
Truth Maintenance

David McAllester*
Massachusetts Institute of Technology

Artificial Intelligence Laboratory
545 Technology Square

Cambridge, Massachusetts 02139, USA

Abstract
General purpose truth maintenance systems have re-
ceived considerable attention in the past few years. This
paper discusses the functionality of truth maintenance
systems and compares various existing algorithms. Ap-
plications and directions for future research are also dis-
cussed.

Introduction
In 1978 Jon Doyle wrote a masters thesis at the MIT AI
Laboratory entitled “Truth Maintenance Systems for
Problem Solving” [Doyle, 19791. In this thesis Doyle
described an independent module called a truth main-
tenance system, or TMS, which maintained beliefs for
general problem solving systems. In the twelve years
since the appearance of Doyle’s TMS a large body of
literature has accumulated on truth maintenance. The
seminal idea appears not to have been any particular
technical mechanism but rather the general concept of
an independent module for truth (or belief) mainte-
nance.

All truth maintenance systems manipulate propo-
sition symbols and relationships between proposition
symbols. I will use the term “Boolean constraint?
to mean any Boolean formula built from proposition
symbols and standard Boolean connectives such as --+
(implication), A (conjunction), and 1 (negation). A
monotonic TMS manipulates proposition symbols and
Boolean constraints. A non-monotonic TMS also al-
lows for “heuristic” or “non-monotonic” relationships
between proposition symbols such as “whenever I? is
true $ is likely” or “if P is true then, unless there is
evidence to the contrary, assume Q”. While the seman-
tics of monotonic truth maintenance systems are quite
clear, the semantics of non-monotonic systems has been
a focus of considerable research over the past decade

*This work was supported in part by National Science
Foundation contract 1R.L8819624 and in part by the Ad-
vanced Research Projects Agency of the Department of De-
fense under Office of Naval Research contract NOOOlP86-k-
0124.

and has lead to the development of non-monotonic log-
its.

Non-monotonic logic is closely related to belief func-
tions, certainty factors, and defaults in type hierarchies.
A good introduction to the issues surrounding belief
and certainty can be found in [Pearl, 19881. A dis-
cussion of defaults in type hierarchies can be found in
[Touretzky, 19861. Some approaches to the theory of
non-monotonic logic can be found in [McCarthy, 19861,
[Konolige, 19871, [Gelfond and Lifschitz, 19881, and
[Gelfond, 19891.

Having briefly mentioned non-monotonic logic, the
remainder of this paper is dedicated exclusively to
monotonic truth maintenance systems. There are sev-
eral reasons for this. First, most of the development in
truth maintenance algorithms, and de Kleer’s ATMS al-
gorithm in particular [de Kleer, 1986a], concern mono
tonic systems. Second, most practical applications of
truth maintenance systems involve monotonic systems
(e.g., qualitative simulation, fault diagnosis, and ap-
plications to search). Furthermore, monotonic truth
maintenance systems provide a solid foundation upon
which to build other kinds of systems - algorithms
for monotonic systems can usually be used in non-
monotonic systems but the converse does not hold.

This survey begins with a specification of the func-
tionality of monotonic truth maintenance systems. This
specification is presented as a set of functions that can
be used as a generic interface to most existing systems.
Each interface function has a clean non-computational
specification. After presenting the interface, I present
various implementations. This is followed by a discus-
sion of applications of truth maintenance systems in
solving search problems. Finally, there is a brief dis-
cussion of current research in the construction of more
powerful algorithms .

The Generic TMS Interface
A monotonic TMS is a general facility for manipulating
Boolean constraints on proposition symbols. For exam-
ple, in automobile diagnosis we might want to enforce
the constraint that if the spark plug is sparking then

MCALLESTER 1109

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

the rotor is turning. This constraint has the form P
3 Q where P and Q are proposition symbols that an
outside observer can interpret as representations of the
statements “the spark plug is sparking” and “the ro-
tor is turning” respectively. Given a set of propositions
about automobile engines, a set of constraints on those
propositions (such as the above implication), and a set
of observations about a particular automobile, a TMS
can be used to ask questions about the consequences of
the observations.

I will describe the functionality of a (monotonic)
TMS by specifying four generic interface functions. A
TMS stores a set of Boolean constraints (Boolean for-
mulas). Intuitively, one is only interested in truth as-
signments that satisfy this stored set of constraints. Be-
cause these constraints do not appear explicitly as ar-
guments in most of the interface functions, I will call
them “internal constraints”. The first interface func-
tion, add-constraint, adds a constraint to the internal
constraint set. Once a constraint has been added it can
never be removed. The remaining interface functions
manipulate literals - a literal is either a proposition
symbol or the negation of a proposition symbol. The
second interface function, follows-from?, takes two ar-
guments, a literal 0 and a set of literals El called a
premise set. An application (follows-Corn? @ E) can
return yes, uo, or unknown. If (follows-from? 0 C)
returns yes then the TMS guarantees that iD follows
from the premise set C and the internal constraints. If
(follows-ficom? 0 C) returns no then the TMS guar-
antees that @ does not follow, i.e., there exists an inter-
pretation satisfying both the internal constraints and C
in which Qr is false. If the TMS is unable to determine
if 0 follows, then (follows-from? @ C) returns un-
known. In an automobile diagnosis system the internal
constraints consist of facts true of all automobiles, e.g.,
“if the spark plug is sparking then the rotor is turning”,
and premise sets consist of observations about particu-
lar automobiles.

The third and fourth interface functions compute jue
tifications. If the TMS can determine that iB follows
from the internal constraints and a premise set C, then
one can ask the TMS to justify this fact, i.e., to pro-
duce a “proof” of 0. There are two interface func-
tions used to generate such proofs: justifying-liter&
and justifjhg-constraints. Both of these functions
take two arguments - a literal and a premise set from
which that literal can be derived. If QE, is derivable
from C and the internal constraints, then (justifyiug-
literals 0 EC) returns a set of literals and (justifyiug-
constraints 0 C) returns a subset of the internal con-
straints satisfying the following two conditions.
o Qi follows from the literals in (justifying-literah 0

Xc) and the constraints in (justifjhg-constraints
0 C).

8 (follows-from ? 9 I=) returns yes for each literal \E
in (justifying-literals 0 C).

Suppose the internal constraint set includes the con-
straints P -) Q, (P A + s.
Most truth maintenance systems are able to derive S
from these constraints and the premise set {P, W}.
Most truth maintenance systems also provide the fol-
lowing justifications relative to these constraints and
premises.

derived justifying justi@hg
literal literals constraints

:
jl$bpJ -+ 2)

Q &ii
For any given set of internal constraints, premise set,

and formula S that can be derived from the given con-
straints and premises, the justification functions can be
used to generate a “justification tree” for S. The root
of the tree is the formula S and at each node of the tree
the function justifying-literals can be used to get chil-
dren nodes until one reaches members of the premise
set. The justifications are required to be non-circular,
i.e., if Q appears in the justification tree rooted at P,
then P must not appear in the justification tree rooted
at Q.

Note that all of the justifications in the above table
are “local” in the sense that, for each justification, there
is only a single justifying constraint. In general, we
do not require that justifications be local in this sense.
However, virtually all TMS implementations are local
in that every derived literal can be justified in terms of
other literal8 and a single internal constraint.

Contradiction Handling
The above specification of a generic TMS interface al-
lows for contradictory information to be given to the
TMS. Most truth maintenance systems have some way
of informing the user that a given premise set is in-
consistent with the internal constraints. This can be
done by adding a special proposition symbol called con-
tradiction. If the TMS is able to determine that a
given premise set C contradicts the internal constraints,
then (bbllows-from? contradiction C) returns yes.
Furthermore, if (follows-firom? contradiction C)
returns yes then (justifying-literal8 contradiction
C) and (justifjliug-constraints contradiction C) re-
turn a set of literal8 and a set of constraints respectively
that underlie the contradiction. The justification func-
tions can be used to construct a justification tree whose
leaves are literals in C. This allows the contradiction
to be “blamed” on a subset of X3.

BCP plementations
Suppose that we wish to compute a value for an appli-
cation (follows-from ? @ C). This can be done with a
conceptually simple procedure known as Boolean con-
straint propagation (BCP). Consider a network whose

1110 INVITEZDTALKSANDPANELS

nodes are the proposition symbols that appear either
in the premise set C or in the internal constraint set.
Each Boolean constraint can be viewed as a connec-
tion, or “link” between nodes in the network. Each
node (proposition symbol) can be labeled with one of
three possible labels: true , faIse, or unknown. Ini-
tially all nodes are labeled unknown. To compute the
consequences of a particular premise set C one assigns
the label true or f&e to each proposition symbol in
the set of literals C depending on whether that symbol
appears positively or negatively in C. New labels are
then computed based on local propagation - whenever
a new truth label follows from existing labels and some
single internal constraint, that new label is added to the
network and propagation continues. If a set of derived
labels ever violates one of the internal constraints, then
the special proposition contradiction is labeled true.
During the propagation process each newly derived 1s
be1 can be associated with a “justification”, i.e., a data
structure that records the labels and constraint used in
the derivation. If every constraint is a clause, i.e., a dis-
junction of literals, then this propagation process can be
run to completion in time linear in the total size of the
set of constraints [McAllester, 19801. To answer a query
of the form (follows-from ? 0 C) one simply runs the
Boolean constraint propagation process starting with
the labels in C and determines if a label is derived for
the proposition symbol in the literal 0 - if a label has
been derived for the proposition symbol, and that la-
bel has the same sign as the sign of the literal a, then
follows-from? returns yes, otherwise follows-from?
returns unknown.

Boolean constraint propagation is not logically com-
plete. For example, consider the constraints P + Q
and -P + Q. The literal Q follows from these con-
straints but does not follow from either constraint in-
dividually. BCP will not deduce Q even though Q fol-
lows from the constraints. The incompleteness of BCP
represents a compromise between functionality and ef-
ficiency. Boolean constraint propagation runs in linear
time in the total size of the constraint set (for clausal
constraints). Boolean entailment, however, is coNP-
complete and no efficient algorithm can be expected.

Incremental Context Switching. Often consecutive
queries to a truth maintenance system have very sim-
ilar premise sets. For example, a user might first ask
for (follows-from 1 i[, C) and then ask for (follows-
from? 0 C’) h w ere C and C’ are large premise sets
that differ on only a few literals. The propagation
used to answer the first query can be used to make
answering the second query more efficient. This can
be done with “incremental premise retraction” and “in-
cremental premise addition” [Doyle, 19791, [McAllester,
19801. Incremental addition and retraction algorithms
allow the set of proposition labels to be incrementally
switched from the labeling generated by C to the label-
ing generated by 2.

is
An alternative to unrestricted incremental retraction
to store the current premise set on a premise stack.

When a new premise is-pushed on to the-premise stack
incremental Boolean constraint propagation is used to
add new truth labels. When a premise is popped, a
simple “undo-list” can be used to remove all labels
that were added when that premise was pushed. Now
consider two consecutive queries of the form (follows-
from? 0 C) and (follows-from? 4[, C’). The labeling
for the first query is incrementally computed by pushing
the elements of C onto the premise stack. To compute
the labeling for 2 one first pops back to a premise set
that is a subset of C’ and then pushes those premises
in C’ that are not already present.

The premise-stack implementation and the unre-
stricted incremental implementation provide the same
generic interface functionality - at the level of the
generic interface one can ask about any premise set
at any time. Whether the premise-stack implementa
tion is more efficient than the unrestricted incremen-
tal retraction implementation depends on the statistics
of consecutive queries. For individual retractions the
premise stack implementation is considerably more effi-
cient. However, the premise stack implementation may
require more retractions and assertions to make a tran-
sition between two labeling states. In any application
where a set of truth assignments is being systematically
explored, such as most algorithms for solving constraint
satisfaction problems, the premise stack implementit
tion is more efficient. The premise stack implemen-
tation is also more efficient if most premises are static
(are always included) and only a few premises are being
changed - one can arrange for the changing premises
to migrate to the top of the stack so that only small
retractions and additions are done when switching be-
tween contexts.

ATMS-like Implementations
I will initially describe de Kleer’s ATMS [de Kleer,
1986a] as an alternative implementation of the generic
TMS interface and compare the ATMS implementation
with the BCP implementation. For many applications
the only difference between the ATMS and BCP im-
plementations is there relative efficiency as implemen-
tations of the generic interface. However, the ATMS
is more than just an alternative implementation of the
same interface - there are certain additional interface
functions that can be easily implemented on top of the
ATMS algorithms but not on top of BCP. The addi-
tional functionality of the ATMS is discussed below.

Universal Propagation. Like the BCP implemen-
tation, the ATMS implementation of the generic in-
terface operates by propagating labels on a network
whose nodes are propositions connected by Boolean
constraints.’ However, in the ATMS implementation

‘The ATMS described here is a recent version [de Kleer,

MCALLESTER 1111

the propagation process is independent of any particu-
lar premise set - a single “universal propagation pr*
cess” precomputes all answers to all possible queries [de
Kleer, 19$6a].2 To make the universal propagation pro-
cess more efficient, the user can declare an *priori set
of “possible premises”. Each possible premise is a lit-
eral and every premise set in every query to the ATMS
must be a subset of the set of possible premises.

In the ATMS algorithm, a label is a set of premise
sets. Each proposition in the network has both a true
and a false label. If proposition P has a true label con-
sisting of premise sets Cl, . . . C,, then for each ES we
must have that P logically follows from Ci and the in-
ternal constraints. An analogous statement holds for
the premise sets in the false label of P. The premise
sets can be propagated through the constraints. For
example, if Cl is a premise set that is a member of the
true label of P, E:a is a premise set in the true label of
Q, and (P A Q) + R is an internal constraint, then the
premise set Cl U I=2 can be added to the true label for
R. The propagation process is initialized by inserting
a singleton premise set into the label for each possible
premise. For example, if P is a possible premise, then
the singleton premise set {P} is inserted into the true
label for P. After the universal propagation has been
performed one can answer a query of the form (follows-
from? P C) by checking to see if there exists a premise
set on the true label of P that is a subset of C. An anal-
ogous test can be made for queries involving negative
literals.

The total number of propagations, and the total num-
ber of premise sets generated, can be reduced by im-
posing two “filters” on the premise sets in labels. First,
the premise sets must be %onsister#. Most obviously,
no premise set can contain both a proposition and its
negation. In addition, however, one can use the special
proposition contradiction to make a stronger consis-
tency filter. No premise set in any label, other than
the true label for contradiction, can contain as a sub-
set any premise set that is a member of the label for
contradiction. The second filter involves~ the notion
of subsumption. If I31 and C2 are two premise sets in
the same label, and Cl is a proper subset of C2, then
the label C2 can be removed. The ATMS runs the sin-
gle universal propagation process to completion using
these two filters to prune the premise sets in labels.

Universal Propagation and BCP. The notation
I’,C I- ncp @ will be used to indicate that 0 can
be derived from internal constraint set I’ and premise

set C using Boolean constraint propagation. In the fol-
lowing discussion the symbol I’ will be used freely to
denote a fixed but arbitrary internal constraint set. A
support for a given proposition symbol P is a premise
set C satisfying the following three conditions:

or,c FBCPP
0 r, C YBCp contradiction
o There is no proper subset C’ of C such that

w bp p.
After the universal ATMS propagation procedure has

run to completion, the premise sets in the true label of
P are precisely the supports for P. This implies that
the ATMS implements exactly the same behavior as
the BCP-TMS.3

ATMS Complexity. The ATMS and BCP implemen-
tations generate exactly the same behavior at the level
of the generic interface. Furthermore, the BCP imple-
mentation is guaranteed to require at most linear space
and linear time per query. On the other hand, because
a given label can contain an exponential number of dif-
ferent minimal premise sets, the ATMS implement it
tion can require both exponential time and exponential
space to answer a single query. This worst case behav-
ior can be easily realized even in the case where the
Boolean constraints are Horn clauses without implies
tion cycles.

Why would anyone propose an algorithm that is ex-
ponential in both time and space as an improvement
on an algorithm that is linear in both? The answer
seems to be that the exponential ATMS algorithm
has better performance in some applications. In cases
where the label sets remain small query answering using
pre-computed label sets is more efficient than context-
switching in the BCP implementation. As problem size
grows, however, the exponential cost of the universal
ATMS propagation begins to dominate the potential
savings at query time. Another reason for preferring
the ATMS algorithm involves the additional fimction-
ality discussed in the next section.

Additional Functionality of the ATM%
The ATMS universal propagation algorithm computes
the minimal sets of assumptions necessary to derive a
given formula. This feature is useful in device diag-
nosis where one wants to find the minimal number of

P
ossible faults that explains a

f
iven observed behavior

de Kleer and Williams, 19871 de Kleer and Williams,
19891. In fault diagnosis, however, one is often inter-
ested in premise sets that contain only a single fault.

199Ob]. de Kl eer’s original ATMS only allowed Horn clause
constraints and only allowed positive literals iu queries. Ex-
cept for these restrictions, the original ATMS is identical to
the system described here.

‘A similar universal propagation process for truth main-
tenance systems was developed independently by Drew Mc-
Dermott [McDermott, 19831.

31t should be n oted that the ATMS described here is dif-
ferent from the clause management system described in [de
Kleer and Beiter, 19871. The clause management system,
or CMS, requires logical completeness. If constraints are re-
stricted to Horn clauses and queries are restricted to positive
literals, as in the original ATMS, BCP is logically complete
and the CMS and BCP specifications are equivalent.

1112 &VITFzD TALKS AND PANELS

Under the single-fault assumption the full generality of
the ATMS is not needed.

values =I,...=~, we introduce the proposition symbols
“X=x& . . . “X = z,,” and the constraints

“X = xp v “X = x239 v . . l v u⌧ = ⌧nn

Applications to Search
It has often been said that truth maintenance systems
are useful in controlling search [Doyle, 19791, [de Kleer,
19SSa]. Because “search” is a loosely defined term, this
claim is difllcult to evaluate in general. Rather than
attempt to evaluate the general claim, I will consider
a more restricted class of search problems known as
constraint satisfaction problems (CSPs).

A CSP consists of a set of variables, where each vari-
able is associated with a finite set of possible values,
plus a set of constraints. Each constraint consists of two
of the given variables plus an enumeration of “allowed”
pairs of values for those variables. An assignment of
values to all the variables of a CSP is said to satisfy
a given constraint if the pair of values assigned to the
variables of the constraint is one of the allowed pairs of
the constraint. A solution to a CSP is an assignment
of values to the variables of the CSP that satisfies all
of the constraints of the CSP. It is easy to show that
determining the existence of a solutions to CSPs is NP-
complete. This definition of a CSP can be generalized
to allow constraints of more than two variables without
changing the essentials of the analysis given below.

There is a large literature on algorithms for effi-
ciently finding solutions to constraint satisfaction prob-
lems. The best introduction to the general theoreti-
cal framework is still perhaps Knuth’s paper on meth-
ods of evaluating the running time of backtrack search
[Knuth, 19751. Knuth introduces the notion of a consis-
tency test to be applied at each node of the backtrack
search tree. Today there is a wide variety of possi-
ble consistency tests, the most effective of which are
based on some form of constraint propagation [Mack-
worth, 19771, [Pearl and Korf, 19871. In addition to
constraint-propagation based consistency tests, there
are a variety of heuristics for selecting which variable
to instantiate next and which value for that variable
to try first [Haralick and Elliot, 19801, [Freuder, 19851,
[Dechter and Pearl, 19881, [Zabih, 19901. Furthermore,
there is variety of mechanisms for “backjumping”, i.e.,
jumping back to earlier choice points because a “depen-
dency analysis” shows that intervening choices where
not involved in the cause of failure [Stallman and Suss-
man, 19771, [Gaschnig, 19791, [Bruynooghe and Pereira,
19841. Research on algorithms for solving CSPs contin-
ues to be active.

Translating CSPs into Boolean Clauses. It is pos-
sible to use a TMS as the foundation of a procedure for
solving arbitrary CSPs. Truth maintenance techniques
operate on Boolean constraints rather than CSPs as
defined above. To use a TMS in solving a CSP one
can translate the CSP into a set of Boolean constraints.
More specifically, for each variable X in C, with possible

and
Ai<j(l”X = Xin V l”X = Xjn)e

These constraints form a set of disjunctive clauses that
together are equivalent to the statement that exactly
one of the propositions “X = zi” is true. Now there
are two simple ways of translating the constraints of
the CSP into constraints on these proposition symbols.
The first translation I will cdl the negative translation.
Consider a constraint on variables X and Y. For each
pair <x, g> of possible values for X and Y respectively
that is not an allowed pair of the constraint, we add the
clause l”X = 2” V 1W = y”. If C is a CSP (as defined
above), I will let N(C) be the set of Boolean clauses
generated from the variables and constraints of C in
this way. Thesecond translation I will call the positive
translation. Again consider a constraint on variables X
and Y. For each possible value v of Y, let ~1,. . . 21:
be the set of all possible values of X such that <xi, y>
is an allowed pair of the constraint. For each possible
value g of Y we add the constraint

l”X = Xl” A . . . A YUX = qn --b 1”Y = f.

This implication is equivalent to a clause, i.e., a disjunc-
tion of literals. For any constraint satisfaction problem
C, I will let P(C) d enote the positive translation of
C into a set of disjunctive clauses. It is interesting to
note that the size of the translation N(C) is governed
by the number of incompatible pairs of values in the
constraints while the size of P(C) is governed by the
number of allowed pairs of values in the constraints.

Using a TMS to solve a CSP. Given a constraint
satisfaction problem C it is possible to give either the
Boolean constraint set N(C) or the constraint set P(C)
to a TMS. A simple backtrack program can then be
written to search the assignments of values to CSP vari-
ables where a partial assignment is encoded as a TMS
premise sets of the form “Xi = 2. sn . . . uX~ = 2) j”. A
filter can be imposed on the back&&k search by &king
the TMS, at each node in the search tree, if the spe-
cial node contradiction is derivable from the current
partial assignment. If the positive translation has been
used to convert the CSP to Boolean constraints (and
the TMS simulates BCP) then this filter is equivalent
to classical arc consistency.4 If the negative transla-
tion has been used (and the TMS simulates BCP) then
this filter is weaker, but more efficient than, classical

4The linear time of the BCP algorithm on clausal con-
straints implies that arc consistency can be achieved in time
proportional to the number of consistent pairs of values for
constrained pairs of variables. Thus BCP provides an alter-
native algorithm for achieving the arc-consistency complex-
ity bound given in [Mohr and Henderson, 19861.

MCALLESTER 1113

arc consistency. The filter that results from BCP ap-
plied to the negative translation might be called BCP
consistency.

In addition to providing powerful search filters, the
justification facility of a TMS provides a mechanism
for performing a certain form of backjumping known as
dependency directed backtracking [Stallman and Suss-
man, 19771. When a failure occurs in the search process
one can use the justification mechanisms to uncover the
subset of the current premise set that was used to derive
the special proposition contradiction. This allows a
new constraint to be installed called a “nogoodn which
states that at least one of these premises must be false.
This new derived constraint allows BCP to make more
inferences than were possible with the old constraints
and the consistency filter on the remaining search be-
comes stronger.

Dependency directed backtracking, and backjumping
in general, are particularly useful when, for some rea-
son, a poor choice has been made in selecting the or-
der of the variables to be instantiated in the backtrack
search process. To my knowledge, no one has estab-
lished the pragmatic value of backjumping in a search
that already does careful variable ordering and con-
straint propagation based consistency testing. Because
of the potential for generating an exponential number
of additional derived constraints, dependency directed
backtracking is a particularly expensive form of back-
jumping.

The ATMS universal propagation algorithm can also
be applied to the Boolean translation of a CSP [de
Kleer, 19891. In addition to clauses generated by the
translation, one can specify each assumption of the
form “X = xn as a possible premise. An additional
proposition called all-variables-assigned can be in-
troduced such that BCP can derive the proposition ail-
variables-assigned if and only if a proposition of the
form “X = xn has been derived for each variable X. Af-
ter running the ATMS universal propagation procedure
the set of all solutions to the CSP is contained in the
true label of the proposition all-variables-assigned.
Note that all variable assignments that violate the given
constraints are automatically removed by the consis-
tency filtration of premise sets in the universal ATMS
algorithm. In this way, the universal ATMS propags
tion procedure yields
[de Kleer, 19841.

“choices without backtracking”

The most efficient and natural justification structure
for the proposition all-variables-assigned will cause
the ATMS universal propagation procedure to simu-
late a backtrack search with a fixed order in which
the variables are considered. However, the backtrack
search will be done in space-intensive breadth-first man-
ner rather than a space-efficient depth-first manner. In
general, space-intensive breadth-first searches are con-
sidered to be less efficient (in both time and space)
than space-efficient depth-first searches [Pearl and Korf,

19871. To my knowledge, the ATMS has never been
shown to be more time efficient for enumerating solu-
tions to a CSP than classical backtracking approaches.

Truth maintenance systems may be useful as a gen-
eral method of solving CSPs because they provide a
general and efficient mechanism for constraint props
gation based consistency testing of partial assignments.
The other ways in which TMS technology might be ap-
plied to CSPs, i.e., dependency directed backtracking
and ATMS universal propagation, appear to be of lim-
ited value. The ATMS universal propagation proce-
dure is probably more appropriate for finding minimal
premise sets satisfying some condition.

General Problem Solving
Truth maintenance systems have often been viewed as
an integral part of “AI languages”, i.e., knowledge rep-
resentation and programming languages that are de-
signed to allow for the rapid development of expert
systems or general problem solvers [de Kleer, 1986c],
[de Kleer, 1986b]. A recent, and highly successful, in-
corporation of the constraint propagation aspects of
truth maintenance into a general purpose language is
Van Hentenryck’s version of Prolog called Chip (for
constraint handling in Prolog) [Van Hentenryck, 19891.
Van Hentenryck’s version of Prolog is only tenuously
related to the literature on truth maintenance systems.
However, it seems that languages that combine auto-
matic backtracking with automatic constraint propaga
tion will be a major competitor with TMS-based AI
languages in the future.

I will use the term ‘Van Hentenryck language” as
a general term for any programming language that
combines automatic backtracking with automatic con-
straint propagation. Rather than describe Van Hen-
tenryck’s version of Prolog, I will describe a Van Hen-
tenryck dialect of Lisp called Chil (for constraint han-
dling in Lisp). Actually, Chil is built on Scheme,
a dialect of Lisp that provides call-with-current-
continuation. Automatic backtracking can be incor-
porated into Scheme by adding two new primitives:
either and fail. The special form either takes two
arguments and non-deterministically returns the value
of one of them .’ The procedure fail causes the com-
putation to be restarted from the most recent non-
deterministic choice. Given Scheme’s implementation
of call-with-current-continuation, the “primitives”
either and til can be efficiently implemented in about
ten additional lines of code. Other standard Prolog
primitives, such as cut and bag-of are implemented
with similar ease.

The procedures either and fail provide automatic
backtracking and allow the concise expression of a large
variety of backtrack search programs. Automatic con-

‘either is a version of McCarthy’s amb [McCarthy,
19631. The word either reads more naturally.

1114 INVITED TALKS AND PANELS

straint propagation is added with three more proce-
dures: make-domain-object, add-constraint, and
force-value. The procedure make-domain-object
takes one argument which is a list of “possible val-
ues” and returns a data structure that represents a
CSP variable with the given set of possible values. The
procedure add-constraint takes three arguments: two
domain objects (objects returned by make-domaiu-
object) and an ordinary Scheme predicate of two argu-
ments. The procedure add-constraint installs a con-
straint stating that the simultaneous values of the two
domain objects must satisfy the given predicate. Fi-
nally, the procedure force-value takes a domain ob-
ject and non-deterministically assigns that domain ob-
ject one of its possible values. The procedure force-
value automatically invokes constraint propagation. If
constraint propagation does not result in a constraint
violation then force-value returns the selected value.
Otherwise backtracking occurs. Using these primitives,
a constraint propagation version of the n-queens prob-
lem can be expressed as follows.

(define (n-queens n)
(let ((queen-variables

(map (lambda (ignore)
(make-domain
(nurbers-between 1 n)))

(numbers-between 1 n))))
(do-from-to (i 1 (- n 1))
(do-from-to (j (+ i 1) n)
(add-constraint
(nth i queen-variables)
(nth j queen-variables)
(lambda (vi v2)
(and (not (= v2 ~1))

(not (- v2 (+ vi (- j i))))
(not (- v2 (- vi (- j i)))))))))

(rap force-value queen-variables)))

The above program uses numbers-between, do-
from-to, and nth which are not Scheme primitives,
but which are easily defined. Given the above proce-
dure, the expression (bag-of (n-queens 8)) evaluates
to a list of all 92 solutions of the &queens problem. Fur-
thermore, the search process specified by the above pro
cedure uses constraint propagation based consistency
testing at each node of the search tree. Van Hentenryck
has shown that the addition of automatic constraint
propagation to languages with automatic backtracking
can drastically improve the performance of a wide VJ+
riety of useful backtrack search programs.

Strengthening Constraint Propagation

Constraint propagation appears to be of central im-
portance in search-based problem solving. One way
of attempting to discover more powerful constraint
propagation techniques is to study the relationship be-
tween constraint propagation and inference. Constraint

propagation is a form of inference - values for unas-
signed variables are deduced from the values already
assigned. The relationship between inference and con-
straint propagation can be made explicit by character-
izing constraint propagation processes in terms of infer-
ence rules. Boolean constraint propagation can be de-
fined in terms of a certain (incomplete) set of inference
rules for Boolean logic [McAllester, 19891. Van Hen-
tenryck also defines the various constraint propagation
techniques used in Chip in terms of rules of inference.
In fact, virtually any form of constraint propagation
can be defined in terms of rules of inference.

Constraint propagation inference rules are unusual,
as rules of inference, in that it is possible to determine
in polynomial time whether a given statement can be
derivedfiomgivenpremises. In other words,constraint
propagation inference rules generate a polynomial time
decidable inference relation - such relations will be
called truciable. Although every constraint propagation
technique corresponds to a tractable inference relation,
there are many tractable inference relations that do
not correspond to any standard constraint propagation
technique. For example, the inference rules that de-
fine BCP can be combined with the standard inference
rules for equality, including the substitution of equals
for equals, and the resulting rule set is still polynomial
time decidable [McAllester, 19891. In [McAllester et
al., 19891 it is argued that the power of tractable rule
sets for first order inference is sensitive to the syntax
in which formulas are expressed - an alternative syn-
tax based on taxonomic relationships between classes
yields a more powerful tractable rule set. In [McAllester
and Givan, 19891 it is argued that the power of the
tractable rule set can be further improved if the syntax
is based on the specifier structure of natural language
noun phrases under Montague semantics. This obser-
vation provides a functional justification for some of the
syntactic features of natural language. In [McAllester,
19901 a general theory of tractable rule sets is presented
and an algorithm is given for automatically recognizing
tractability in rule sets.

Inference is closely related to constraint propagation
and constraint propagation is clearly important in im-
proving search efficiency. People seem to use inference
to drastically reduce the amount of search required in
problem solving. It seems possible that some of the
power of human inference is based on generalizations
of constraint propagation - powerful yet tractable in-
ference relations computed in a fraction of a second.
Perhaps there is still hope for the construction of efll-
cient general purpose inference mechanisms.

References
[Bruynooghe and Pereira, 19841 hi. Bruynooghe and L. M.

Pereira. Deduction revision by intelligent backtracking. In
J. A. Can&II, editor, Implementations of Prolog, pages
196-215. ERis Horwood, 1984.

[Dechter and Pearl, 19881 R. Dechter and J. Pearl.
Network-based heuristics for constraint-satisfaction prob-
lems. Artificial Intelligence, 34:1-38, 1988.

[de Kieer and Williams, 19871 J. de Kleer and B. Williams.
Diagnosing multiple faults. Artificial Intelligence, 32:97-
130,1987.

[de KIeer and Williams, 19891 J. de Kleer and B. Williams.
Diagnosis with behavioral modes. In Proceeding8 IJCAI-
89, pages 104-109, 1989.

[de Kleer and Reiter, 19871 J. de Kleer and R. Reiter.
Foundations of assumption-based truth maintenance sys-
tems. In AAA187, pages 183-188, 1987.

[de Kleer, 19841 J. de Kleer. Choices without backtracking.
In Proceedings of AAAI-84, pages 79-85, 1984.

[de Kleer, 1986a] J. de Kleer. An assumption-based tms.
Artificial Intelligence, 28~127-162, 1986.

[de Kleer, 1986b] J. de Kleer. Extending the atms. Artificial
Intelligence, 28:163-196, 1986.

[de Kleer, 1986c] J. de Kleer. Problem solving with the
atms. Artificial Intelligence, 28:197-224, 1986.

[de Kleer, 19891 de Kleer, J., A comparison of ATMS and
CSP techniques, Proceedings of the Eleventh Interna-
tional Joint Conference on Artificial Intelligence, Detroit,
MI (August 1989).

[de Kleer, 199Oa] de Kleer, J., Exploiting locality in the
ATMS, AAAI-90, Boston, Mass. (August 1990).

[de Kleer, 199Ob] J. de Kleer. A practical clause manage-
ment system. SSL Paper P88-00140, Xerox PARC, sub-
mitted for publication.

[Doyle, 19791 J. Doyle. A truth maintenance system. Arti-
ficial Intelligence, 12~231-272, 1979.

[Freuder, 19851 E. C. Freuder. A Sufficient Condition for
Backtrack-Bounded Search. J. A CM, 32(4):755-761,198s.

[Gaschnig, 19791 J. Gaschnig. Performance measurement
and analysis of certain search algorithms. Report, CMU,
1979.

[Gelfond and Lifschitz, 19881 M. Gelfond and V. Lifschitr.
The stable model semantics for logic programming. In
Logic Progrumming: Proceedings of the Fifth Interna-
tional Conference and Symposium, pages 1070-1080,
1988.

[Gelfond, 19891 M. Gelfond. Autoepistemic logic and the
formalization of common sense reasoning: Preliminary
report. In Non-Monotonic Reasoning: 2nd International
Workshop (Lecture Notes in Artificial Intelligence 346),
pages 176-189. Springer-Verlag, 1989.

[Haralick and Elliot, 19801 R. Haralick and G. Elliot. In-
creasing tree search efficiency for constraint satisfaction
problems. Artificial Intelligence, 14:263-313, 1980.

[Van Hentenryck, 19891 P. Van Hentenryck. Constraint Sat-
isfaction in Logic Progmmming. MIT Press, 1989.

[Knnth, 19751 D. Knnth. Estimating the efficiency of
backtrack programs. Mathematics of Computation,
29(129):121-136, January 1975.

[Konoige, 19871 K. KonoIige. On the relationship between
default theories and non-monotonic logic. Artificial Intel-
ligence, 35:343-382, 1987.

[Mackworth, 19771 A. M k ac worth. Consistency in networks
of relations. Artificial Intelligence, 8(1):99-181, 1977.

[McAIIester and Givan, 19891 D. McABester and R. Givan.
Natural language syntax and first order inference. Memo
1176, MIT Artificial Intelligence Laboratory, October
1989.

[McARester et al., 19891 D. McARester, R. Givan, and
T. Fatima. Taxonomic syntax for first order inference.
In Proceedings of the First International Conference on
Principles of Knowledge Repmsentation and Reasoning,
pages 289-300,1989.

[McARester, 19801 D. McAIlester. An outlook on truth
maintenance. Memo 551, MIT Artificial Intelligence Lab-
oratory, August 1980.

[McAIlester, 19891 D. McAlIester. Ontic: A Knowledge
Representation System for Mathematics. MIT Press,
1989.

[McAIlester, 19901 D. McAIlester. Automatic recognition of
tractability in inference relations. Memo 1215, MIT Arti-
ficial Intelligence Laboratory, February 1990.

[McCarthy, 19631 J. McCarthy. A basis for a mathematical
theory of computation. In P. Braffort and D. Hirschberg,
editors, Computer Progmmming and Formal Systems.
North-Holland, 1963.

[McCarthy, 19861 J. McCarthy. Applications of circum-
scription to formalizing common sense reasoning. Arti-
ficial Intelligence, 26:89-118, 1986.

[McDermott, 19831 D. McDermott. Contexts and data de-
pendencies: a synthesis. IEEE Tmnsaction on Pattern
Anally& and Machine Intelligence, 5(3):237-246, 1983.

[Mohr and Henderson, 19861 R. Mohr and T. Henderson.
Arc and path consistency revisited. Artificial Intelligence,
28(2):225-233, 1986.

[Pearl and Korf, 19871 J. Pearl and R. Korf. Search tech-
niques. Ann. Rev. Comut. Sci., 2:451467, 1987.

[Pearl, 19881 J. Pearl. Probabilistic Rezoning in Intelligent
&&ems: Networks of Plausible Inference. Morgan Kauf-
mann, 1988.

[Stallman and Sussman, 19771 R. StaiIman and G. Suss-
man. Forward reasoning and dependency directed back-
tracking in a system for computer-aided circuit analysis.
Artificial Intelligence, 9:135-196, 1977.

[Touretzky, 19861 D. T ouretzky. The Mathematics of Inher-
itance &stems. Morgan Kaufmaun, 1986.

[Zabih, 19901 R. Zabih, Some applications of graph band-
width to constraint satisfaction problems. AAAI-90.

1116 hVITED TALKS AND PANELS

