
eveloping ‘Softw re is like Talki

John McDermott

Digital Equipment Corporation
111 Locke Drive, LMOZl/Kl 1
Marlboro, Massachusetts 01752

Context
It’s not clear to me exactly what people in AI do, but
one thing that is talked about a lot is how important
knowledge is. One of the things knowledge is sup-
posed to be good for is solving hard problems. The
idea, as I understand it, is that one characteristic of a
large set of problems is that their solutions are radi-
cally contingent on the peculiarities of the various
situations in which the problems are instantiated. To
anyone who is ignorant of most, or even many, of the
peculiarities, those problems appear hard. It is only to
an agent who has knowledge of almost all of the rele-
vant peculiarities that the problems appear straightfor-
ward

So what does this have to do with software develop-
ment? Well, Bob Balzer claims to believe at least
three things [Balzer, 901:

1. AI was expected to make software development
less hard.

2. It hasn’t.

3. The reason AI has failed is its reliance on isola-
tionist technology and approaches.

AI doesn’t own very many problems. It does own
making software development less hard. It is usual to
expect disciplines to make progress on the problems
they own. So I share Balzer’s first belief.

With respect to his second belief, it is clear that AI
has not yet done much to make software development
less hard. And AI certainly has done some things to
make software development harder. So the only diffi-
culty I have with Balzer’s second belief is that it un-
derstates the case.

The Disagreement
Would that Balzer had only two beliefs. His third be-
lief -- that AI has failed because of its reliance on iso-
lationist technology and approaches -- shows a com-
plete lack of appreciation for why we have failed. We
have failed because we can’t yet think about the soft-

1130 INVITED TALKS AND PANELS

ware development problem clearly. The problem is
essentially one of mapping from task features, de-
scribed at some appropriate level of abstraction, to
program features, described at some appropriate level
of abstraction. Or in other words, the problem is map-
ping from knowledge level objects to symbol level
objects [Newell, $01.

What we don’t yet know is what the helpful abstrac-
tions at the knowledge level and the symbol level are.
IIappily, a whole bunch of work in AI is focused on
just this question (eg, [Bachant, 891, [Clancey, 891,
Lowry, 891, warcus, 881, McDermott, 891, musen,
891, wch, 901, [Yost, 891. Over the past decade or so,
the concept of rapid prototyping as au aid to software
development has come into vogue. The idea is, of
course, a wonderful one -- probably forever, but for
sure in these primitive times when we don’t yet know
even how to talk about either tasks or programs in a
way that doesn’t obscure the mapping from the one to
the other. Rapid prototyping is helpful because, given
an approximation to a desired program, users can at
least point to inadequacies the program has. Soon,
hopefully, we will be able to communicate with words
-- with words for patterns which at the moment we
don’t know we see.

An Example
I’ve recently come across a piece of work that is mov-
ing us exactly toward where I think we have to go
moth, 90a; Roth, gob]. I’m going to give an example
from this research to try to convey at least the spirit of
the enterprise. The focus of the work has been on how
to automate the design and graphical presentation of
information. The system developed, SAGE, is an in-
telligent interface which receives information from an
application program and designs a combination of
graphics and text that effectively conveys that infor-
mation. SAGE embodies a way of thinking about in-
formation and about users’ goals, and a way of think-
ing about graphical displays, that makes the mapping
from one to the other fairly straightforward.

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

Figure I Information Provided to SAGE

Data
Activities

Activitv
Act- 1
Act-2
Act-4

.

Start-Date
34
2
30
. .

End-Date
38
16
34
. .

Duration
4
12
4
. .

Departments

Department
CAD-Dept
Structural-Dept
Assembly-Dept

Resoonsible- for
Act-l, Act-2, Act-4, . . .
Act-19, Act-20, Act-23, . . .
Act-33, Act-34, . . .

Objects & Relations
Domain

Department
Activity
Activity
Activity

Relation
Responsible-for
Start-date, End-date
Duration
Requires

Characterization of Objects
Object & Sets Ordering

Department Nominal
Activity Nominal

Resource Nominal
Date Quantitative
Number-of-weeks Quantitative

Characterization of Relations
Relation

Responsible-for
Start-date, End-date, Duration
Requires

Coverage
No
Yes
Yes

Range
Activity
Date
Number-of-weeks
Resource

Coordinate/Amount
--
SW
mm

Coordinate
Amount

Cardinality
Varied

1
1

Characterization of Relationships Among Relations
Relation&h Role Relation

Interval Beginning Start-date
Size Duration
End End-date

Characterization of User’s Goals
Goal

Visualize-correlation
Relations

Responsible-for
Start-date, End-date
Duration
Requires

Resource
Sun
TI

Sun
. .

Domain
--
--
--

Time
Time

Uniuueness
Yes
No
No

MCDERMOTT 113 1

SAGE attends to the following four kinds of task fea-
tures:

1. features which distinguish the kiuds of informa-
tion each graphical technique can express,

2. features which order graphical tee es based
on how effective they are at conveying different
information,

3. features which define users’ purposes,

4. features which determine how information should
be integrated within a display.

SAGE has a language for describing graphical displays
and information which it uses to automatically pro-
duce many complex, creative pictures through the
synthesis of simple techniques. Eigure 2 iilustrates the
kind of picture SAGE can compose. l?igure 1 displays

Inthiscase, to SAGE come from a query to
a project m nt database. ‘Ibe manager who
made the query was considering how to allocate com-

ents for an upcoming pro-
d included the departments
the activities they would be

startdates, end-dates, du-
sources. FQure 1, in addi-

tion to showing the information retrieved from the
project management database, contains a number of
&a characterizations. These data c.bimc~rizations --
information about what fatures of the task have rele-
vance -- provide SAGE with precisely the information
it needs in order for it to exploit its knowledge of how
to compose pictures.

The example illustrates what it means to have helpful
abstractions at the knowledge level and at the symbol

the input that allowed SAGE to compose that picture. level:

Figure 2

Orgrnizrtlonal Divfrlono
and Activlth

CAD-Dept
Act-l
Act-2
Act-4
Act-5
Act-6
Act-8
Act-9
Act-10
Act-l 2

Structural-Dept
Act-19
Act-20
Act-22
Act-23
Act-24
Act-27

Assembly-Dept
Act-33
Act-34
Act-35
Act-43
Act-47
Act-50
Act-80
Act-8 1
Act-82

The Picture Produced by SAGE

Wnkr into Project

0 4 8 12 16 20 24 26 32 36 40 44
I I a I1 I I I1 a I I I * . . I. 0 * fi I n

.

. . . .

. . . i&&q; ;
i;:.;:i.;R:i:~~::::::::‘.:.‘r.:.:. :.:::::::~::.::i:.:~:i:..::~ .,: i..: .: :. ‘_

;
. .

.

. :

.

.

.

.

.

. .

.
. . .

. . . .

.
U: .

0 A&~. ..:.;.:.,.: 0 i .;::s:i .:: ; :
UiaoVAX Sm lbEaplocor i

. ..~

1132 INVITED TALKS AND PANELS

knowing that resources comprise nominal (unor-
dered) sets and that number-of-weeks is quantita-
tive enables SAGE to use color for the requires
relation, but not for the duration,

knowing that dates refer to time enables SAGE to
honor the convention that time is visualized hori-
zontally, not vertically,

knowing that the responsible-for relation maps
“uniquely” to activities (ie, each activity is associ-
ated with one department) enables the hierarchi-
cal representation of the vertical axis,

knowing that the goal is to see the correlations
among all the relations leads SAGE to encode
them using different properties of a single graphi-
cal object: the color, vertical and horizontal posi-
tion, and length of interval bars; (SAGE also can
infer that the bars’ vertical position reflects the
department associated with each activity),

knowing that start-date, end-date and duration
comprise an interval, enables SAGE to integrate
them as such in a single bar,

The knowledge that SAGE has that allows it to exploit
the data characterizations includes

constraint knowledge: for example, representing
resources using different shapes instead of colors
would have prevented display integration, be-
cause the interval bars are already constrained in
shape; SAGE considers spatial and other graphi-
cal constraints when searching for a way to inte-
grate a picture,

picture organizational knowledge: for example, in
the absence of direct goals to the contrary, SAGE
used the order in which the relations were re-
quested to determine that it should index (organ-
ize) the picture by department rather than by a
different property (eg, resource),

effectiveness knowledge: for example, SAGE
knows that color is good for distinguishing
among three resources, but not twenty.

Conclusion
AI almost has it within its grasp to make software de-
velopment easier. Though it probably wouldn’t hurt if
we were less isolationist, the primary thing we need to
do is identify helpful abstractions for knowledge level
and symbol level objects so that program pieces can
identify and compose themselves on the basis of im-
mediately salient characteristics of tasks. If we look at
our past just right, it’s clear this is work we’ve been

preparing ourselves for for decades. Now it’s time to
do something about it.

References
[Bachant, 891 Bachant, J., and E. Soloway. The Eugi-
neering of XCON. Communication of the ACM, 32,3,
1989.

palzer, 901 Balzer, R. AI and Software Engineering --
will the Twain Ever Meet? Proceedings of the Eighth
Conference of the American Association for Artificial
Intelligence, Boston, Massachusetts, 1990 -- or if not
there, personal communication

[Clancey, 891 Clancey, W. J. The Knowledge Level
Reinterpreted: Modeling How Systems Interact. Ma-
chine Learning, 4,3/4,1989.

[Lowry, 891 Lowry M., and R. Duran. Knowledge-
Based Software Engineering. Handbook of Artificial
Intelligence, Vol. 4, Addison-Wesley, 1989.

[Marcus, 881 Marcus, S. (ed). Automating Knowledge
Acquisition for Expert Systems. IUuwer, 1988.

NcDermott, 891 McDermott, J. The World Would Be
a Better Place if Non-Programmers Could Program.
Machine Learning, 4,314, 1989.

wusen, 891 Musen, M. Automated Support for Build-
ing and Extending Expert Models. Machine Learning,
4,3/4,1989.

wewell, 811 Newell, A. ‘Ihe Knowledge Level. Al
Magazine, 2,1,1981.

[Rich, 901 Rich, C., and R. Waters. The Programmer’s
Apprentice. Addison-Wesley, 1990.

[Roth, 9Oa] Roth, S. and J. Mattis. Automatic Graphic
Presentation for Production and Operations Manage-
ment Systems. Proceedings of the Fourth International
Conference on Expert Systems, Hilton Head Island,
South Carolina, May, 1990.

@oth, 9Ob] Roth, S. and J. Mattis. Data Characteriza-
tion for Intelligent Graphics Presentation. Proceedings
of the Conference on Computer Human Interaction,
Seattle, Washington, April, 1990.

post, 891 Yost, G. and A. Newell. A Problem Space
Approach to Expert System Specification. Proceedings
of the Eleventh International Joint Conference on Arti-
ficial Intelligence, Detroit, Michigan, 1989.

MCDERMOTT 1133

