
Probably Approximately Correct Learning

David Haussler*
haussler@sat urn.ucsc.edu

Baskin Center for Computer Engineering and Information Sciences
University of California, Santa Cruz, CA 95064

1 Abstract

This paper surveys some recent theoretical results on
the efficiency of machine learning algorithms. The main
tool described is the notion of Probably Approximately
Correct (PAC) 1 earning, introduced by Valiant. We de-
fine this learning model and then look at sorne of the
results obtained in it. We then consider some criti-
cisms of the PAC model and the extensions proposed
to address these criticisms. Finally, we look briefly at
other models recently proposed in computational learn-
ing theory.

2 Introduction

It’s a dangerous thing to try to formalize an enterprise
as complex and varied as machine learning so that it
can be subjected to rigorous mathematical analysis. To
be tractable, a formal model must be simple. Thus, in-
evitahly, most people will feel that important aspects of
the activity have been left out of the theory. Of course,
they will be right. Therefore, it is not advisable to
present a theory of machine learning as having reduced
the entire field to its bare essentials. All that can be
hoped for is that some aspects of the phenomenon are
brought more clearly into focus using the tools of math-
ematical analysis, and that perhaps a few new insights
are gained. It is in this light that we wish to discuss
the results obtained in the last few years in what is now
called PAC (Probably Approximately Correct) learning
theory [3].

Valiant introduced this theory in 1984 [42] to get
computer scientists who study the computational efi-
ciency of algorithms to look at learning algorithms. By
taking some simplified notions from statistical pattern
recognition and decision theory, and combining them
with approaches from computational complexity the-
ory, he came up with a notion of learning problems that
are feasible, in the sense that there is a polynomial time
algorithm that “solves” them, in analogy with the class
P of feasible problems in standard complexity theory.

*Supported by ONR grant NOOO14-86-K-0454

Valiant was successful in his efforts. Since 1984 many
theoretical computer scientists and AI researchers have
either obtained results in this theory, or complained
about it and proposed modified theories, or both.

The field of research that includes the PAC theory
and its many relatives has been called computational
learning theory. It is far from being a monolithic mathe-
matical edifice that sits at the base of machine learning;
it’s unclear whether such a theory is even possible or
desirable. We argue, however, that insights have been
gained from the varied work in computational learn-
ing theory. The purpose of this short monograph is to
survey some of this work and reveal those insights.

3 Definition of PAC Learning

The intent of the PAC model is that successful learning
of an unknown target concept should entail obtaining,
with high probability, a hypothesis that is a good ap-
proximation of it. Hence the name Probably Approxi-
mately Correct. In the basic model, the instance space
is assumed to be (0, l}“, the set of all possible assign-
ments to n Boolean variables (or a2ltibuies) and con-
cepts and hypotheses are subsets of (0, 1)“. The notion
of approximation is defined by assuming that there is
some probability distribution D defined on the instance
space (0, l}“, giving the probability of each instance.
We then let the error of a hypothesis h w.r.t. a fixed
target concept c, denoted error(h) when c is clear from
the context, be defined by

error(h) = c D(z),
rEhAc

where A denotes the symmetric difference. Thus,
error(h) is the probability that h and c will disagree
on an instance drawn randomly according to D. The
hypothesis h is a good approximation of the target con-
cept c if error(h) is small.

How does one obtain a good hypothesis? In the sim-
plest case one does this by looking at independent ran-
dom examples of the target concept c, each example
consisting of an instance selected randomly according

HAUSSLER 110 1

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

to D, and a label that is “+” if that instance is in the
target concept c (positive example), otherwise “-” (neg-
ative ezample). Thus, training and testing use the same
distribution, and there is no “noise” in either phase. A
learning algorithm is then a computational procedure
that takes a sample of the target concept c, consisting
of a sequence of independent random examples of c, and
returns a hypothesis.

For each n 1 1 let C,, be a set of target concepts over
the instance space (0, l)“, and let C = {&),>I. Let
H,, for n 2 1, and H be defined similarly. We &n de-
fine PAC learnability as follows: The concept class C is
PAC learnable by the hypothesis space H if there exists
a polynomial time learning algorithm A and a polyno-
mialp(.,.,.) sue I ld 1 tl *t f or all n 2 1, all target concepts
c E Cn, all probability distributions D on the instance
space (0, l)“, and all c and 6, where 0 < c, S < 1, if the
algorithm A is given at least p(n, I/E, l/S) independent
random examples of c drawn according to D, then with
probability at least l-S, A returns a hypothesis h E H,,
with error(h) 5 c. The smallest such polynomial p is
called the sample complexity of the learning algorithm
A.

The intent of this definition is that the learning algo-
rithm must process the examples in polynomial time,
i.e. be computationally efficient, and must be able to
produce a good approximation to the target concept
with high probability using only a reasonable number
of random training examples. The model is worst case
in that it requires that the number of training exam-
ples needed be bounded by a single fixed polynomial
for all target concepts in C and all distributions D in
the instance space. It follows that if we fix the number
of variables n in the instance space and the confidence
parameter 6, and then invert the sample complexity
function to plot the error E as a function of training
sample size, we do not get what is usually thought of
as a learning curve for A (for this fixed confidence),
but rather the upper envelope of all learning curves for
A (for this fixed confidence), obtained by varying the
target concept and distribution on the instance space.
Needless to say, this is not a curve that can be observed
experimentally. What is usually plotted experimentally
is the error versus the training sample size for particular
target concepts on instances chosen randomly accord-
ing to a single fixed distribution on the instance space.
Such a curve will lie below the curve obtained by in-
verting the sample complexity. We will return to this
point later.

Another thing to notice about this definition is that
target concepts in a concept class C may be learned by
hypotheses in a different class H. This gives us .some
flexibility. Two cases are of interest. The first is that
C = H, i.e. the target class and hypothesis space are

the same. In this case we say that C is properly PAC
learnable. Imposing the requirement that the hypoth-
esis be from the class C may be necessary, e.g. if it
is to be included in a specific knowledge base with a
specific inference engine. IIowever, as we will see, it
can also make learning more difficult. The other case
is when we don’t care at all about the hypothesis space
H, so long as the hypotheses in H can be evaluated effi-
ciently. This occurs when our only goal is accurate and
computationally efficient prediction of future examples.
Being able to freely choose the hypothesis space may
make learning easier. If C is a concept class and there
exists some hypothesis space H such that hypotheses
in H can be evaluated on given instances in polynomial
time and such that C is PAC learnable by H, then we
will say simply that C is P/iC leanuble.

There are many variants of the basic definition of
PAC learnability. One important variant defines a no-
tion of syntactic complexity of target concepts and, for
each n > 1, further classifies each concept in C,, by its
syntactic complexity. Usually the syntactic complex-
ity of a concept c is taken to be the length of (number
of symbols in) the shortest description of c in a fixed
concept description language. In this variant of PAC
learnability, the number of training examples is also
allowed to grow polynomially in the syntactic complex-
ity of the target concept. This variant is used when-
ever the concept class is specified by a concept descrip-
tion language that can represent any boolean function,
for example, when discussing the learnability of DNF
(Disjunctive Normal Form) formulae or decision trees.
Other variants of the model let the algorithm request
examples, use separate distributions for drawing posi-
tive and negative examples, or use randomized (i.e. coin
flipping) algorithms [25]. It can be shown that these lat-
ter variants are equivalent to the model described here,
in that, modulo some minor technicalities, the concept
classes that are PAC learnable in one model are also
PAC learnable in the other [20]. Finally, the model
can easily be extended to non-Boolean attribute-based
instance spaces [19] and instance spaces for structural
domains such as the blocks world [18]. Instances can
also be defined as strings over a finite alphabet so that
the learnability of finite automata, context-free gram-
mars, etc. can be investigated [34].

4 Outline of Results for the
PAC Model

A number of fairly sharp results have been found for the
notion of proper PAC learnability. The following sum-
marizes some of these results. For precise definitions of
the concept classes involved, the reader is referred to
the literature cited. The negative results are based on

1102 INVITED TALKS m-i3 PANELS

the complexity theoretic assumption that RF # NP “not”), the general class of multilayer perceptrons with
[35]. a multiple (but fixed) number of hidden layers, and the

1. Conjunctive concepts are properly PAC learnable
class of deterministic finite automata [27]. These results

[42], but the class of concepts in the form of the dis-
assume certain widely used cryptographic postulates in

junction of two conjunctions is not properly PAC
place of the (weaker) postulate that RP # NP.

learnable [35], and neither is the class of existential
conjunctive concepts on structural instance spaces 5 Methods for Proving PAC
with two objects [18]. Learnability; Formalization of Bias

2. Linear threshold concepts (perceptrons) are prop-
erly PAC learnable on both Boolean and real-
valued instance spaces [ll], but the class of con-
cepts in the form of the conjunction of two linear
threshold concepts is not properly PAC learnable
[lo]. The same holds for disjunctions and linear
thresholds of linear thresholds (i.e. multilayer per-
ceptrons with two hidden units). In addition, if the
weights are restricted to 1 and 0 (but the thresh-
old is arbitrary), then linear threshold concepts
on Boolean instances spaces are not properly PAC
learnable [35].

3. The classes of I2-DNF, k-CNF, and k-decision lists
are properly PAC learnable for each fixed k: [41,37],
but it is unknown whether the classes of all DNF
functions, all CNF functions, or all decision trees
are properly PAC learnable.

Most of the difficulties in proper PAC learning are
due to the computational difficulty of finding a hy-
pothesis in the particular form specified by the tar-
get class. For example, while Boolean threshold func-
tions with O-l weights are not properly PAC learnable
on Hoolean instance spaces (unless RP = NIP), they
are PAC learnable by general Boolean threshold func-
tions. Here we have a concrete case where enlarging
the hypothesis space makes the computational problem
of finding a good hypothesis easier. The class of all
Boolean threshold functions is simply an easier space
to search than the class of Boolean threshold functions
with O-l weights. Similar extended hypothesis spaces
can be found for the two classes mentioned in (1.) above
that are not properly PAC learnable. Hence, it turns
out that these classes are PAC learnable [35,18]. How-
ever, it is not known if any of the classes of DNF func-
tions, CNF functions, decision trees, or multilayer per-
ceptrons with two hidden units are PAC learnable.

It is a much stronger result to show that a concept
class is not PAC learnable than it is to show that it
is not properly PAC learnable, since the former re-
sult implies that the class is not PAC learnable by any
reasonable hypothesis space. Nevertheless, such non-
learnability results have been obtained for several im-
portant concept classes, including the class of Boolean
formulae (Boolean expressions using “and” “or” and

All of the positive learnability results above are ob-
tained by

1. showing that there is an efficient algorithm that
finds a hypothesis in a particular hypothesis space
that is consistent with a given sample of any con-
cept in the target class and

2. that the sample
is polynomial.

complexity of any such algorithm

By consislenl we mean that the hypothesis agrees with
every example in the training sample. An algorithm
that always finds such a hypothesis (when one exists)
is called a consistent algorithm.

As the size of the hypothesis space increases, it may
become easier to find a consistent hypothesis, but it will
require more random training examples to insure that
this hypothesis is accurate with high probability. In the
limit, when any subset of the instance space is allowed
as a hypothesis, it becomes trivial to find a consistent
hypothesis, but a sample size proportional to the size of
the entire instance space will be required to insure that
it is accurate. Hence, there is a fundamental tradeoff
between the computational complexity and the sample
complexity of learning.

Restriction to particular hypothesis spaces of lim-
ited size is one form of tkzs that has been explored
to facilitate learning [32]. In addition to the cardinal-
ity of the hypothesis space, a parameter known as the
Vapnik-Chervonenkis (VC) dimension of the hypothe-
sis space has been shown to be useful in quantifying
the bias inherent in a restricted hypothesis space [19].
The VC dimension of a hypothesis space H, denoted
VCdim(H), is defined to be the maximum number d of
instances that can be labeled as positive and negative
examples in all 2d possible ways, such that each label-
ing is consistent with some hypothesis in H 114,431. Let
I-I = WrJn~1 be a hypothesis space and C = {C,},>l
be a target class, where C,, C_ H, for n 2 1. Then it can
be shown [23] that any consistent algorithm for learning
C by H will have sample complexity at most

PVCdim(H,))lnf + 1,: .
>

HAUSSLER 1103

This improves on earlier bounds given in [ll], but may for aspecific distribution on the instance space, e.g. the
still be a considerable overestimate. In terms of the car- uniform distribution on a Boolean space [8,39]. There
dinality of H,, denoted IHnl, it can be shown [43,33,12] are two potential problems with this. The first is finding
that the sample complexity is at most distributions that are both analyzable and indicative

5 lniH,l+l+ (>

of the distributions that arise in practice. The second
. is that the bounds obtained may be very sensitive to

the particular distribution analyzed, and not be very

For most hypothesis spaces on Boolean domains, the reliable if the actual distribution is slightly different.

second bound gives the better bound. However, linear A more refined, Bayesian extension of the PAC model

threshold functions are a notable exception, since the is explored in [13]. Using the Bayesian approach in-

VC dimension of this class is linear in n, while the log- volves assuming a prior distribution over possible tar-

arithm of its cardinality is quadratic in n [II]. Most get concepts as well as training instances. Given these

hypothesis spaces on real-valued attributes are infinite, distributions, the average error of the hypothesis as a

so only the first bound is applicable. functidn of training sample size, and even as a function
of the particular training sample, can be defined. Also,

6 Criticisms of the PAC Model
1 - 6 confidence intervals like those in the PAC model
can be defined as well. Experiments with this model

The two criticisms most often leveled at the PAC model on small learning problems are encouraging, but fur-
by AI researchers interested in empirical machine learn- ther work needs to be done on sensitivity analysis, and
ing are on simplifying the calculations so that larger problems

can be analysed. This work, and the other distribution
1. the worst-case emphasis in the model makes it un- specific learning work, provides an increasingly impor-

usable in practice [13,39] and tant counterpart to PAC theory.

2. the notions of target concepts and noise-free train-
ing data are too restrictive in practice [1,9].

We take these in turn.
There are two aspects of the worst case nature of the

PAC model that are at issue. One is the use of the worst
case model to measure the computational complexity of
the learning algorithm, the other is the definition of the
sample complexity as the worst case number of random
examples needed over all target concepts in the target
class and all distributions on the instance space. We
address only the latter issue.

As pointed out above, the worst case definition of
sample complexity means that even if we could calcu-
late the sample complexity of a given algorithm exactly,
we would still expect it to overestimate the typical error
of the hypothesis produced as a function of the training
set size on any particular target concept and particular
distribution on the instance space. This is compounded
by the fact that we usually cannot calculate the sam-
ple complexity of a given algorithm exactly even when
it is a relatively simple consistent algorithm. Instead
we are forced to fall back on the upper bounds on the
sample complexity that hold for any consistent algo-
rithm, given in the previous section, which themselves
may contain overblown constants.

The upshot of this is that the basic PAC theory is
not good for predicting learning curves. Some variants
of the PAC model come closer, however. One simple
variant is to make it distribution specific, i.e. define and
analyze the sample complexity of a learning algorithm

Another variant of the PAC model designed to ad-
dress these issues is the “probability of mistake” model
explored in 1211. This is a worst case model that was
designed specifically to help understand some of the
issues in incremental learning. Instead of looking at
sample complexity as defined above, the measure of
performance here is the probability that the learning
algorithm incorrectly guesses the label of the tth train-
ing example in a sequence of t random examples. Of
course, the algorithm is allowed to update its hypoth-
esis after each new training example is processed, so
as t grows, we expect the probability of a mistake on
example t to decrease. For a fixed target concept and
a fixed distribution on the instance space, it is easy to
see that the probability of a mistake on example t is the
same as the average error of the hypothesis produced
by the algorithm from t - 1 random training examples.
llence, the probability of mistake on example t is ex-
actly what is plotted on empirical learning curves that
plot error versus sample size and average several runs
of the learning algorithm for each sample size.

In [21], some comparisons are made between the
worst case probability of mistake on the tth example
(over all possible target concepts and distributions on
the training examples) and the probability of mistake
on the tth example when the target concept is selected
at random according to a prior distribution on the tar-
get class and the examples are drawn at random from a
certain fixed distribution (a Bayesian approach). The
former we will call the worst case probability of mistake
and the latter we will call the average case probability of

1104 hVITFiD TALKS AND PANELS

mistake. The results can be summarized as follows. Let
c = {GJn~l be a concept class and dn = VCdim(C,)
for all n 2 1.

First, for any concept class C and any consistent
algorithm for C using hypothesis space C, the worst
case probability of mistake on example t is at most
O((dJt)ln(t/d,,)), where t > d,,. Furthermore, there
are particular consistent algorithms and concept classes
where the worst case probability of mistake on example
t is at least R((d,,/t)ln(t/d,)), hence this is the best
that can be said in general of arbitrary consistent algo-
rithms.

Second, for any concept class C there exists a learn-
ing algorithm for C (not necessarily consistent or com-
putationally efficient) with worst case probability of
mistake on example t at most d,/(t - 1). (An extra
factor of 2 appears in the bound in [21]. This can be re-
moved.) In addition, any learning algorithm for C must
have worst case probability of mistake on example t at
least Q(d,/t). Furthermore, there are particular con-
cept classes C, particular prior probability distributions
on the concepts in these classes, and particular distribu-
tions on the instance spaces of these classes, such that
the average case probability of mistake on example t is
at least sZ(d,/t) for any learning algorithm.

These results show two interesting things. First, cer-
tain learning algorithms perform better than arbitrary
consistent learning algorithms in the worst case and
average case, therefore, even in this restricted setting
there is definitely more to learning than just finding
any consistent hypothesis in an appropriately biased
hypothesis space. Second, the worst case is not always
much worse than the average case. Some recent exper-
iments in learning perceptrons and multilayer percep-
trons have shown that in many cases d,/t is a rather
good predictor of actual (i.e. average case) learning
curves for backpropagation on synthetic random data
[7,40]. lfowever, it is still often an overestimate on
natural data [38], and in other domains such as Ikarn-
ing conjunctive concepts on a uniform distribution [39].
Here the distribution (and algorithm) specific aspects
of the learning situation must also be taken into ac-
count. Thus, in general we concur that extensions of
the PAC model are required to explain learning curves
that occur in practice. However, no amount of experi-
mentation or distribution specific theory can replace the
security provided by a distribution independent bound.

The second criticism of the PAC model is that the
assumptions of well-defined target concepts and noise-
free training data are unrealistic in practice. This is cer-
tainly true. However, it should be pointed out that the
computational hardness results for learning described
above, having been established for the simple noise-free
case, must also hold for the more general case. The PAC

model has the advantage of allowing us to state these
negative results simply and in their strongest form.
Nevertheless, the positive learnability results have to
be strengthened before they can be applicable in prac-
tice, and some extensions of the PAC model are needed
for this purpose. Many have been proposed (see e.g.
h241).

Since the definitions of target concepts, random ex-
amples and hypothesis error in the PAC model are just

simplified versions of standard definitions from statisti-
cal pattern recognition and decision theory, one reason-
able thing to do is to go back to these well-established
fields and use the more general definitions that they
have developed. First, instead of using the probabil-
ity of misclassification as the only measure of error, a
general loss /unction can be defined that for every pair
consisting of a guessed value and an actual value of the
classification, gives a non-negative real number indicat-
ing a “cost” charged for that particular guess given that
particular actual value. Then the error of a hypothesis
can be replaced by the average loss of the hypothesis on
a random example. If the loss is 1 if the guess is wrong
and 0 if it is right (discrete loss), we get the PAC no-
tion of error as a special case. However, using a more
general loss function we can also choose to make false
positives more expensive than false negatives or vice-
versa, which can be useful. The use of a loss function
also allows us to handle cases where there are more than
two possible values of the classification. This includes
the problem of learning real-valued functions, where we
might choose to use (guess--actd(or (guess--actual)2
as loss functions.

Second, instead of assuming that the examples are
generated by selecting a target concept and then gen-
erating random instances with labels agreeing with this
target concept, we might assume that for each random
instance, there is also some randomness in its label.
Thus, each instance will have a particular probability
of being drawn and, given that instance, each possi-
ble classification value will have a particular probabil-
ity of occurring. This whole random process can be
described as making independent random draws from
a single joint probability distribution on the set of all
possible labeled instances. Target concepts with at-
tribute noise, classification noise, or both kinds of noise
can be modeled in this way. The target concept, the
noise, and the distribution on the instance space are
all bundled into one joint probability measure on la-
beled examples. The goal of learning is then to find
a hypothesis that minimizes the average loss when the
examples are drawn at random according to this joint
distribution.

The PAC model, disregarding computational com-
plexity considerations, can be viewed as a special case

HAUSSLER 1105

of this set-up using the discrete loss function, but with
the added twist that learning performance is measured
with respect to the worst case over all joint distribu-
tions in which the entire probability measure is concen-
trated on a set of examples that are consistent with a
single target concept of a particular type. Hence, in
the PAC case it is possible to get arbitrarily close to
zero loss by finding closer and closer approximations to
this underlying target concept. This is not possible in
the general case, but one can still ask how close the hy-
pothesis produced by the learning algorithm comes to
the performance of the best possible hypothesis in the
hypothesis space. For an unbiased hypothesis space,
the latter is known as Bayes optimal classifier [15].

Some recent PAC research has used this more general
framework. By using the quadratic loss function men-
tioned above in place of the discrete loss, Kearns and
Shapire investigate the problem of efficiently learning
a real-valued regression function that gives the proba-
bility of a “+” classification for each instance [26]. In
[17] it is shown how the VC dimension and related tools,
originally developed by Vapnik, Chervonenkis, and oth-
ers for this type of analysis, can be applied to the study
of learning in neural networks. Here no restrictions
whatsoever are placed on the joint probability distri-
bution governing the generation of examples, i.e. the
notion of a target concept or target class is eliminated
entirely.

7 Other Theoretical Learning Models

A number of other theoretical approaches to machine
learning are flourishing in recent computational learn-
ing theory work. One of these is the total mistake bound
model [29]. Here an arbitrary sequence of examples of
an unknown target concept is fed to the learning al-
gorithm, and after seeing each instance the algorithm
must predict the label of that instance. This is an in-
cremental learning model like the probability of mistake
model described above, however here it is not assumed
that the instances are drawn at random, and the mea-
sure of learning performance is the total number of mis-
takes in prediction in the worst case over all sequences
of training examples (arbitrarily long) of all target con-
cepts in the target class. We will call this latter quan-
tity the (worst case) mistake bound of the learning al-
gorithm. Of interest is the case when there exists a
polynomial time learning algorithm for a concept class
C = {&},,>I with a worst case mistake bound for tar-
get concepts in Cn that is polynomial in n. As in the
PAC model, mistake bounds can also be allowed to de-
pend on the syntactic complexity of the target concept.

The perceptron algorithm for learning linear thresh-
old functions in the Boolean domain is a good exam-

ple of a learning algorithm with a worst case mistake
bound. This bound comes directly from the bound on
the number of updates given in the perceptron con-
vergence theorem (see e.g. [15]). The worst case mis-
take bound of the perceptron algorithm is polynomial
(and at least linear) in the number n of Boolean at-
tributes when the target concepts are conjunctions, dis-
junctions, or any concept expressible with O-l weights
and an arbitrary threshold [Ifi]. A variant of the per-
ceptron learning algorithm with multiplicative instead
of additive weight updates was developed that has a sig-
nificantly improved mistake bound for target concepts
with small syntactic complexity [29]. The performance
of this algorithm has also been extensively analysed in
the case when some of the examples may be mislabeled
[no].

It can be shown that if there is a polynomial time
learning algorithm for a target class C with a polyno-
mial worst case mistake bound, then C is PAC learn-
able. General methods for converting a learning al-
gorithm with a good worst case mistake bound into a
I’AC learning algorithm with a low sample complexity
are given in [28]. IIence, the total mistake bound model
is actually not unrelated to the PAC model.

Another fascinating transformation of learning algo-
rithms is given by the weighted mujorily method [31].
This is a method of combining several incremental
learning algorithms into a single incremental learning
algorithm that is more powerful and more robust than
any of the component algorithms. The idea is simple.
All the component learning algorithms are run in paral-
lel on the same sequence of training examples. For each
example, each algorithm makes a prediction and these
predictions are combined by a weighted voting scheme
to determine the overall prediction of the “master” al-
gorithm. After receiving feedback on its prediction, the
master algorithm adjusts the voting weights for each
of the component algorithms, increasing the weights of
those that made the correct prediction, and decreasing
the weights of those that guessed wrong, in each case
by a multiplicative factor. It can be shown that this
rnethod of combining learning algorithms produces a
master algorithm with a worst case mistake bound that
approaches the best worst case mistake bound of any of
the component learning algorithms, and that the result-
ing algorithm is very robust with regard to mislabeled
examples [31]. The weighted majority method can also
be used in conjunction with the conversion mentioned
above to design better PAC learning algorithms.

Both the PAC and total mistake bound models can
be extended significantly by allowing learning alga
rithms to perform experiments or make queries to a
teacher during learning [3]. The simplest type of query
is a membership query, in which the learning algorithm

1106 INVITEDTALKSANDPANEL~

proposes an instance in the instance space and then is [3] D. Angluin. Queries and concept learning. Ma-
told whether or not this instance is a member of the tar- chine Learning, 2:319-342, 1988.
get concept. The ability to make membership queries
can greatly enhance the ability of an algorithm to ef- [4] D. Angluin, M. Frazier, and L. Pitt. Learning con-

ficiently learn the target concept in both the mistake junctions of horn clauses. 1990. manuscript.

bound and PAC models. It has been shown that there
are polynomial time algorithms that make polynomially
many membership queries and have polynomial worst
case mistake bounds for learning

1. monotone DNF concepts (Disjunctive Normal
Form with no negated variables) [3],

2. /i-formulae (Boolean formulae in which each vari-
able appears at most once) 151,

3. deterministic finite automata [2], and

[5] D. Angluin, L. Hellerstein, and M. Karpinski.
Learning read-once formulas with queries. JACM,
1990. to appear.

[S] D. Angluin and P. Laird. Learning from noisy ex-
amples. Machine Learning, 2(4):343-370, 1988.

[7] E. Baum. When are k-nearest neighbor and

[S] G. M. Benedek and A. Itai. Learnability by fixed

back propogation accurate for feasible sized sets
of examples.

distributions. In Proc. 1988 Workshop on Comp.

In Snowbird conference on Neu-

Learning Theory, pages 80-90, Morgan Kaufmann,

ral Networks for Computing, 1990. unpublished
manuscript.

San Mateo, CA, 1988.

bership queries and has a polynomial worst case mis-

4. Horn sentences (propositional PROLOG pro-

take bound into a PAC learning algorithm, as long as

kF-9 PI-

the PAC algorithm is also allowed to make member-
ship queries.

In addition, there is a general method for convert-

Hence, all of the concept classes listed
above are PAC learnable when membership queries are
allowed. This contrasts with the evidence from crypto-

ing an efficient learning algorithm that makes mem-

graphic assumptions that classes (2) and (3) above are
not PAC learnable from random examples alone [27].

[9] F. Bergadano and L. Saitta. On the error prob-
abilty of boolean concept descriptions. In Pro-
ceedings of the 1989 European Working Session on
Learning, pages 25-35, 1989.

[lo] A. Blum and R. L. Rivest. Training a three-neuron
neural net is NP-Complete. In Proceedings of the
1988 Workshop on Computational Learning The-
ory, pages 9-18, published by Morgan Kaufmann,
San Mateo, CA, 1988. 8 Conclusion

In this brief survey we were able to cover only a small
fraction of the results that have been obtained recently
in computational learning theory. For a glimpse at some
of these further results we refer the reader to [22,36].
However, we hope that we have at least convinced the
reader that the insights provided by this line of inves-
tigation, such as those about the difficulty of searching
hypothesis spaces, the notion of bias and its effect on re-
quired training size, the effectiveness of majority voting
methods, and the usefulness of actively making queries
during learning, have made this effort worthwhile.

[ll] A. Blumer, A. Ehrenfeucht, D. Haussler, and
M. K. Warmuth. Learnability and the Vapnik-
Chervonenkis dimension. JA CM, 36(4):929-965,
1989.

[12] A. Blumer, A. Ehrenfeucht, D. Haussler, and
M. K. Warmuth. Occam’s razor. Information Pro-
cessing Leiters, 24:377-380, 1987.

[13] W. Buntine. A Theory of Learning Classification
Rules. PhD thesis, University of Technology, Syd-
ney, 1990. Forthcoming.

References
[14] T. M. Cover. Geometrical and statistical prop-

erties of systems of linear inequalities with appli-

[l] J. Amsterdam. The Valiant Learning Model: Ez-
tensions and AssessmenZ. Master’s thesis, MIT

cations in pattern recognition. IEEE Trans. on
Electronic Computers, EC-14:326-334, 1965.

Department of Electrical Engineering and Com- [15] R. 0. Duda and P. E. Hart. Pattern Classificaiion
puter Science, Jan. 1988. and Scene Analysis. Wiley, 1973.

[2] D. Angluin. Learning regular sets from queries and [16] S. E. Hampson and D. J. Volper. Linear function
counterexamples. Information and Compuiation, neurons: structure and training. Biol. Cybern.,
7587-106, Nov. 1987. 53:203-217, 1986.

HAUSSLER 1107

[17] D. Haussler. Generalizing the PAC model for neu- [30] N. Littlestone. Mistake Bounds and Logarithmic
ral net and other learning applications. Injorma- Linear-threshold Learning Algorithms. PhD thesis,
tion and Computation, 1990. to appear. University of Calif., Santa Cruz, 1989.

[18] D. Haussler. Learning conjunctive concepts in [31] N. Littlestone and M. K. Warmuth. The weighted
structural domains. Machine Learning, 4:7-40, majority algorithm. Iu 30th Annual IEEE Sym-
1989. posium on Foundations of Computer Science,

[19] D. Haussler. Quantifying inductive bias: AI learn- - -
pages 256-26 1, 1989.

ing algorithms and Valiant’s learning framework. [32] T. Mitchell. The need for biases in learning gener-
Artificial Intelligence, 36:177-221, 1988. alizations. Technical Report CBM-TR-117, Rut-

[20] D. Haussler, M. Kearns, N. Littlestone, and
M. K. Warmuth. Equivalence of models for poly-
nomial learnability. Information and Computa-
tion, 1990. to appear.

[21] D. Haussler, N. Littlcstone, and M. War-
muth. Predicting 0,1-functions on randomly
drawn points. In Proceedings of the 29th Annual
Symposium on the Foundations of Computer Sci-
ence, pages 100-109, IEEE, 1988.

[22] D. Haussler and L. Pitt, editors. Proceedings of the
1988 Workshop on Computational Learning The-
ory. Morgan Kaufmann, San Mateo, CA, 1988.

[23] M. A. John Sh awe-Taylor and N. Biggs. Dounding
Sample Size with the Vapnik-Chervonenkis Dimen-
sion. Technical Report CSD-‘I’R-618, University of
London, Surrey, England, 1989.

[24] M. Kearns and M. Li. Learning in the presence
of malicious errors. In 20th ACM Symposium on
Theory of Computing, pages 267-279, Chicago,
1988.

[25] M. Kearns, M. Li, L. Pitt, and L. Valiant. On
the learnability of boolean formulae. In 19th ACM
Symposium on Theory of Computing, pages 285-
295, New York, 1987.

1261 M. Kearns and R. Schapire. Efficient distribution-
free learning of probabilistic concepts. 1990.
manuscript.

[27] M. Kearns and L. Valiant. Cryptographic limita
tions on learning boolean formulae and finite au-
tomata. In 2lst ACM Symposium on Theory of
Computing, pages 433-444, Seattle, WA, 1989.

gers University, New Brunswick, NJ, 1980.

[33] B. K. N t a ara’an. On learning sets and functions. J
Machine Learning, 4(l), 1989.

[34] L. Pitt. Inductive Inference, DFAs, and Compu-
tational Complexity. Technical Report UIUCDCS-
R-89-1530, U. Illinois at Urbana-Champaign, 1989.

[35] L. Pitt and L. Valiant. Computational limitations
on learning from examples. J. ACM, 35(4):965-
984, 1988.

[36] R. Rivest, D. Haussler, and M. Warmuth, editors.
Proceedirzgs of the 1989 Workshop on Computa-
tional Learning Theory. Morgan Kaufmann, San
Mateo, CA, 1989.

[37] R. L. Rivest. Learning decision lists. Machine
Learning, 2:229-246, 1987.

[38] D. Rumelhart. 1990. personal communication.

[39] W. Sarrett and M. Pazzani. Average case analysis
of empirical and explanation-bused learning algo-
rithms. Technical Report 89-35, UC Irvine, 1989.

[40] 6. Tesauro and D. Cohn. Experimental tests of
statistical learning theories. In Snowbird confer-
ence 07b Neural Networks for Computing, 1990. un-
published manuscript.

[41] L. G. Valiant. L earning disjunctions of conjunc-
tions. In hoc. 9th IJCAI, pages 560-6, Los Ange-
les, August 1985.

[42] L. G. Valiant. A theory of the learnable. Comm.
ACM, 27(11):1134-42, 1984.

[28] N. Littlestone. From on-line to batch learning.
In Proceedings of the 2nd Workshop on Computa-
tional Learning Theory, pages 269-284, published
by Morgan Kaufmann, 1989.

[43] V. N. Vapnik. Estimation of Dependences Dased
on Empirical Data. Springer-Verlag, New York,
1982.

[29] N. Littlestone. Learning quickly when irrelevant
attributes abound: a new linear-threshold algo-
rithm. Machine Learning, 2:285-318, 1988.

1108 hVITED TALKS AND PANELS

