities correspond 
to surface boundaries in the world, and hence it is rea- 
sonable to assume that such boundaries have spatial 
extent. A spatial consistency constraint is developed 
using controlled continuity splines (Kass, Witkin, & 
Terzopoulos 1987). 

Finally, assuming a fairly stable environment, dis- 
continuities tend to persist over time and move contin- 
uously across the image plane. A temporal consistency 
constraint is developed using active contour models in 
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Figure 1: Random Dot Image. One image from a 
motion pair in which a foreground patch is undergo- 
ing a 2 pixel displacement with respect to a stationary 
background. Zero mean gaussian noise with a standard 
deviation equal to 10 percent of the standard deviation 
of the image has been added to the second image. 

field using region growing (Potter 1980) or edge detec- 
tion techniques (Thompson, Mutch, & Berzins 1982). 
A variation on this approach (Mutch & Thompson 
1988) computes accretion/deletion regions using cor- 
relation techniques. Another approach, which we will 
also exploit, uses information about the distribution of 
flow vectors in a neighborhood about a point to decide 
if a discontinuity is present (Spoerri & Ullman 1987). 

These previous approaches suffer from two prob- 
lems. First, they all ignore valuable information that 
is present in the correlation surface from which the 
flow is derived. Secondly, many occur too late in the 
flow computation; to work they must be applied to 
a smoothed flow field. When these techniques are ap- 
plied to the raw, unsmoothed, flow field, the results are 
poor. There is a Catch-22: you need the information 
about discontinuities to derive an accurate smoothed 
flow field, and you need the smoothed flow field to de- 
tect the discontinuities. 

Our approach is novel in that we develop constraints 
on the location of lines of discontinuity using infor- 
mation present in the SSD surface as well as physical 
properties of discontinuities to achieve robust early de- 
tection. While the constraints have intuitive appeal, 
and the experimental results are promising, we cur- 
rently have no probabilistic justification for the confi- 
den& measures- associated with these constraints and 
no probabilistic interpretation is implied. This is an 
area of ongoing research. 

which an energy term constrains the motion of the con- 
tour to be consistent with image flow. 

Motivation and Previous Work 

This work has two main motivations. First, one of 
the primary goals of computer vision is to recover the 
structure of the environment; surface discontinuities 
provide a great deal of structural information. Tra- 
ditional edge detection techniques have well known 
limitations for boundary detection. They may fail to 
detect boundaries between textured surfaces, and de- 
tect many edges which do not correspond to struc- 
tural properties of the environment but are artifacts 
of surface marking. Motion based discontinuity detec- 
tion, may be able to be combined with edge detection 
schemes to produce more accurate and complete de- 
scriptions of the environment. 

Secondly, we would like to incorporate information 
about discontinuities into the computation of dense 
optic flow fields over time (Schunk 1989) (Spoerri & 
Ullman 1987). One of the key observations underly- 
ing work in optic flow computation is the notion that 
surface discontinuities are not dense. Or phrased an- 
other way, that flow changes gradually across the field 
of view. This allows smoothness constraints to be in- 
troduced into the flow field computation which cor- 
rect for noise in image correlation. This assumption 
of a smoothly changing flow field is violated at ob- 
ject boundaries, and hence the smoothness constraint 

In the following sections each of the five constraints 
is developed in detail and illustrated with experimental. 
results on synthetic data. We then present experimen- 
tal results with a real motion pair. Before concluding, 
we discuss our current research directions. 

Shape of the Error Surface 
Correlation-based matching is a common technique 
used in the computation of optic flow (Anandan 1989). 
The approach is appealing for a variety of reasons; it 
is simple, it captures the intuitive notion of similarity 
between two image regions, and is inherently parallel. 
The sum of squared differences (SSD) is a common 
correlation measure which is computationally simple 
and performs well in empirical tests when applied to 
band-pass filtered images (Burt, Yen, & Xu 1982). 

Given a point in an image and a set of points G in 
a neighborhood of size n x m around the point, we 
define the data error term for a displacement (u, V) of 
that point as: 

E(u, v) = E (I&j) - &(i + u, j + v))~, 
is not appropriate across these boundaries. By explic- i,jEG 
itly computing surface discontinuities at early stages of 
motion processing, discontinuity information can be in- 

where 11 and 12 denote the intensity functions of two 
successive images. The SSD surface, S, is defined 

corporated into the smoothness constraint to produce 
more accurate flow fields. 

over the space of possible displacements (u, V) with the 
height of the surface corresponding to the data error, 

Most previous attempts at detecting discontinuities E(u, v), of that displacement (figure 2 shows an exam- 
from motion have focused on an analysis of this flow ple SSD surface at a corner point). 
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Figure 2: Example SSD Surface at a Corner (inverted 
for display). 

The shape of the SSD surface is typically quite com- 
plex and contains information about the motion of the 
surfaces that gave rise to it (Anandan 1984). In partic- 
ular, in certain well defined cases, if there are multiple 
surfaces undergoing relative motion in a neighborhood, 
then they will each have different best displacements. 
This gives rise to a multi-modalerror surface with min- 
ima corresponding to the displacements of each surface. 

In an ideal situation, minima are easily detected by 
examining the first and second partial derivatives of 
the surface. Of course, when dealing with real im- 
agery, detecting minima may not be so easy. In the 
presence of noise, true minima may be obscured and 
spurious minima may be introduced. Additionally, if 
the relative motion of the surfaces is small, then due 
to discretization, the peaks may merge together and 
be indistinct. In practice then, we must settle for a 
heuristic measure of peakness. One heuristic, $, takes 
into account the steepness of the peak, by measuring 
the distance of a point from its neighbors: 

$(u, v) = e k S(u, v) - S(u + i, v + j). 
i=-1 j=-1 

The more negative $, the more likely a steep peak ex- 
ists. Other measures of peak shape and steepness exist. 
For example, the scalar confidence measures of (Anan- 
dan 1984), which are based on normalized directio%al 
second derivatives of the surface, provide a measure of 
peakness based on curvature. 

We desire an estimated confidence, Cs, that a par- 
ticular image location corresponds to a discontinuity 
given the shape of the SSD surface at that location. 
Such a confidence measure should take into account 
the number of peaks present in the surface and some 
notion of how good these peaks are. We also take into 
account that, for some distance on either side of a dis- 
continuity, the SSD surface may contain evidence of 
multiple motion. Our confidence measure should be 
highest at the actual boundary. 

Figure 3: Confidence, Cs, based on shape of the SSD 
surface. 

Experimental results with many confidence mea- 
sures and heuristics indicate that simple measures, like 
the ratio of the depths of the two best peaks, per- 
form nearly as well as more complex measures. If the 
first and second best peaks, as defined by $J, have 
displacements (ue, vc) and (ui , vi) respectively, and 
PO = S(UO, VO) and PI = S(ui, vi) are the depths of 
the peaks, then we define Cs as: 

cs = POIPl. 

This function will have a global maximum approach- 
ing 1.0 at the actual boundary and will fall off as dis- 
tance from the boundary increases. Figure 3 shows 
the values of CS obtained from the SSD surface gener- 
ated between the images described in figure 1. Bright 
values correspond to locations where there is a high 
confidence of a discontinuity. 

An empirical study of the behavior of the SSD sur- 
face indicates that in areas of sufficient texture the 
surface contains enough information for discontinuity 
detection. However, if one or both of the surfaces 
present are homogeneous, the aperture problem pre- 
vents us from deriving meaningful information from 
the surface. 

Weakening the Continuity Assumption 
The SSD surface provides only approximate informa- 
tion about the displacement of multiple surfaces. It 
embodies the assumption that the intensity structure 
of a surface patch remains constant over time. This 
assumption generally holds for surfaces which are con- 
tinuous but is violated at surface discontinuities. 

When using the quadratic SSD measure, the pres- 
ence of a poorly correlated surface introduces noise 
which influences the overall correlation. As the data er- 
ror increases without bound so does the SSD measure. 
Instead, we desire a function which weights highly dif- 
ferences which fall within the expected range of er- 
ror and remains uncommitted about data outside this 
range. 
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Figure 4: The 4 function embodying the weak conti- 
nuity constraint. 

Figure 5: Confidence, Cs, using the weak continuity 
assumption. 

This weakening of the SSD assumption corresponds 
to Blake and Zisserman’s weak continuity constraint 
(Blake & Zisserman 1987). The following function, 4, 
has the desired properties: 

40 { 2 = X2x2 if 1x1 < G/X, 
C-Y otherwise 

where X and cy are constants chosen with respect to 
the expected noise. The resulting data error term is a 
quadratic function of t’he difference in intensity values 
as long as the magnitude of the difference is below 
a threshold fi/X, and stabilizes to a fixed value cy 
beyond the threshold (see figure 4). 

This function weights well correlated points highly 
and diminishes the importance of poorly correlated 
points. If there are multiple surfaces in relative mo- 
tion, there will be multiple displacements where a high 
number of points correlated well, and hence the corre- 
lation surface will contain multiple peaks. 

The data error is now: 

E(u, v) = ): 4(h(i, j) - I2(i + u, j + v)). 
i,jEG 

The error surface is generated as before and peaks are 
detected. Using the same confidence measure, C’s, as 
before we see that the area of possible discontinuity is 
more precisely located (figure 5). 

Change in Surface Shape 
As indicated in the previous section, the SSD surface 
may not have multiple peaks even when there are mul- 
tiple surfaces in relative motion. In certain cases repet- 
itive structures can cause multiple peaks in the SSD 
surface when only a single motion is present. Hence, 
we need a different approach to detect the absence 
of discontinuities. The key observation is that if an 
area is undergoing a uniform motion then the cross- 
correlation surface, S, between successive frames will 
have the same shape same as the auto-correlation sur- 
face, A, generated by correlating the the first image 
with itself (Anandan 1984). 

Figure 6: Confidence, CS,A, based on the change be- 
tween the auto and cross correlation surfaces. 

to 
Intuitively, if the cross-correlation surface is similar 
the auto-correlation surface, given an appropriate 

translation, then the likelihood iof a discontinuity is 
low. We define a confidence measure, CS,A, based on 
this intuition. We translate the auto-correlation sur- 
face so that it is centered at the point of best match, 
(u, v), and compute the difference between the auto 
and cross-correlation surfaces: 

na n 

CS,A = x >: (s(u, v) - A(u, v))~. 
u=-rn v=-n 

This measure will be large at discontinuities and small 
in areas of consistent motion. Multiple peaks in the 
cross-correlation surface which are the result of repet- 
itive structure will also appear in the auto-correlation 
surface and hence CS,A will be low. This measure is 
illustrated in figure 6 where CS,A is displayed for the 
sample random dot pair. 

Neighborhood Flow 
By taking the displacement of minimum error in the 
SSD surface, we arrive at a raw, unsmoothed, flow field, 
F. Each point in the field contains the best displace- 
ment of that point. Looking in a neighborhood around 
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Neighborhood Flow a b c 

Figure 7: Detecting discontinuities using neighborhood flow. a) Confidence, CF, on neighborhood of raw 
flow vectors. b) Confidence, Cfiaas, in raw flow vectors 
flow confidence. 

c) Confidence, ‘CF,~,,,,, , combined neighborhood flow and 

a given point in F, if there are multiple surfaces mov- 
ing relative to each other, then there will be clusters 
of points with different flow vectors. A histogram of 
displacement vectors in a neighborhood will contain 
multiple peaks if a discontinuity is present (Spoerri & 
Ullman 1987). Peaks are detected in the histogram 
and a confidence measure, CF, can be created by com- 
paring the relative heights of the two highest peaks. 
At a boundary this measure has a global maximum 
approaching 1 .O. 

Since the traditional smoothness process blurs the 
distinction between neighboring flow vectors, the 
neighborhood flow constraint must be applied prior 
to smoothing. However, the unsmoothed flow field is 
usually noisy and error-prone, hence, the resulting his- 
togram will itself be unreliable. This is illustrated by 
the example shown in Figure 7a, which is computed 
from the random dot test pair. The measure is max- 
imum near the actual boundary but, due to noise in 
the unsmoothed flow field, it produces only a rough 
approximation to the boundary. 

The solution our dilemma is contained in the use of 
confidence measures such as those described in (Anan- 
dan 1989). These provide a measure of confidence in a 
flow estimate based on the curvature of the SSD sur- 
face. Figure 7b shows the confidence in the optic flow 
estimates for the sample image pair. Areas where con- 
fidence in the flow estimate is low appear dark in the 
figure. During the computation of the histogram, we 
simply weight the contribution of each vector accord- 
ing to its associated confidence and find peaks in the 
histogram as before. Flow vectors near the disconti- 
nuity that are unreliable will contribute less than in 
the unweighted scheme. This approach cannot find a 
discontinuity if the information is not present in the 
flow field. Its usefulness is in reducing the confidence 
of spurious discontinuities which are the result of flow 
errors. The resulting confidence, CF,~,,,, for the test 
images is shown in figure 7c.; confidence in the erro- 
neously located discontinuity at the occluding corner 

has been reduced. 
Note that our simple scheme for detecting multi- 

ple peaks may fail due to the discretization of the 
histogram. For instance, two adjacent peaks in the 
histogram may simply be a broad single peak. More 
sophisticated clustering techniques may be needed to 
deal with such problems, and will be considered in the 
future. 

Spatial Consistency 
Until now we have only discussed the assignment of a 
confidence to a point in the optic array which has some 
likelihood of corresponding to a discontinuity in the 
environment. Since discontinuities result from objects 
and their boundaries, and hence have spatial extent, 
our goal is not to detect points, but to detect lines of 
discontinuity which provide the best interpretation of 
the evidence supplied by the other constraints. The 
approach taken here is to construct a confidence field 
based on the previous constraints and use controlled 
continuity splines, or snakes, (Kass, Witkin, & Ter- 
zopoulos 1987) to detect local minima in the field. 

We view the task of detecting lines of discontinu- 
ity as an energy minimization task where the internal 
spline forces E int impose a smoothness constraint and 
the pointwise discontinuity confidence imposes exter- 
nal forces Edise on the shape of the curve: 

Es, = J o1 &-at(s) + &iisc(S)dS. 
Local minima of the energy function correspond to 
possible lines of discontinuity and temporal, or higher 
level, processes may then be able to choose the global 
minima corresponding to actual discontinuities. 

Our spatial consistency assumption gives us a model 
of discontinuities as continuous curves in the environ- 
ment. The shape of these curves can be described by 
an internal spline energy function: 

E bat = (4s>Iv&>12 + P(41~ss(s)~2)/2 
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Figure 8: Discontinuity confidence and spatial 
consistency. Line of discontinuity detected using spa- 
tial consistency constraint superimposed on the confi- 
dence field, generated using Cs, CS,A, CF,~,,, 

where v(s) = (Z(S), y(s)) represents the position of the 
snake parametrically, v, and v,, are the first and sec- 
ond derivatives of the spline, and o(s) and ,0(s) control 
to what extent the snake acts like a membrane and a 
thin plate respectively. 

We can combine the pointwise information about 
discontinuity to form a confidence field 4 where wells 
in the field correspond to areas where there is high 
confidence that a discontinuity is present: 

q = l/(wlcS + W2CS,A + w3cF,C,,,), 

where the wi are scalar weights. Other formulations of 
the field are possible. The external energy force on the 
discontinuity spline is then just where Edisc = wdisc$!. 

Figure 8 shows the confidence field for the random 
dot sequence with noise. A closed snake was initial- 
ized manually with an initial starting position roughly 
near the discontinuity. The figure shows one local min- 
imum found by the snake as bright against the darker 
confidence field. The deep well about the discontinu- 
ity means initial placement of the snake can be fairly 
inaccurate. In our current work we are exploring ways 
of automating this instantiation process. 

Temporal Consistency 
Lines of discontinuity correspond to boundaries of sur- 
faces in the environment. Under the reasonable as- 
sumption that surfaces tend to persist in time, we can 
expect that the discontinuities will also persist. This 
temporal consistency of discontinuities provides a pow- 
erful constraint which can be used to disambiguate be- 
tween possible lines of discontinuity. 

Temporal consistency implies that lines of disconti- 
nuity will move steadily across the optic array. This 
can be formulated as a constraint on the location and 
the motion of the snakes. In particular, the snake- 
velocity c(s) should be consistent with the flow field of 
the frontal surface which gives rise to the discontinuity. 

Similarly, we may require that the snake acceleration 
G(s) be small. 

The experiments reported in this paper have been 
based on two frames, and hence do not exploit tempo- 
ral consistency. It appears, however, that the inclusion 
of this constraint for multiple-frame analysis will pro- 
vide significant improvements. 

Experimental Results 
The constraints and associated confidence measures 
provide accurate discontinuity detection in random dot 
images, even in the presence of noise. These images, 
however, contain more texture than is common in im- 
ages of natural scenes. A sequence of 64 x 64 pixel 
images of a cluttered office scene was used to test the 
constraints on real data. The densely sampled se- 
quence contains two relatively homogeneous bars in 
the foreground moving across a stationary background 
containing areas of varying amounts of texture. The 
closest bar is undergoing approximately a 2 pixel dis- 
placement while the more distant bar is displaced by 
approximately 1 pixel. Noise, multiple discontinuities, 
and nearly homogeneous surfaces make this a challeng- 
ing sequence for discontinuity detection. 

The images were first band-pass filtered. The SSD 
computation for the auto and cross correlation surfaces 
used a 7 x 7 search area and a 7 x 7 neighborhood with 
a uniform distribution. A 7 x 7 neighborhood was used 
for computing neighborhood flow. Figure 9a shows a 
thresholded image of the potential field generated us- 
ing C’s, CS,A , and CF,~,,, . Dark areas correspond to 
locations where there is high confidence that a discon- 
tinuity exists. 

Snakes were initialized manually (figure 9b) in the 
general area of the discontinuity. This initialization 
process could be automated by using curves gener- 
ated from intensity-based edge detection and percep- 
tual grouping. Figure 9c shows the snakes resting at 
local minima in the field. 

Conclusion 
This paper has presented physical constraints which 
can be exploited to perform early detection of motion 
discontinuities over time. We have also presented a 
way of combining the various constraints in the form 
of an optimization problem, along the lines of the ac- 
tive contour models developed by (Kass, Witkin, & 
Terzopoulos 1987). Our approach is suitable for early 
stages in the processing of visual motion, and produces 
useful results even using our current formulation of the 
constraints, which is admittedly somewhat simple. 

We are currently working on a Bayesian interpreta- 
tion for our constraints. A conditional probability for 
a discontinuity can be obtained from each constraint 
and these can then be combined. The Bayesian model 
of the uncertainty developed in (Szeliski 1988) for flow- 
field computation provides hope that such a rigorous 
treatment is possible. 
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a 
Figure 9: Experiments. a) Threshold c 
c)-final positions. 

b 
If potential field using Cs, CS,A and %Gna, - b) initial snake positions. 

There is also work to be done extending the con- 
straints themselves; in particular, temporal constraints 
need to be incorporated. The possibility that discon- 
tinuities may appear, merge, split, grow, and shrink 
presents a number. of interesting challenges in the use 
of snakes. The shape of the SSD surface and the use of 
weak continuity constraints deserve additional study, 
as do the possibilities for additional constraints. For 
example, it may be possible to combine dynamic dis- 
continuity analysis with static image analysis. 

There are also possibilities for feeding these disconti- 
nuities back into the correlation process. By explicitly 
accounting for discontinuities when computing the cor- 
relation it may be possible to achieve better estimates 
of flow. This idea relates to work in Markov Random 
Fields in which line processes are introduced to account 
for discontinuities (Geman & Geman 1984). 

Finally, the value of this work will be demonstrated 
when it is applied to the problems of motion under- 
standing. In particular, the incorporation of discon- 
tinuities into the smoothness constraint in flow field 
computation needs to be examined. The test will be 
whether early discontinuity detection can indeed be 
used to produce more accurate dense flow fields. 
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