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Abstract 

Most AI researchers would, I believe, agree that truly 
intelligent machines (i.e. machines on a par with humans) 
will require at least four orders of magnitude more power 
and memory than are available on any machine today 
[Schwartz 1988, Waltz 19881. There is now widespread 
agreement in the supercomputing community that by the 
year 2000 all supercomputers (defined as the most powerful 
machines available at a given time) will be massively 
parallel [Fox 19901. Yet relatively little thought has been 
given in AI as to how to utilize such machines. With few 
exceptions, AI’s attention has been limited to workstations, 
minicomputers and PCs. Today’s massively parallel 
machines present AI with a golden opportunity to make an 
impact, especially in the world of commercial applications. 
The most striking near-term opportunity is in the marriage 
of research on very large databases with case-based and 
memory-based AI. Moreover, such applications are steps 
on a path that can lead eventually to a class of truly 
intelligent systems. 

Economic Inevitability of Massive Parallelism 

The performance of serial computers is limited by the 
“van Neumann bottleneck,” (the serial path used to move 
instructions and data between memory and the CPU) and 
by I/G limitations. Over the next ten years the use of fast 
technologies (ECL, GaAs, etc.) and further 
miniaturization might gain a performance factor of five, 
cleverer caching and instruction prefetch a factor of two, 
and the use of multiple functional units yet another factor 
of four, bringing the fastest uniprocessors (now at less 
than one GFlops) to perhaps 40 GFlops. Compiler 
technologies could allow as many as 16 such processors 
to be ganged together, yielding perhaps as much as 640 
GFlops in total. The price would be high: very dense 
chips of exotic materials packed close together present 
daunting cooling and packaging problems. An 
extrapolation of current trends (supercomputers cost 
about $1OO,OOO/MFlops in 1977, and about $SOOO/ 
MFlops in 1990) suggests that such a machine would 
cost about $500 million in the year 2000 (about 
$8OO/MFlops). 

In contrast, massively parallel machines (e.g. the 
Connection Machine(R) CM-2) use PC/workstation 
technologies, and boast per-computational-unit costs 
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similar to those of these small machines: on the order of 
$lOOQ/MFlops in 1990. The largest massively parallel 
machines already exceed the power of serial super- 
computers: the 65,536 processor CM-2 is realistically 
capable of speeds on the order of 5 GFlops (with a 28 
GFlops peak). DARPA has targeted a massively parallel 
TeraOps (one trillion operations/second) machine by 
1995, and the cost is expected to be less than $100 
million ($lOO/MFlops). By the year 2000 it should be 
possible to build massively parallel TeraOps machines for 
$10 million ($lO/MFlops - two orders of magnitude 
cheaper than could be done with serial technologies). 

A Brief History of Massively Parallel AI 

The Connection Machine system was originally designed 
to handle AI tasks, such as NETL-like marker-passing 
over semantic networks, and low-level computer vision 
[Fahlman 1979, Hillis 19851. *Lisp, an extension of 
CommonLisp, was the first high-level language for the 
CM and its first front-end computer was a Symbolics 
3600. A number of the early CMs were purchased by AI 
labs following its introduction in 1986, and some early 
work was done along the lines envisioned by Hillis: for 
example, CIS, a marker-passing parallel expert system, 
with one (instantiated) rule per processor [Blelloch 19861, 
and a system for computing stereo disparity from a pair of 
images, using the Mar-r-Poggio method [Marr and Poggio 
1976, Drumheller 19861. (See waltz & Stanfill 19881 
for a summary of several early AI projects.) However, it 
is clear in retrospect that there was not much of an AI 
market for $50,000 Lisp machines, let alone for $1 
million (and up) Connection Machine systems 
performing these sorts of applications. There still is not a 
market for very large expert systems, in part because it is 
difficult to build a very large expert system (Blelloch’s 
CIS system contained 100,000 artificially generated rules 
on a CM-l with about 8 MBytes of memory; a current 

*This work was supported in part by the Defense 
Advanced Research Projects Agency, administered by the 
U.S. Air Force Office of Scientific Research under 
contract #F49620-88-C-0058 and is also funded in part by 
the United States Bureau of the Census. 
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CM-2 with 8 GBytes of memory could store 100 million 
rules!). Likewise, there was not (and still is not) a market 
for high volume low-level image processing (although 
the new Land&s may eventually create one). 

Fortunately for Thinking Machines, the CM-2, with 
its floating point option (using up to 2000 Weitek 
chips), proved to be an excellent match for a wide range 
of scientific problems: finite element models, operations 
on large matrices, fluid flow and aerodynamics models, n- 
body problems (e.g. galactic collisions), interactive 
scientific visualization, models using cellular automata, 
seismic data processing, signal processing, etc. Most of 
Thinking Machines’ sales growth -- 50% per year over the 
past four years -- has been fueled by sales for these types 
of applications. 

But the AI dream is still valid. Recent research using 
novel AI paradigms on real customer problems and real 
customer databases have identified some great 
opportunities. 

The Large-Scale Commercial AI Opportunity 

Data is being generated faster than it can be digested. Very 
large (>lOO GByte) databases are becoming common. 
Such databases contain valuable information on customer 
credit and buying behavior; many forms of text: public 
text, including books, newspapers and news wires, 
financial journals, technical industry publications, 
scientific journals, and annual reports; and private text, 
such as studies, memos, manuals, proposals, 
documentation; visually oriented materials, including 
maps, schematics, plans and blueprints, as well as fast- 
expanding video archives; and much more. 

Until recently mainframe computers, with their 
extensive existing software libraries, have been the only 
choice for those who own and/or wish to mine such 
databases. But mainframes are pitifully slow and at the 
same time very expensive, and the software available for 
database tasks has been quite primitive because answering 
even primitive questions takes too long. Massively 
parallel machines offer large storage capacity1 and high 
I/O rates, using parallel disk arrays and multiple wide- 
word I/O channels. The total CM-2 I/O capacity is 
currently 200 MBytes/second, limited by the disk rates.2 
This means that an entire 100 GByte database can be 
streamed into the CM-2 in 500 seconds. We estimate 
based on preliminary but realistic tests, that we can 
achieve a speedups of at least an order of magnitude over 
identical data selection operations on a mainframe on a 
CM-2 costing only a fraction of the price. [Stanfill, 
forthcoming]. 

This kind of performance opens the possibility for 
changing the fundamental nature of an organization’s use 
of a database -- from a weekly to a daily batch run, or 
from batch to interactive -- and also opens the 
opportunity for applying dramatically more complex and 
intelligent processing to each database item than can 

otherwise be imagined today. In the next several sections, 
I outline the algorithms and performance for several 
commercially important applications. 

Text-based Intelligent Systems 

For most of its history, AI has been concerned with “toy 
problems.” Scaling up presents difficulties: At the two 
extremes of the spectrum, one can hand-code (as in CYC 
[Lenat et al. 1986]), or one can use methods to 
automatically build NLP systems. To date there have 
been very few practical applications of natural language 
processing, and this fact has dampened the enthusiasm of 
funding agencies and companies that support research in 
this area. Fortunately, there are signs that this situation 
can be improved by strategically merging AI/NLP and 
Information Retrieval (IR) technologies. This offers 
novel opportunities both for learning research, and for 
building systems that have immediate practical value. 

A series of experiments and discoveries led researchers 
at Thinking Machines, most notably Craig Stanfill and 
Brewster Kahle, to devise a document retrieval system 
that works in parallel on the Connection Machine 
[Stanfill & Kahle 1986; Stanfill 19881. The resulting 
system, marketed as DowQuestcR) by Dow Jones has 
been in commercial use since January 1989. DowQuest 
provides a high quality search through a clever interface 
that can be used effectively by a computer-naive person 
after only about 5 minutes of training. The basic idea is 
this: A database of documents (e.g. news articles, 
abstracts, books, etc.) is distributed to each of the 65,536 
processors of a CM-2 (if documents are 2K bytes long, 
each processor equipped with large memory can hold 
about 256 compressed documents or 16 million total!). 
The user types a few words (a question, description, or 
list of terms will do) and a carriage return; the terms are 
broadcast to all the processors in parallel along with a 
numerical “weight” indicating the importance of each 
term? The search portion of this operation is analogous 
to the following situation: imagine a stadium with 
65,536 people, each with one document and a pocket 

‘A single current Connection Machine CM-2 can be 
equipped with up to eight I/O channels, each of which can 
have 16 drops, allowing 15 DataVault disk arrays of up to 
80 GBytes each, for a total storage capacity of 8x15~80 
GBytes = 9,600 GBytes! 

2The CM-2 itself can handle more than 400 
MBytes/second. 

3Term weights are assigned automatically by a program 
that pre-processes the text and updates the database. The 
number of occurrences of each term is saved, and weights 
computed proportional to the negative log of the 
probability of occurrences of each term. 
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calculator; an announcer reads each search term followed 
by a number (representing the importance of a term (the 
rarer a term, the higher its weight) and each person whose 
document contains the term adds the score to the 
calculator. After all terms are read, the persons with the 
highest scored documents present themselves. (This 
would be hard in the stadium analogy). (To match the 
real situation, we would actually need either 16 million 
people, or 256 documents and 256 calculators per person.) 

The headlines for the documents with the highest total 
scores are then sent to the user. The user can view the 
text of each of these documents by clicking a mouse 
while pointing to the headline. When a user sees a 
document (or paragraph of a document) that answers 
his/her request, the user can mark the document “good” by 
pointing and clicking the mouse. The system collects all 
the terms from all the documents marked “good” along 
with all the initial words the user typed, and repeats the 
search process described above, but now using all these 
terms. Each search requires less than a second, even on 
databases up to 10 GBytes. This method, called 
“relevance feedback” [Salton 19721, generally produces a 
substantially better search than is possible with Boolean 
search systems [Blair $ Maron 19861. 

DowQuest DowQuest uses the method above, with 
enough memory so that a 1 GByte database is 
permanently stored. The 16 documents with the best 
scores are returned to the user, who can look at the full 
text (stored on a disk on the front end server) and can 
mark any document (or paragraph of a document) as 
“relevant”. DowQuest has about six months worth of 
articles from nearly 300 different sources: Wall Street 
Journal, Washington Post Barrons, the business sections 
of about 100 U.S. newspapers, Fortune. Forbes, and 
other magazines, and a number of trade publications (e.g. 
Byte). Ninety-nine percent of all searches take under 1.5 
seconds, including front end time. CM time for 100 
terms is about 170 msec. The system also parses input 
text, creates a new surrogate database, and updates the 
database while the system is operating on-line. 

We have recently outlined algorithms that allow allow 
interactive access to 1 TeraByte (I,OOO,OOO MBytes) of 
text [Stanfill, Thau & Waltz 19891. For reference, the 
Library of Congress probably contains on the order of 40 
Terabytes of text. 

New Text Opportunities 

This system suggests interesting opportunities for 
exploiting natural language processing results: 

Adding NLP It is highly desirable to add natural 
language pre- and post-processing to the existing system, 
to improve its performance, and to extend its capabilities. 
For example, we are building recognizers that can find, 
label, and store lists of terms that refer to company 

names, geographic locations, names of persons, etc. 
Ultimately, this will help users to ask and obtain answers 
to questions that would be very difficult to phrase as 
Boolean queries. For example, “Earnings reports for New 
England utility companies” would expand to “Earnings 
reports for Maine, New Hampshire, Vermont, 
Massachusetts, Connecticut, Rhode Island, utilities, 
power companies, electric companies, power, light...“. 
In addition, natural language processing systems will 
allow us to post-process retrieved documents, to filter out 
irrelevant articles, and thus improve the performance of 
the system from the user’s point of view. 

Adaptive Systems More intelligent processing could 
be applied to the users’ queries; the system could keep 
track of user patterns and interests, and adapt itself to be 
easier to use or even to volunteer information it thinks 
the user is interested in. 

WAIS (Wide Area Information Server) We are 
building a version of this system to seamlessly search an 
organization’s local data as well as remote (e.g. Dow 
Jones) databasas. This system will allow organizations 
to locate and reuse proposals, reports and studies, find (by 
matching biographies) appropriate people for various 
tasks, and generally allow each person to locate any text - 
personal, corporate or public -- with a single search. 

ypertext The same methods that let us locate relevant 
articles can allow us to automatically build hypertext 
systems for text distributed on CD-ROMs. These could 
be generated much more quickly and inexpensively than is 
possible with hand-building. 

Automatic Generation OP NL Systems The 
retrieval system itself can be adapted to extract phrase, 
sentence and paragraph “templates” or patterns in order to 
aid the building of recognizers for particular topics or for 
types of stories. Such processing can provide empirical 
data on language usage that would be very difficult to find 
or invent any other way, leading to “dictionaries” of 
multi-word and multi-sentence language patterns and to 
FRUMP-like systems [DeJong 19821 with broad subject 
coverage. 

Other related research, using dictionaries or thesauruses, 
has become popular in recent years. Some striking 
successes have been achieved by Ken Church and 
coworkers at AT&T Bell Laboratories [Church 1988, 
Ejerhed 19881 using the augmented “Brown Corpus” 
[Kucera & Francis 19821. The Brown Corpus consists of 
one million words of text, chosen to represent a wide 
range of text types and styles (newspaper and magazine 
articles, books on history economics, etc.). It was 
“augmented” by Kucera and Francis by assigning each 
word in the corpus to one of about 450 classes, covering 
standard grammatical categories (noun, verb, adjective) 
but also including substantially finer distinctions (e.g. 
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noun-agent of sentence; verb-complements of particular 
types). Church collected statistics on the probabilities 
that various words would follow particular other word (or 
category) combinations. This system has been used to 
judge the most likely categories for words in novel text 
taken from news-wire sources. Success rates for Church’s 
system are in the range of 98-99%, much higher than for 
the best syntactic parsers (in the range of 33% [Salton 
19881). 

All these current lines of research emphasize breadth of 
coverage, rather than depth of coverage, and are thus 
complimentary to the goals of traditional AI-NL 
processing research. All present attractive alternatives to 
hand-coding benat et al. 1986). And all can be used to 
accelerate the research into deep processing. The most 
attractive part of this effort is that our systems are 
immediately useful, and thus can pay for the research on 
their own augmentation. I believe these general 
approaches will have great importance in the ultimate 
story of the achieving of truly intelligent systems. 

emory-Based easoning 

Methods broadly analogous to the text-search algorithms 
can be used to build “memory-based reasoning” systems 
to aid in decision-making. These systems perform like 
artificial neural nets [Rumelhart & McClelland 1986; 
Waltz & Feldman 19881 or ID3-like learning systems 
[Quinlan 19881. In memory-based reasoning (MBR) a 
parallel machine is loaded with a database of the sort that 
can be used as a training set for learning systems: 
situations together with actions, classifications, or desired 
outputs for each situation. When a new problem is 
encountered, the MBR system compares it to all the 
known prior cases, and uses the most similar case (or 
majority vote of several similar cases) to classify the new 
case The key to successful MBR operation is the 
selection of a good similarity metric for matching new 
problems with known cases. [Stanfill & Waltz 19861. 

Advantages of MBR MBR provides expert system- 
like behavior, but does not require extensive hand-coding. 
MBR provides “explanations” -- the precedents most 
similar to the current problem case -- in order to justify 
its actions. MBR provides high performance --superior to 
artificial neural nets [wolpert 19891 and superior to expert 
systems (see below). MBR is robust when noise is added 
to its database; in one experiment [Stanfill & Waltz 
19881 on the NETtalk database [Sejnowski & Rosenberg 
19861, performance fell off only about 10% when 90% of 
the database was replaced with noise. MBR is simple to 
update: new cases can be added and old, obsolete ones 
removed, and performance will immediately track the 
changes. This is in sharp contrast to artificial neural 
nets, which must be totally retrained if the world changes, 
and expert systems, which are notoriously difficult to 
modify. 

There are some disadvantages: MBR generally requires 
a data parallel computer, which will probably be more 
expensive than a system used to deliver an expert system 
or neural net application (though inexpensive data parallel 
systems without extensive interprocessor communication 
might suffice); and MBR systems do not operate as 
rapidly as a trained neural net, though they would 
generally be much faster than expert systems. 

Classifying Census We have recently 
demonstrated that an system can perform 
impressively on a task to generate one of about 241 
industry codes and one of about 509 occupation codes for 
individual respondents, by comparing their answers 
(expressed as free text and multiple choice selections) 
with 132,000 cases that have already been classified by 
hand. Early results have indicated that by keeping 
categories where the system has been proven to be correct 
at least 90% of the time for industry codes and at least 
86% of the time for occupation codes, MBR can correctly 
process at least 70% of the database for industry codes and 
about 56% of the database for occupation codes. For 
comparison, an expert system that required more than two 
years to develop, achieves only 57% and 37% of the 
database respectively on these two tasks [Smith, Masand, 
& Waltz 19901; the R system took less than a month 
to build. For this application, the similarity metric is 
generated, using statistical operations, on the fly. 

tber Applications Similar methods have been used 
to build MBR systems for optical character recognition, 
based on a large number of examples of handprinted 
numerals [Smith & Voorhees 19901; for medical 
diagnosis [Stanfill & Waltz 19861; for controlling a robot 
to produce near optimal trajectories [Atkeson 19871; for 
(two-dimensional) object recognition lTucker et al. 19881; 
for automatically generating index terms for news articles 
or routing articles to appropriate recipients [Smith 19901. 
Recent work [Zhang & Waltz 19901 on protein structure 
prediction has shown that a system that combines the 
results of MBR with neural nets and statistical 
information dramatically outperforms any previous 
method. This has relevance to the human genome 
project, another good target area for AI and IR. Many 
other applications are clearly possible. 

Genetically-Inspired Methods 

Market research is a “forest for the trees” problem. One 
needs to generate insights into the repetitive preference 
patterns among millions of customers, and distill market 
segment definitions in order to offer consumers the 
products they are most likely to want. We have 
developed genetically-inspired algorithms [Singer 
forthcoming, Holland 19751 that automatically find trends 
and categories without being told in advance what the 
patterns are. 
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One specific problem that has been addressed by these 
methods is the following: Suppose that we know 
purchasing behavior, demographic and credit information 
for several million (or tens of millions of) people, and 
that we wish to mail catalogs containing items selected 
from the offerings of hundreds of vendors, such that the 
greatest possible return (dollar amounts ordered minus the 
cost of the mailings) is maximized. Clearly, the larger 
the catalogs, the more the cost for postage, and the greater 
the chance each will be thrown away; the smaller and 
more tailored the catalogs, the better the return, but the 
more expensive it will be to print the catalogs and stuff 
the appropriate envelopes. 

In an example run, we started with about 8000 
customers on a small CM-2, and first calculated the ideal 
catalog of five items for each customer. (This step 
requires a model of consumer behavior.) Each list of five 
items is analogous to a piece of genetic material. We 
also computed an expected return (negative) for sending 
8000 tailored catalogs. We then used the 
communications system of the CM-2 to randomly pair up 
consumers in parallel. For each pair, we then calculated 
the change in expected return if consumer 1 took 
consumer 2’s catalog, and vice-versa. Both consumers 
were grouped into one or the other of the catalogs with a 
probability based on the change in the expected returns. 
The scoring scheme also makes it easier to merge a 
consumer who shares a catalog with a small number of 
others into a larger group than to pull a customer out of a 
large group and into a smaller one. Every few steps, 
random point mutations to the catalog’s customers were 
probabilistically introduced, on the theory that the best 
catalogs may not have been present for anv of the original 
consumers. The process continued until the maximum 
expected return point was found (in this case, 30 tailored 
catalogs, and sets of consumers who should receive each). 

The overall solution to this problem required on the 
order of two hours on a 4K processor CM-2; the overall 
potential search space of solutions is on the order of 1O87 ! 

A Different Route to Truly Intelligent Systems 

So what does all this have to do with cognition? I want 
to argue that the basic associative memory operation of 
selecting relevant precedents in any situation is the 
essence of what intelligent entities do. (“Precedents” may 
be actions, options, remindings, etc.) If only a single 
precedent is found (e.g. when one is operating in a 
familiar environment on familiar tasks), then there is 
little involved in acting intelligently. Only when two or 
more incompatible precedents are found, or when the task 
space is unfamiliar, is reasoning (in the ordinary sense) 
required. Combinatorially explosive search can be 
avoided, since in any given situation only a small number 
of “operations” (actions) are plausible, making branching 
factors manageable. Planning can be supported by 
associative memory retrieval of precedents of the form: 

[hypothetical situation + goal + operator -> new 
situation] and/or [hypothetical situation -> goal]. Even 
creativity or analogical problem solving might be covered 
(if the best precedents match structurally but are not 
literal matches). 

I am not imagining that a monolithic flat database 
could model memory. First, generalizations over 
memory and other structures need to be matched in 
addition to episodic items. (See [Kolodner I989 and 
Evett et al. 19901 for descriptions of massively parallel 
frame systems.) Second, there ought to be situation- 
specific priming that changes the overall searchable space 
(or relevance judgements) for precedents. Overall, I am 
persuaded by society of mind [Minsky 19861 arguments 
and examples, and feel that the structure of memory also 
contains many agents responsible for recognizing special 
situations and either priming or censoring memories 

Summary 

If AI is to succeed, it is important to find ways to justify 
ongoing research costs, to substitute profits for promises. 
Commercial massively parallel applications already offer 
opportunities for changing the ways business is done, 
because existing limits on database size and speed of 
access can be transcended. Moreover, the excess 
processing capacity of massively parallel systems makes 
it possible to add greater intelligence to applications. 
And there are great potential payoffs for this kind of AI: 
even modest ideas, if they are sufficiently general to apply 
to an entire large database, can produce results that seem 
wonderfully magical. Most successes of this sort to date 
have used data parallel methods, especially memory-based 
reasoning. MBR applications can often be generated 
automatically from existing databases. MBR and case- 
based reasoning may also form the basis of new 
paradigms for cognition that can scale to human levels as 
massively parallel machines develop. 
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