
AI and Software Engineering 
Will the Twain Ever Meet? 

Moderator: Robert Balzerl USC Iuforination Scieuces Iustitute 
Panelists: Richard Fikes Price Waterhouse 

Mark Fox Carnegie Mellon University 
John McDermott Digital Equipment Corporation 
Elliot Soloway University of Michigan 

Abstract 
This session will explore the reasons for the lack of im- 
pact in four important areas in which AI has been ex- 
pected to significantly affect real world Software Engi- 
neering. The panelists, each representing one of these 
areas, will respond to the conjecture that these fail- 
ures rest upon a common cause - reliance on isola- 
tionist technology and approaches, rather than upon 
creating additive technology and a.pproaches that can 
be integrated with other existing capabilities. 

l?or the purposes of this debate, we’ve divided up the 
ways that AI could impact Software Engineering into 
four broad areas, each of which will be represented by 
one of the panelists: 

o Development of smart a.pplications (e.g. Expert 
Systems) 

e Development of sma.rt application components 

e Providing intelligence within the system architec- 
ture (e.g. in expert databases or intelligent user 
interfaces) 

o Using AI to develop software 

The first three are product related and are con- 
cerned with including AI capabilities within delivered 
applications. The first two address embedding the 
AI capabilities within the application itself, while the 
third addresses embedding them within the run-time 
facilities used by the application. The fourth area 
concerns the use of AI in the process of generating 
software. This generated software may be conven- 
tional or it may include AI capabilities in one or more 
of the first three areas. 

Our expectakions for major impact upon the field 
of Software Engineering in these four areas, or on the 

‘The author’s work is supported by Bhe Defense Ad- 
vanced Research Projects Agency under NASA-Ames 
Cooperative Agreement No. NCC Z-520 and contract 
MDA903-87-C-0641. The views and conclusions are the 
author’s and should not be interpreted as representing 
the olficial opinion or policy of DARPA or the U.S. 
Government. 

field in genera.1, have been largely unrealized. h/lost 
obviously, there has been no shift yet in the basic Soft- 
ware Lifecycle that I, among others, predicted would 
occur. The old Waterfall Lifecycle is still universally 
employed. In many ways, software is still being man- 
aged and produced as it wa.s twenty years ago. 

Nevertheless, many significant changes have oc- 
curred within the Software Engineering community, 
such as: structured programnling; abstraction and 
encapsulation; distributed processing; object oriented 
approaches; the adoption of Unix and C; and most 
recently, formal methods and specifications. It’s 
just that these changes have been been initiated and 
driven by others, not AI. 

Our major effect on software engineering to date 
has been in defining, supporting, and getting accepted 
the iterative development style, especially within the 
context of prototyping. We a.re thereby also partly 
responsible for the increased role of prototyping in 
software development. 

The argument is not that we’ve had no influence, 
but that the impact we’ve had has been much, much 
smaller than expected. Some of the blame for this lack 
of impact from our field undoubtedly lies within the 
Softwa.re Engineering Communit~y, but we’ve chosen 
to focus this debate on our own actions, or the lack 
thereof, that have crippled this coupling between the 
two communities. 

Conjecture: Common Cause - 
Isolationist Technology & Approaches 
The central conjecture that this panel will debate is 
that the primary impediment to the impact of AI on 
Software Engineering is the adoption by the AI field of 
technologies a.ncl approaches which isolated us from, 
rather than coupled us to, the Software Engineering 
community. This isolationism has been manifested in 
several areas: 

Idiosyncratic Language 

Like ot,ller communities, we invented idiosyncratic 
languages for our own use. \Vha.t differentiated us, 
was not the existence of such languages, but rather 
the nature of the differences between them and the 

BALZER 1123 

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved. 



Separate Infrastructure standard algebraic languages in use throughout the 
rest of the community and our interest in symbolic 
rather than numeric computation. 

Idiosyncratic Environment 

What really set us apa.rt was the creation of idiosyn- 
cratic environments, programmed in our idiosyncratic 
language, and utilizing its symbolic computation fa- 
cilities to represent and manipulate the computation 
structures of the application being executed and of the 
environment itself. This ability to manipulate those 
computation structures gave rise to a, wealth of late 
binding mechanisms to dynamically control and alter 
their meaning. 

In contrast, the rest of the community used far sim- 
pler, less powerful, (intentionally) less flexible, and 
much less encompassing environments. 

Idiosyncratic Hardware 

Having created our own language and support envi- 
romnents, and not content to merely ride the crest of 
the emerging hardware revolution, we took the oppor- 
tunity afforded by this revolution to create our own 
machines. 

The specialized architectures of those machines cer- 
tainly provided us with an immediate benefit of in- . 
creased power. But it also clearly launched us on a 
trajectory away from the rest of the computing com- 
munity. Not only did we do our work in a.n idiosyn- 
cratic language, but we also now did it in sepa.ra.te 
machines that didn’t run anything else. Moreover, 
this meant that the operating system itself had to be 
written in Lisp. This cut any remaining ties result- 
ing from a shared reliance on a common operating 
system as we had 1la.d 011 the previous generation of 
mainfra.mcs. The primitive state of distributed system 
support that existed at tl1a.t time virtually completed 
our isolation. 

We not only crea.tecl idiosyllcratic, high perfor- 
mance, development machines, but we also created 
low-cost compatible delivery machines 011 which to 
run the applications we expected to be built and 
widely disseminated. 

We all know now, with the advanta.ge of hindsight, 
that this idiosyncratic hardwa.re thrust was not sus- 
tainable - in part because the expected market did 
not develop, but also because of the huge development 
costs of keeping up with the rapidly improving VLSI 
state-of-the-art. 

Recently, our isolation has been eased somewhat 
by the improving state of network support for dis- 
tributed processing and by the appearance of co- 
processor plug-in boards for providing our specialized 
hardware support within conventional workstations 
and PCs. 

It is interesting to note that no other language com- 
munity chose to pursue a similar, specialized hard- 
ware, route. 

In the natural progression of our separation trajec- 
tory, we built our own infrastructure. Our soft- 
ware development and execution environments are ar- 
guably the best ever created. But these environments 
also had a dark side. The better they became, the 
more we relied upon them. The more we relied up011 

them, the more insular we became, and the bigger the 
gap became between our support facilities and those 
common and accepted within the Software Engineer- 
ing community. 

We also created, in the expectation of major 
growth, our OWI~ service industry of software and 
hardware vendors and consultants to support our 
small, tight-knit community. 

Large Footprint 
One major problem resulting from our wealth of en- 
vironmental infrastructure, was the ease with which 
it could be incorporated in our applications, and the 
difficulty of separating the part we depended up011 

from the rest of this infrastructure. This resulted in 
very large footprints (i.e. memory requirements) for 
a.11 but the simplest applications. 

Our response ha.s traditionally been to just add 
more real memory with the knowledge that mem- 
ory was always getting chea.per. But this hard- 
ware bail-out exacerbated our isolation by creating 
widely different hardware support requirements be- 
tween ourselves and the mainstream computing com- 
munity that relied on minimally configured worksta- 
tions, or even PCs. 

It is only recently, that we’ve taken this problem se- 
riously enough to develop the necessary delivery tech- 
nology to sepa.rate out just the portions of the envi- 
ronment really needed by an application, and thereby 
reduce the a.pplication’s footprint. 

Weak Interoperability 

The a.11 encompa.ssing nature of our environments, the 
isolation induced by idiosyncratic hardware, and the 
dynamicism of our language all conspired to lessen 
our interest in supporting interoperability with other 
languages and/or machines. 

We’ve certainly created connections betwee Lisp 
and other systems, but almost always in a.cl-hoc spe- 
cial purpose ways rather than building generic inter- 
operability mechanisms. There don’t seem to be any 
technical obstacles tha.t a.re greater tl1a.n those facing 
other communities -- just, less commitment on our 
past. 

No Encapsulation 
While the rest of the Software Engineering community 
has been engaged for some time in perfecting mech- 
anisms for structuring applications by dividing them 
into manageable subunits with well-defined and enfor- 
cable interfaces betwee.n them, we have continued our 

1124 INVITED TALKS AND PANELS 



pursuit of flexibility. In that pursuit, we have largely 
ignored, and failed to support, the mechanisms used 
by others for early bindings and declarations of static 
structure. We have no interface definition languages, 
encapsulation mechanisnis2, or type-safe languages. 

In the absence of such encapsulation mechanisms, 
we have no reliable means of breaking systems up into 
well-defined pieces. Hence, the understandability and 
maintainability of our systems is highly suspect, re- 
lying instead on conventions, good coding styles, and 
accurate documentation. 

Egocentric Mehtality 

Questions to be Debated 
e Do you agree that we’ve had little impact on Soft- 

ware Engineering ? If not, what major impacts do 
you think we’ve had? 
- e Do you agree that the main cause of this lack 
of impact is our isolationist technologies and ap- 
proaches? If not, what are the main causes? 

e What impacts should we have had, given the tech- 
nologic advances we’ve made? 

e What t8echnical problems should we have been ad- 
dressing in order to have had more of an impact? 

1 t is ii0 coincidence that our major commercial thrust 
is called “Expert Systcnls” rather than “Expert 
Subsystems.” We developed a technology for build- 
ing a whole generation of stand-alone systems cre- 
ated and run totally within our own technology which 
solved some complete user problem. Rather than cre- 
ating subsystems which could ea.sily fit into existing 
systems, we temporarily avoided the issue by focusing 
on problems which allowed stand-alone solutions. 

e Finally, what technical problems should we now be 
addressing, and what impacts do you foresee from 
working on those problems? 

Another real user need we’ve ignored, beyond cre- 
ating new expert subsystems and components, and 
potentially even more important, is making existing 
components smarter - that is, developing the tech- 
nologic and methodologic base for incrementally inte- 
grating knowledge or rule-based capabilities into the 
existing structure of some component. 

Marketplace Reaction to AI’s 
Isolation 

It is also no coincidence that the marketplace has 
rejected our isolationist and egocentric approach. 
They’ve demanded that both the generated expert 
system applications and the shells that produce them 
run on Unix Workstations a.nd PC!s, be coded in C (to 
improve performance and simplify interoperability), 
and be interfa.ced to the rest of the client’s system 
and the environment in which the generated compo- 
nent will operate. 

Likewise, the sponsors of the various software engi- 
neering consortia., institutes, and industrial research 
laboratories have rejected technology transfer utiliz- 
ing Lisp ba.sed systems because they don’t integrate 
or interoperate well, and because they don’t have Lisp 
knowledgeable people to maintain and evolve these 
systems. 

The commercial marketplace is moving quite 
rapidly toward adoption of a set of architectural and 
interoperability standards that support component- 
wise heterogeneity, and unless we can open up and 
unbundle our monolithic Lisp environments, we’ll find 
ourselves even more isolated and rejected. 

2 Common Lisp’s packages provide only the most prim- 
it,ive mechanisms for sepa.rat.ing the public and private 
parts of an application, but no means of enforcing tl1a.t 
separation 

BALZER 1125 


