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Abstract 
General purpose truth maintenance systems have re- 
ceived considerable attention in the past few years. This 
paper discusses the functionality of truth maintenance 
systems and compares various existing algorithms. Ap- 
plications and directions for future research are also dis- 
cussed. 

Introduction 
In 1978 Jon Doyle wrote a masters thesis at the MIT AI 
Laboratory entitled “Truth Maintenance Systems for 
Problem Solving” [Doyle, 19791. In this thesis Doyle 
described an independent module called a truth main- 
tenance system, or TMS, which maintained beliefs for 
general problem solving systems. In the twelve years 
since the appearance of Doyle’s TMS a large body of 
literature has accumulated on truth maintenance. The 
seminal idea appears not to have been any particular 
technical mechanism but rather the general concept of 
an independent module for truth (or belief) mainte- 
nance. 

All truth maintenance systems manipulate propo- 
sition symbols and relationships between proposition 
symbols. I will use the term “Boolean constraint? 
to mean any Boolean formula built from proposition 
symbols and standard Boolean connectives such as --+ 
(implication), A (conjunction), and 1 (negation). A 
monotonic TMS manipulates proposition symbols and 
Boolean constraints. A non-monotonic TMS also al- 
lows for “heuristic” or “non-monotonic” relationships 
between proposition symbols such as “whenever I? is 
true $ is likely” or “if P is true then, unless there is 
evidence to the contrary, assume Q”. While the seman- 
tics of monotonic truth maintenance systems are quite 
clear, the semantics of non-monotonic systems has been 
a focus of considerable research over the past decade 
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and has lead to the development of non-monotonic log- 
its. 

Non-monotonic logic is closely related to belief func- 
tions, certainty factors, and defaults in type hierarchies. 
A good introduction to the issues surrounding belief 
and certainty can be found in [Pearl, 19881. A dis- 
cussion of defaults in type hierarchies can be found in 
[Touretzky, 19861. Some approaches to the theory of 
non-monotonic logic can be found in [McCarthy, 19861, 
[Konolige, 19871, [Gelfond and Lifschitz, 19881, and 
[Gelfond, 19891. 

Having briefly mentioned non-monotonic logic, the 
remainder of this paper is dedicated exclusively to 
monotonic truth maintenance systems. There are sev- 
eral reasons for this. First, most of the development in 
truth maintenance algorithms, and de Kleer’s ATMS al- 
gorithm in particular [de Kleer, 1986a], concern mono 
tonic systems. Second, most practical applications of 
truth maintenance systems involve monotonic systems 
(e.g., qualitative simulation, fault diagnosis, and ap- 
plications to search). Furthermore, monotonic truth 
maintenance systems provide a solid foundation upon 
which to build other kinds of systems - algorithms 
for monotonic systems can usually be used in non- 
monotonic systems but the converse does not hold. 

This survey begins with a specification of the func- 
tionality of monotonic truth maintenance systems. This 
specification is presented as a set of functions that can 
be used as a generic interface to most existing systems. 
Each interface function has a clean non-computational 
specification. After presenting the interface, I present 
various implementations. This is followed by a discus- 
sion of applications of truth maintenance systems in 
solving search problems. Finally, there is a brief dis- 
cussion of current research in the construction of more 
powerful algorithms . 

The Generic TMS Interface 
A monotonic TMS is a general facility for manipulating 
Boolean constraints on proposition symbols. For exam- 
ple, in automobile diagnosis we might want to enforce 
the constraint that if the spark plug is sparking then 
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the rotor is turning. This constraint has the form P 
3 Q where P and Q are proposition symbols that an 
outside observer can interpret as representations of the 
statements “the spark plug is sparking” and “the ro- 
tor is turning” respectively. Given a set of propositions 
about automobile engines, a set of constraints on those 
propositions (such as the above implication), and a set 
of observations about a particular automobile, a TMS 
can be used to ask questions about the consequences of 
the observations. 

I will describe the functionality of a (monotonic) 
TMS by specifying four generic interface functions. A 
TMS stores a set of Boolean constraints (Boolean for- 
mulas). Intuitively, one is only interested in truth as- 
signments that satisfy this stored set of constraints. Be- 
cause these constraints do not appear explicitly as ar- 
guments in most of the interface functions, I will call 
them “internal constraints”. The first interface func- 
tion, add-constraint, adds a constraint to the internal 
constraint set. Once a constraint has been added it can 
never be removed. The remaining interface functions 
manipulate literals - a literal is either a proposition 
symbol or the negation of a proposition symbol. The 
second interface function, follows-from?, takes two ar- 
guments, a literal 0 and a set of literals El called a 
premise set. An application (follows-Corn? @ E) can 
return yes, uo, or unknown. If (follows-from? 0 C) 
returns yes then the TMS guarantees that iD follows 
from the premise set C and the internal constraints. If 
(follows-ficom? 0 C) returns no then the TMS guar- 
antees that @ does not follow, i.e., there exists an inter- 
pretation satisfying both the internal constraints and C 
in which Qr is false. If the TMS is unable to determine 
if 0 follows, then (follows-from? @ C) returns un- 
known. In an automobile diagnosis system the internal 
constraints consist of facts true of all automobiles, e.g., 
“if the spark plug is sparking then the rotor is turning”, 
and premise sets consist of observations about particu- 
lar automobiles. 

The third and fourth interface functions compute jue 
tifications. If the TMS can determine that iB follows 
from the internal constraints and a premise set C, then 
one can ask the TMS to justify this fact, i.e., to pro- 
duce a “proof” of 0. There are two interface func- 
tions used to generate such proofs: justifying-liter& 
and justifjhg-constraints. Both of these functions 
take two arguments - a literal and a premise set from 
which that literal can be derived. If QE, is derivable 
from C and the internal constraints, then (justifyiug- 
literals 0 EC) returns a set of literals and (justifyiug- 
constraints 0 C) returns a subset of the internal con- 
straints satisfying the following two conditions. 
o Qi follows from the literals in (justifying-literah 0 

Xc) and the constraints in (justifjhg-constraints 
0 C). 

8 (follows-from ? 9 I=) returns yes for each literal \E 
in (justifying-literals 0 C). 

Suppose the internal constraint set includes the con- 
straints P -) Q, (P A + s. 
Most truth maintenance systems are able to derive S 
from these constraints and the premise set {P, W}. 
Most truth maintenance systems also provide the fol- 
lowing justifications relative to these constraints and 
premises. 

derived justifying justi@hg 
literal literals constraints 

: 
jl$bpJ -+ 2) 

Q &ii 
For any given set of internal constraints, premise set, 

and formula S that can be derived from the given con- 
straints and premises, the justification functions can be 
used to generate a “justification tree” for S. The root 
of the tree is the formula S and at each node of the tree 
the function justifying-literals can be used to get chil- 
dren nodes until one reaches members of the premise 
set. The justifications are required to be non-circular, 
i.e., if Q appears in the justification tree rooted at P, 
then P must not appear in the justification tree rooted 
at Q. 

Note that all of the justifications in the above table 
are “local” in the sense that, for each justification, there 
is only a single justifying constraint. In general, we 
do not require that justifications be local in this sense. 
However, virtually all TMS implementations are local 
in that every derived literal can be justified in terms of 
other literal8 and a single internal constraint. 

Contradiction Handling 
The above specification of a generic TMS interface al- 
lows for contradictory information to be given to the 
TMS. Most truth maintenance systems have some way 
of informing the user that a given premise set is in- 
consistent with the internal constraints. This can be 
done by adding a special proposition symbol called con- 
tradiction. If the TMS is able to determine that a 
given premise set C contradicts the internal constraints, 
then (bbllows-from? contradiction C) returns yes. 
Furthermore, if (follows-firom? contradiction C) 
returns yes then (justifying-literal8 contradiction 
C) and (justifjliug-constraints contradiction C) re- 
turn a set of literal8 and a set of constraints respectively 
that underlie the contradiction. The justification func- 
tions can be used to construct a justification tree whose 
leaves are literals in C. This allows the contradiction 
to be “blamed” on a subset of X3. 

BCP plementations 
Suppose that we wish to compute a value for an appli- 
cation (follows-from ? @ C). This can be done with a 
conceptually simple procedure known as Boolean con- 
straint propagation (BCP). Consider a network whose 
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nodes are the proposition symbols that appear either 
in the premise set C or in the internal constraint set. 
Each Boolean constraint can be viewed as a connec- 
tion, or “link” between nodes in the network. Each 
node (proposition symbol) can be labeled with one of 
three possible labels: true , faIse, or unknown. Ini- 
tially all nodes are labeled unknown. To compute the 
consequences of a particular premise set C one assigns 
the label true or f&e to each proposition symbol in 
the set of literals C depending on whether that symbol 
appears positively or negatively in C. New labels are 
then computed based on local propagation - whenever 
a new truth label follows from existing labels and some 
single internal constraint, that new label is added to the 
network and propagation continues. If a set of derived 
labels ever violates one of the internal constraints, then 
the special proposition contradiction is labeled true. 
During the propagation process each newly derived 1s 
be1 can be associated with a “justification”, i.e., a data 
structure that records the labels and constraint used in 
the derivation. If every constraint is a clause, i.e., a dis- 
junction of literals, then this propagation process can be 
run to completion in time linear in the total size of the 
set of constraints [McAllester, 19801. To answer a query 
of the form (follows-from ? 0 C) one simply runs the 
Boolean constraint propagation process starting with 
the labels in C and determines if a label is derived for 
the proposition symbol in the literal 0 - if a label has 
been derived for the proposition symbol, and that la- 
bel has the same sign as the sign of the literal a, then 
follows-from? returns yes, otherwise follows-from? 
returns unknown. 

Boolean constraint propagation is not logically com- 
plete. For example, consider the constraints P + Q 
and -P + Q. The literal Q follows from these con- 
straints but does not follow from either constraint in- 
dividually. BCP will not deduce Q even though Q fol- 
lows from the constraints. The incompleteness of BCP 
represents a compromise between functionality and ef- 
ficiency. Boolean constraint propagation runs in linear 
time in the total size of the constraint set (for clausal 
constraints). Boolean entailment, however, is coNP- 
complete and no efficient algorithm can be expected. 

Incremental Context Switching. Often consecutive 
queries to a truth maintenance system have very sim- 
ilar premise sets. For example, a user might first ask 
for (follows-from 1 i[, C) and then ask for (follows- 
from? 0 C’) h w ere C and C’ are large premise sets 
that differ on only a few literals. The propagation 
used to answer the first query can be used to make 
answering the second query more efficient. This can 
be done with “incremental premise retraction” and “in- 
cremental premise addition” [Doyle, 19791, [McAllester, 
19801. Incremental addition and retraction algorithms 
allow the set of proposition labels to be incrementally 
switched from the labeling generated by C to the label- 
ing generated by 2. 

is 
An alternative to unrestricted incremental retraction 
to store the current premise set on a premise stack. 

When a new premise is-pushed on to the-premise stack 
incremental Boolean constraint propagation is used to 
add new truth labels. When a premise is popped, a 
simple “undo-list” can be used to remove all labels 
that were added when that premise was pushed. Now 
consider two consecutive queries of the form (follows- 
from? 0 C) and (follows-from? 4[, C’). The labeling 
for the first query is incrementally computed by pushing 
the elements of C onto the premise stack. To compute 
the labeling for 2 one first pops back to a premise set 
that is a subset of C’ and then pushes those premises 
in C’ that are not already present. 

The premise-stack implementation and the unre- 
stricted incremental implementation provide the same 
generic interface functionality - at the level of the 
generic interface one can ask about any premise set 
at any time. Whether the premise-stack implementa 
tion is more efficient than the unrestricted incremen- 
tal retraction implementation depends on the statistics 
of consecutive queries. For individual retractions the 
premise stack implementation is considerably more effi- 
cient. However, the premise stack implementation may 
require more retractions and assertions to make a tran- 
sition between two labeling states. In any application 
where a set of truth assignments is being systematically 
explored, such as most algorithms for solving constraint 
satisfaction problems, the premise stack implementit 
tion is more efficient. The premise stack implemen- 
tation is also more efficient if most premises are static 
(are always included) and only a few premises are being 
changed - one can arrange for the changing premises 
to migrate to the top of the stack so that only small 
retractions and additions are done when switching be- 
tween contexts. 

ATMS-like Implementations 
I will initially describe de Kleer’s ATMS [de Kleer, 
1986a] as an alternative implementation of the generic 
TMS interface and compare the ATMS implementation 
with the BCP implementation. For many applications 
the only difference between the ATMS and BCP im- 
plementations is there relative efficiency as implemen- 
tations of the generic interface. However, the ATMS 
is more than just an alternative implementation of the 
same interface - there are certain additional interface 
functions that can be easily implemented on top of the 
ATMS algorithms but not on top of BCP. The addi- 
tional functionality of the ATMS is discussed below. 

Universal Propagation. Like the BCP implemen- 
tation, the ATMS implementation of the generic in- 
terface operates by propagating labels on a network 
whose nodes are propositions connected by Boolean 
constraints.’ However, in the ATMS implementation 

‘The ATMS described here is a recent version [de Kleer, 
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the propagation process is independent of any particu- 
lar premise set - a single “universal propagation pr* 
cess” precomputes all answers to all possible queries [de 
Kleer, 19$6a].2 To make the universal propagation pro- 
cess more efficient, the user can declare an *priori set 
of “possible premises”. Each possible premise is a lit- 
eral and every premise set in every query to the ATMS 
must be a subset of the set of possible premises. 

In the ATMS algorithm, a label is a set of premise 
sets. Each proposition in the network has both a true 
and a false label. If proposition P has a true label con- 
sisting of premise sets Cl, . . . C,, then for each ES we 
must have that P logically follows from Ci and the in- 
ternal constraints. An analogous statement holds for 
the premise sets in the false label of P. The premise 
sets can be propagated through the constraints. For 
example, if Cl is a premise set that is a member of the 
true label of P, E:a is a premise set in the true label of 
Q, and (P A Q) + R is an internal constraint, then the 
premise set Cl U I=2 can be added to the true label for 
R. The propagation process is initialized by inserting 
a singleton premise set into the label for each possible 
premise. For example, if P is a possible premise, then 
the singleton premise set {P} is inserted into the true 
label for P. After the universal propagation has been 
performed one can answer a query of the form (follows- 
from? P C) by checking to see if there exists a premise 
set on the true label of P that is a subset of C. An anal- 
ogous test can be made for queries involving negative 
literals. 

The total number of propagations, and the total num- 
ber of premise sets generated, can be reduced by im- 
posing two “filters” on the premise sets in labels. First, 
the premise sets must be %onsister#. Most obviously, 
no premise set can contain both a proposition and its 
negation. In addition, however, one can use the special 
proposition contradiction to make a stronger consis- 
tency filter. No premise set in any label, other than 
the true label for contradiction, can contain as a sub- 
set any premise set that is a member of the label for 
contradiction. The second filter involves~ the notion 
of subsumption. If I31 and C2 are two premise sets in 
the same label, and Cl is a proper subset of C2, then 
the label C2 can be removed. The ATMS runs the sin- 
gle universal propagation process to completion using 
these two filters to prune the premise sets in labels. 

Universal Propagation and BCP. The notation 
I’,C I- ncp @ will be used to indicate that 0 can 
be derived from internal constraint set I’ and premise 

set C using Boolean constraint propagation. In the fol- 
lowing discussion the symbol I’ will be used freely to 
denote a fixed but arbitrary internal constraint set. A 
support for a given proposition symbol P is a premise 
set C satisfying the following three conditions: 

or,c FBCPP 
0 r, C YBCp contradiction 
o There is no proper subset C’ of C such that 

w bp p. 
After the universal ATMS propagation procedure has 

run to completion, the premise sets in the true label of 
P are precisely the supports for P. This implies that 
the ATMS implements exactly the same behavior as 
the BCP-TMS.3 

ATMS Complexity. The ATMS and BCP implemen- 
tations generate exactly the same behavior at the level 
of the generic interface. Furthermore, the BCP imple- 
mentation is guaranteed to require at most linear space 
and linear time per query. On the other hand, because 
a given label can contain an exponential number of dif- 
ferent minimal premise sets, the ATMS implement it 
tion can require both exponential time and exponential 
space to answer a single query. This worst case behav- 
ior can be easily realized even in the case where the 
Boolean constraints are Horn clauses without implies 
tion cycles. 

Why would anyone propose an algorithm that is ex- 
ponential in both time and space as an improvement 
on an algorithm that is linear in both? The answer 
seems to be that the exponential ATMS algorithm 
has better performance in some applications. In cases 
where the label sets remain small query answering using 
pre-computed label sets is more efficient than context- 
switching in the BCP implementation. As problem size 
grows, however, the exponential cost of the universal 
ATMS propagation begins to dominate the potential 
savings at query time. Another reason for preferring 
the ATMS algorithm involves the additional fimction- 
ality discussed in the next section. 

Additional Functionality of the ATM% 
The ATMS universal propagation algorithm computes 
the minimal sets of assumptions necessary to derive a 
given formula. This feature is useful in device diag- 
nosis where one wants to find the minimal number of 

P 
ossible faults that explains a 

f 
iven observed behavior 

de Kleer and Williams, 19871 de Kleer and Williams, 
19891. In fault diagnosis, however, one is often inter- 
ested in premise sets that contain only a single fault. 

199Ob]. de Kl eer’s original ATMS only allowed Horn clause 
constraints and only allowed positive literals iu queries. Ex- 
cept for these restrictions, the original ATMS is identical to 
the system described here. 

‘A similar universal propagation process for truth main- 
tenance systems was developed independently by Drew Mc- 
Dermott [McDermott, 19831. 

31t should be n oted that the ATMS described here is dif- 
ferent from the clause management system described in [de 
Kleer and Beiter, 19871. The clause management system, 
or CMS, requires logical completeness. If constraints are re- 
stricted to Horn clauses and queries are restricted to positive 
literals, as in the original ATMS, BCP is logically complete 
and the CMS and BCP specifications are equivalent. 
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Under the single-fault assumption the full generality of 
the ATMS is not needed. 

values =I,...=~, we introduce the proposition symbols 
“X=x& . . . “X = z,,” and the constraints 

“X = xp v “X = x239 v . . l v u⌧ = ⌧nn 

Applications to Search 
It has often been said that truth maintenance systems 
are useful in controlling search [Doyle, 19791, [de Kleer, 
19SSa]. Because “search” is a loosely defined term, this 
claim is difllcult to evaluate in general. Rather than 
attempt to evaluate the general claim, I will consider 
a more restricted class of search problems known as 
constraint satisfaction problems (CSPs). 

A CSP consists of a set of variables, where each vari- 
able is associated with a finite set of possible values, 
plus a set of constraints. Each constraint consists of two 
of the given variables plus an enumeration of “allowed” 
pairs of values for those variables. An assignment of 
values to all the variables of a CSP is said to satisfy 
a given constraint if the pair of values assigned to the 
variables of the constraint is one of the allowed pairs of 
the constraint. A solution to a CSP is an assignment 
of values to the variables of the CSP that satisfies all 
of the constraints of the CSP. It is easy to show that 
determining the existence of a solutions to CSPs is NP- 
complete. This definition of a CSP can be generalized 
to allow constraints of more than two variables without 
changing the essentials of the analysis given below. 

There is a large literature on algorithms for effi- 
ciently finding solutions to constraint satisfaction prob- 
lems. The best introduction to the general theoreti- 
cal framework is still perhaps Knuth’s paper on meth- 
ods of evaluating the running time of backtrack search 
[Knuth, 19751. Knuth introduces the notion of a consis- 
tency test to be applied at each node of the backtrack 
search tree. Today there is a wide variety of possi- 
ble consistency tests, the most effective of which are 
based on some form of constraint propagation [Mack- 
worth, 19771, [Pearl and Korf, 19871. In addition to 
constraint-propagation based consistency tests, there 
are a variety of heuristics for selecting which variable 
to instantiate next and which value for that variable 
to try first [Haralick and Elliot, 19801, [Freuder, 19851, 
[Dechter and Pearl, 19881, [Zabih, 19901. Furthermore, 
there is variety of mechanisms for “backjumping”, i.e., 
jumping back to earlier choice points because a “depen- 
dency analysis” shows that intervening choices where 
not involved in the cause of failure [Stallman and Suss- 
man, 19771, [Gaschnig, 19791, [Bruynooghe and Pereira, 
19841. Research on algorithms for solving CSPs contin- 
ues to be active. 

Translating CSPs into Boolean Clauses. It is pos- 
sible to use a TMS as the foundation of a procedure for 
solving arbitrary CSPs. Truth maintenance techniques 
operate on Boolean constraints rather than CSPs as 
defined above. To use a TMS in solving a CSP one 
can translate the CSP into a set of Boolean constraints. 
More specifically, for each variable X in C, with possible 

and 
Ai<j(l”X = Xin V l”X = Xjn)e 

These constraints form a set of disjunctive clauses that 
together are equivalent to the statement that exactly 
one of the propositions “X = zi” is true. Now there 
are two simple ways of translating the constraints of 
the CSP into constraints on these proposition symbols. 
The first translation I will cdl the negative translation. 
Consider a constraint on variables X and Y. For each 
pair <x, g> of possible values for X and Y respectively 
that is not an allowed pair of the constraint, we add the 
clause l”X = 2” V 1W = y”. If C is a CSP (as defined 
above), I will let N(C) be the set of Boolean clauses 
generated from the variables and constraints of C in 
this way. Thesecond translation I will call the positive 
translation. Again consider a constraint on variables X 
and Y. For each possible value v of Y, let ~1,. . . 21: 
be the set of all possible values of X such that <xi, y> 
is an allowed pair of the constraint. For each possible 
value g of Y we add the constraint 

l”X = Xl” A . . . A YUX = qn --b 1”Y = f. 

This implication is equivalent to a clause, i.e., a disjunc- 
tion of literals. For any constraint satisfaction problem 
C, I will let P(C) d enote the positive translation of 
C into a set of disjunctive clauses. It is interesting to 
note that the size of the translation N(C) is governed 
by the number of incompatible pairs of values in the 
constraints while the size of P(C) is governed by the 
number of allowed pairs of values in the constraints. 

Using a TMS to solve a CSP. Given a constraint 
satisfaction problem C it is possible to give either the 
Boolean constraint set N(C) or the constraint set P(C) 
to a TMS. A simple backtrack program can then be 
written to search the assignments of values to CSP vari- 
ables where a partial assignment is encoded as a TMS 
premise sets of the form “Xi = 2. sn . . . uX~ = 2) j”. A 
filter can be imposed on the back&&k search by &king 
the TMS, at each node in the search tree, if the spe- 
cial node contradiction is derivable from the current 
partial assignment. If the positive translation has been 
used to convert the CSP to Boolean constraints (and 
the TMS simulates BCP) then this filter is equivalent 
to classical arc consistency.4 If the negative transla- 
tion has been used (and the TMS simulates BCP) then 
this filter is weaker, but more efficient than, classical 

4The linear time of the BCP algorithm on clausal con- 
straints implies that arc consistency can be achieved in time 
proportional to the number of consistent pairs of values for 
constrained pairs of variables. Thus BCP provides an alter- 
native algorithm for achieving the arc-consistency complex- 
ity bound given in [Mohr and Henderson, 19861. 
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arc consistency. The filter that results from BCP ap- 
plied to the negative translation might be called BCP 
consistency. 

In addition to providing powerful search filters, the 
justification facility of a TMS provides a mechanism 
for performing a certain form of backjumping known as 
dependency directed backtracking [Stallman and Suss- 
man, 19771. When a failure occurs in the search process 
one can use the justification mechanisms to uncover the 
subset of the current premise set that was used to derive 
the special proposition contradiction. This allows a 
new constraint to be installed called a “nogoodn which 
states that at least one of these premises must be false. 
This new derived constraint allows BCP to make more 
inferences than were possible with the old constraints 
and the consistency filter on the remaining search be- 
comes stronger. 

Dependency directed backtracking, and backjumping 
in general, are particularly useful when, for some rea- 
son, a poor choice has been made in selecting the or- 
der of the variables to be instantiated in the backtrack 
search process. To my knowledge, no one has estab- 
lished the pragmatic value of backjumping in a search 
that already does careful variable ordering and con- 
straint propagation based consistency testing. Because 
of the potential for generating an exponential number 
of additional derived constraints, dependency directed 
backtracking is a particularly expensive form of back- 
jumping. 

The ATMS universal propagation algorithm can also 
be applied to the Boolean translation of a CSP [de 
Kleer, 19891. In addition to clauses generated by the 
translation, one can specify each assumption of the 
form “X = xn as a possible premise. An additional 
proposition called all-variables-assigned can be in- 
troduced such that BCP can derive the proposition ail- 
variables-assigned if and only if a proposition of the 
form “X = xn has been derived for each variable X. Af- 
ter running the ATMS universal propagation procedure 
the set of all solutions to the CSP is contained in the 
true label of the proposition all-variables-assigned. 
Note that all variable assignments that violate the given 
constraints are automatically removed by the consis- 
tency filtration of premise sets in the universal ATMS 
algorithm. In this way, the universal ATMS propags 
tion procedure yields 
[de Kleer, 19841. 

“choices without backtracking” 

The most efficient and natural justification structure 
for the proposition all-variables-assigned will cause 
the ATMS universal propagation procedure to simu- 
late a backtrack search with a fixed order in which 
the variables are considered. However, the backtrack 
search will be done in space-intensive breadth-first man- 
ner rather than a space-efficient depth-first manner. In 
general, space-intensive breadth-first searches are con- 
sidered to be less efficient (in both time and space) 
than space-efficient depth-first searches [Pearl and Korf, 

19871. To my knowledge, the ATMS has never been 
shown to be more time efficient for enumerating solu- 
tions to a CSP than classical backtracking approaches. 

Truth maintenance systems may be useful as a gen- 
eral method of solving CSPs because they provide a 
general and efficient mechanism for constraint props 
gation based consistency testing of partial assignments. 
The other ways in which TMS technology might be ap- 
plied to CSPs, i.e., dependency directed backtracking 
and ATMS universal propagation, appear to be of lim- 
ited value. The ATMS universal propagation proce- 
dure is probably more appropriate for finding minimal 
premise sets satisfying some condition. 

General Problem Solving 
Truth maintenance systems have often been viewed as 
an integral part of “AI languages”, i.e., knowledge rep- 
resentation and programming languages that are de- 
signed to allow for the rapid development of expert 
systems or general problem solvers [de Kleer, 1986c], 
[de Kleer, 1986b]. A recent, and highly successful, in- 
corporation of the constraint propagation aspects of 
truth maintenance into a general purpose language is 
Van Hentenryck’s version of Prolog called Chip (for 
constraint handling in Prolog) [Van Hentenryck, 19891. 
Van Hentenryck’s version of Prolog is only tenuously 
related to the literature on truth maintenance systems. 
However, it seems that languages that combine auto- 
matic backtracking with automatic constraint propaga 
tion will be a major competitor with TMS-based AI 
languages in the future. 

I will use the term ‘Van Hentenryck language” as 
a general term for any programming language that 
combines automatic backtracking with automatic con- 
straint propagation. Rather than describe Van Hen- 
tenryck’s version of Prolog, I will describe a Van Hen- 
tenryck dialect of Lisp called Chil (for constraint han- 
dling in Lisp). Actually, Chil is built on Scheme, 
a dialect of Lisp that provides call-with-current- 
continuation. Automatic backtracking can be incor- 
porated into Scheme by adding two new primitives: 
either and fail. The special form either takes two 
arguments and non-deterministically returns the value 
of one of them .’ The procedure fail causes the com- 
putation to be restarted from the most recent non- 
deterministic choice. Given Scheme’s implementation 
of call-with-current-continuation, the “primitives” 
either and til can be efficiently implemented in about 
ten additional lines of code. Other standard Prolog 
primitives, such as cut and bag-of are implemented 
with similar ease. 

The procedures either and fail provide automatic 
backtracking and allow the concise expression of a large 
variety of backtrack search programs. Automatic con- 

‘either is a version of McCarthy’s amb [McCarthy, 
19631. The word either reads more naturally. 
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straint propagation is added with three more proce- 
dures: make-domain-object, add-constraint, and 
force-value. The procedure make-domain-object 
takes one argument which is a list of “possible val- 
ues” and returns a data structure that represents a 
CSP variable with the given set of possible values. The 
procedure add-constraint takes three arguments: two 
domain objects (objects returned by make-domaiu- 
object) and an ordinary Scheme predicate of two argu- 
ments. The procedure add-constraint installs a con- 
straint stating that the simultaneous values of the two 
domain objects must satisfy the given predicate. Fi- 
nally, the procedure force-value takes a domain ob- 
ject and non-deterministically assigns that domain ob- 
ject one of its possible values. The procedure force- 
value automatically invokes constraint propagation. If 
constraint propagation does not result in a constraint 
violation then force-value returns the selected value. 
Otherwise backtracking occurs. Using these primitives, 
a constraint propagation version of the n-queens prob- 
lem can be expressed as follows. 

(define (n-queens n) 
(let ((queen-variables 

(map (lambda (ignore) 
(make-domain 
(nurbers-between 1 n))) 

(numbers-between 1 n)))) 
(do-from-to (i 1 (- n 1)) 
(do-from-to (j (+ i 1) n) 
(add-constraint 
(nth i queen-variables) 
(nth j queen-variables) 
(lambda (vi v2) 
(and (not (= v2 ~1)) 

(not (- v2 (+ vi (- j i)))) 
(not (- v2 (- vi (- j i))))))))) 

(rap force-value queen-variables))) 

The above program uses numbers-between, do- 
from-to, and nth which are not Scheme primitives, 
but which are easily defined. Given the above proce- 
dure, the expression (bag-of (n-queens 8)) evaluates 
to a list of all 92 solutions of the &queens problem. Fur- 
thermore, the search process specified by the above pro 
cedure uses constraint propagation based consistency 
testing at each node of the search tree. Van Hentenryck 
has shown that the addition of automatic constraint 
propagation to languages with automatic backtracking 
can drastically improve the performance of a wide VJ+ 
riety of useful backtrack search programs. 

Strengthening Constraint Propagation 

Constraint propagation appears to be of central im- 
portance in search-based problem solving. One way 
of attempting to discover more powerful constraint 
propagation techniques is to study the relationship be- 
tween constraint propagation and inference. Constraint 

propagation is a form of inference - values for unas- 
signed variables are deduced from the values already 
assigned. The relationship between inference and con- 
straint propagation can be made explicit by character- 
izing constraint propagation processes in terms of infer- 
ence rules. Boolean constraint propagation can be de- 
fined in terms of a certain (incomplete) set of inference 
rules for Boolean logic [McAllester, 19891. Van Hen- 
tenryck also defines the various constraint propagation 
techniques used in Chip in terms of rules of inference. 
In fact, virtually any form of constraint propagation 
can be defined in terms of rules of inference. 

Constraint propagation inference rules are unusual, 
as rules of inference, in that it is possible to determine 
in polynomial time whether a given statement can be 
derivedfiomgivenpremises. In other words,constraint 
propagation inference rules generate a polynomial time 
decidable inference relation - such relations will be 
called truciable. Although every constraint propagation 
technique corresponds to a tractable inference relation, 
there are many tractable inference relations that do 
not correspond to any standard constraint propagation 
technique. For example, the inference rules that de- 
fine BCP can be combined with the standard inference 
rules for equality, including the substitution of equals 
for equals, and the resulting rule set is still polynomial 
time decidable [McAllester, 19891. In [McAllester et 
al., 19891 it is argued that the power of tractable rule 
sets for first order inference is sensitive to the syntax 
in which formulas are expressed - an alternative syn- 
tax based on taxonomic relationships between classes 
yields a more powerful tractable rule set. In [McAllester 
and Givan, 19891 it is argued that the power of the 
tractable rule set can be further improved if the syntax 
is based on the specifier structure of natural language 
noun phrases under Montague semantics. This obser- 
vation provides a functional justification for some of the 
syntactic features of natural language. In [McAllester, 
19901 a general theory of tractable rule sets is presented 
and an algorithm is given for automatically recognizing 
tractability in rule sets. 

Inference is closely related to constraint propagation 
and constraint propagation is clearly important in im- 
proving search efficiency. People seem to use inference 
to drastically reduce the amount of search required in 
problem solving. It seems possible that some of the 
power of human inference is based on generalizations 
of constraint propagation - powerful yet tractable in- 
ference relations computed in a fraction of a second. 
Perhaps there is still hope for the construction of efll- 
cient general purpose inference mechanisms. 
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