
Improving Rule- 
through Case-Base 

Andrew R. Golding 
KSL/Stanford University 

701 Welch Road 
Palo Alto, CA 94304 

Abstract 
A novel architecture is presented for combining 
rule-based and case-based reasoning. The central 
idea is to apply the rules to a target problem to 
get a first approximation to the answer; but if the 
problem is judged to be compellingly similar to 
a known exception of the rules in any aspect of 
its behavior, then that aspect is modelled after 
the exception rather than the rules. The archi- 
tecture is implemented for the full-scale task of 
pronouncing surnames. Preliminary results sug- 
gest that the system performs almost as well as 
the best commercial systems. However, of more 
interest than the absolute performance of the sys- 
tem is the result that this performance was better 
than what could have been achieved with the rules 
alone. This illustrates the capacity of the architec- 
ture to improve on the rule-based system it starts 
with. The results also demonstrate a beneficial 
interaction in the system, in that improving the 
rules speeds up the case-based component. 

1 Introduction 
One strategy for improving the performance of a rule- 
based system is simply to extend its rule set. For many 
real-world domains, however, this strategy reaches a 
point of diminishing returns after awhile. The work 
reported here takes an alternative approach: it per- 

‘This research was sponsored by NASA under coopera- 
tive agreement number NCC 2-538, and by a Bell Laborato- 
ries PhD fellowship to the first author. Computer facilities 
were partially provided by NIH grant LM05208. The views 
and conclusions contained in this document are those of the 
authors and should not be interpreted as representing the 
official policies, either expressed or implied, of NASA, the 
US Government, Bell Laboratories, or the National Insti- 
tute of Health. The authors would like to thank the Speech 
Technology Group at Bellcore, especially Murray Spiegel, 
for their valuable assistance in this research. We are also 
grateful to Pandu Nayak for helpful discussions on the ideas 
of this paper, and to Ross Quinlan and the AAAI reviewers 
for useful comments on drafts of this paper. 

Finally, it should be mentioned that the system presented 
here was originally implemented in and shaped by the Soar 
architecture [Laird et ad., 19871. The Soar influence will 
not be discussed explicitly in this paper, however. 

au1 S. osenbloorn 
ISI/University of Southern California 

4676 Admiralty Way 
Marina de1 Rey, CA 90292 

forms rule-based reasoning (RBR) with whatever im- 
perfect rules are available, and supplements the rules 
with case-based reasoning (CBR). This enables the sys- 
tem to tap into a knowledge source that is often more 
readily available than additional rules; namely, sets of 
examples from the domain. 

The viability of this approach depends on whether 
adding CBR will actually provide improved coverage of 
the domain, or merely redundant coverage. Section 3.2 
below presents experimental evidence that in fact it 
provides improved coverage. The reason is that rules 
and cases have complementary strengths. Rules cap- 
ture broad trends in the domain, while cases are good 
at filling in small pockets of exceptions in the rules. 

The hybrid strategy is not the only way to incorpo- 
rate both rules and cases into the system. An alterna- 
tive is to convert all the cases into rules, or vice versa, 
and then work in a single representation. Either direc- 
tion of the conversion has its pitfalls, however. Con- 
sider first converting a case into rules. The conversion 
must preserve the functionality that the case, in its 
CBR framework, provides. Each case effectively gives 
rise to a rule every time an analogy is drawn from it, 
as behind every analogy is an implicit rule. We could 
therefore represent the case by the set R of all rules 
that it could ever give rise to. However, R may be 
huge, as the case could produce subtly different rules 
for each target problem to which it is analogized. On 
the other ha.nd, if we leave the case as a case, we only 
generate rules for target problems that we actually en- 
counter. To economize, we might replace the plethora 
of rules in R with fewer, more general rules. Induction 
programs do this by generalizing over multiple cases; 
this yields across-case economies as well. But no mat- 
ter how we do it, we are generalizing further than CBR 
would have generalized from the original case, thus we 
run the risk of overgeneralization. 

Converting in the opposite direction has analogous 
problems. The conversion from a rule into a set C 
of cases must preserve the rule’s coverage. That is, 
we must pick C such that for each case covered by 
the rule, its nearest neighbor is one of the cases in 
C, according to the similarity metric being used. The 
only set C that is guaranteed to do this is the full 
set of cases covered by the rule; but it is likely to be 
huge, assulning it can be generated at all. If we pare 

22 CASE-BASED REASONING 

From: AAAI-91 Proceedings. Copyright ©1991, AAAI (www.aaai.org). All rights reserved. 



down C, we run the risk that one of the cases that 
we delete will be misrepresented. This is because it 
is unpredictable what the case’s nearest neighbor will 
be in the long run, as further cases are added to the 
case library. In short, converting either way between 
rules and cases will tend to produce an inefficient or 
unreliable representation. The degree to which this 
happens, and can be tolerated, determines whether it 
is better to convert or to adopt a hybrid approach. 
In certain domains, the conversion from cases to rules 
has been shown feasible by induction programs. But 
the conversion will leave us with two sets of rules - 
the original set, and the set derived from cases. The 
two sets must then be integrated, just as rules and 
cases must be integrated in a hybrid system. Thus 
even when it is feasible, induction solves only part of 
the problem. It leads to an approach of conversion 
followed by rule integration (see section 4). 

The approach taken here has been cast as a general 
architecture for combining RBR and CBR. The archi- 
tecture is presented in section 2. The architecture has 
been implemented for the full-scale task of pronouncing 
names. Experimental results for this implementation 
are given in section 3. In section 4, the architecture 
is compared with alternative methods for combining 
RBR and CBR. The final section is a conclusion. 

2 The Architecture 
The central idea of the architecture for combining RBR 
and CBR is to apply the rules to a target problem to 
produce a default solution; but if the target problem is 
judged to be compellingly similar to a known exception 
of the rules in any aspect of its behavior, then that 
aspect is modelled after the exception rather than the 
rules. Problem solving in this architecture is done by 
applying operators to the problem until it is solved. 
The central idea above is therefore realized through 
the following procedure: 

Until the target problem is solved do: 
(a) Use the rules to select an operator to apply. 
(b) Search for analogies that would contradict 

this choice of operator, stopping if and when 
a compelling analogy is found.2 

(c) If a compelling analogy was found, apply the 
operator it suggests, else proceed to apply 
the operator suggested by the rules. 

Underlying this procedure is the assumption that the 
rules are decent to begin with. If they are very slow, 
then the system will suffer when they are a,pplied in 
step (a). If they are highly inaccurate, then the system 

21f there are multiple compelling analogies for different 
operators, this procedure will only find the first one. This 
will not result in a wrong answer, unless there is an incon- 
sistency in the case library or the definition of compelling- 
ness. It merely will miss the other acceptable answers cor- 
responding to the unchosen analogies. 

will get bogged down overriding them in step (b). In 
such cases, some alternative architecture is called for, 
such as one that looks for compelling analogies first, 
and only consults the rules if none is found. 

In the next section, we describe the knowledge 
needed for the procedure above. We then elaborate 
on the major aspects of the procedure itself: indexing 
the cases for use in analogies, proposing the analogies, 
and deciding when an analogy is compelling. 

2.1 Knowledge Sources 

The architecture itself is domain-independent; its do- 
main knowledge comes from three external sources: a 
set of rules, a case library, and a similarity metric. The 
rules specify an operator to apply in every problem- 
solving state. The case library is a collection of cases, 
where a case consists of a problem, its answer, and the 
chain of operators by which the answer was derived.3 
The similarity metric gauges the similarity between 
two problems for purposes of applying a particular op- 
erator. It will be discussed further in section 2.3. 

2.2 Indexing 

The role of CBR in the architecture is to improve the 
performance of the rules. It follows that the only cases 
from which useful analogies can be drawn are the ex- 
ceptions, i.e., the cases that violate the rules. Cases 
that confirm the rules do not lead to any new behav- 
iors. Moreover, the only time an exception is useful is 
when the rule that it violates actually fires. At that 
point, it becomes relevant to ask whether the exception 
should override the rule. These considerations lead to 
the indexing scheme of storing each case as a negative 
exemplar of the rules that it violates. To determine 
which rules these are, we basically apply RBR to the 
case as if it were a new problem. If, in the process, a 
rule R says that a certain operator should apply, but 
the case library specifies that in fact some other opera- 
tor was applied, then the case violates rule R. It turns 
out to be useful to store each case also as a positive 
exemplar of the rules that it confirms - this will help 
later in judging compellingness (see section 2.4). We 
call this scheme prediction-based indexing (PBI), be- 
cause effectively, an exemplar is indexed by the features 
that the rules looked at in order to to predict which op- 
erator to apply. This is like explanation-based indexing 
[Barletta and Mark, 1988], except that there the rules 
are used to explain an observed outcome, rather than 
to make their own prediction of the outcome. 

Example For ease of exposition, we will illustrate 
the architecture not for name pronunciation, but for a 
toy version of a problem in auto insurance: to assess 
the risk of insuring a new client. Problem solving con- 
sists of applying just one operator, either high or low, 

3Actually, the chain of operators need not be specified; 
the architecture can infer it from the problem/answer pair 
by a process of rationcal reconstruction [Golding, 19911. 

GOLDING & ROSENBLOOM 23 



If occ(C) = student then low ; ‘Student’ rule 
elseif sex(C) = M and 

age(C) < 30 then high ; ‘Young driver’ rule 
elseif age(C) 2 65 then high ; ‘Old driver’ rule 
else low ; ‘Default’ rule 

Figure 1: The rules in the toy auto-insurance example. 
C stands for a client. 

which asserts the level of risk of the client. The full set 
of rules is shown in Figure 1. A client is represented as 
a feature vector; Figure 2 gives some examples. The 
case library contains 23 cases. Each case specifies a 
client and the operator applied to that client, either 
high or low. The cases are derived (conceptually) from 
the insurance history of past clients. 

To illustrate PBI, we consider the first client in the 
case library, Johnson. Suppose that he is listed as 
having had the high operator applied. The first step 
of PBI is to see what the rules would have predicted. 
They predict low by the ‘student’ rule. Since this dis- 
agrees with the case library, Johnson is stored as a 
negative exemplar of the ‘student’ rule. As a second 
example, consider the client Davis, whom we will sup- 
pose is listed as low in the case library. Again the ‘stu- 
dent’ rule applies, but this time its prediction agrees 
with the case library. So Davis is listed as a positive 
exemplar of the ‘student’ rule. 

2.3 Proposing Analogies 
Proposing analogies is done by applying the similarity 
metric. The metric takes three arguments: the source 
and target problems, and the operator to be trans- 
ferred from source to target. The opera.tor establishes 
a context for comparing the problems. Given these 
three arguments, the metric returns two values: a nu- 
merical rating of the similarity (the similarity score), 
and the implicit rule behind the analogy (the arule). 
The left-hand side of the arule gives the features that 
were judged by the metric to be shared by the two 
problems, and the right-hand side gives the operator- 
to-be-transferred. The arule will be used for judging 
whether the analogy is compelling (see section 2.4). 
Example Continuing with the insurance example, 
suppose the system is asked to evaluate the risk of 
client Smith (see Figure 2). It starts by applying the 
rules to Smith. The ‘student’ rule matches, suggesting 
the low operator. Before accepting this conclusion, the 
system checks for analogies from negative exemplars of 
the rule. As we saw earlier (section 2.2), Johnson is one 
such negative exemplar. Application of the similarity 
metric for this domain to Johnson and Smith (with 
respect to the high operator) yields the arule: 

If addrl(C) = Sigma Chi and 
addr2(C) = Stanford, CA and sex(C) = M 
and age(C) < 30 and occ(C) = student 

then high. 

24 CASE-BASED REASONING 

Name Smith Johnson Davis 
AddrP Sigma Chi Sigma Chi Toyon Hall 
Addr2 Stanford, CA Stanford, CA Stanford, CA 

Sex M M F 
Age 21 19 22 
Occ student student student 

Make Chevrolet BMW Toyota 
Value 2,500 30,000 3,000 

Target Case #l Case #6 

Figure 2: Selected clients in the insurance example. 

This arule expresses the features shared by Johnson 
and Smith, according to the metric. The metric is very 
simplistic in this toy-domain. It compares correspond- 
ing text fields of the two clients via literal comparison. 
For numeric fields, it checks whether the two numbers 
fall within the same interval of a predefined set of in- 
tervals. It assigns similarity scores by counting the 
conditions in the arule; here the score is 5. 

2.4 Deciding Compellingness 

Rather than accepting an analogy purely on the basis 
of its similarity score, the system subjects it to induc- 
tive verification. This entails testing out the arule of 
the analogy on all relevant exemplars - both negative 
and positive - in the case library. The test returns two 
results: the arule’s accuracy, that is, the proportion of 
cases it got right; and the significance of the accuracy 
rating, which is 1 minus the probability of getting that 
high an accuracy merely by chance. The analogy is 
then said to be compelling iff (1) its similarity score 
is high enough, (2) its accuracy is high enough, and 
(3) either its accuracy rating has a high enough signif- 
icance, or its similarity score is extremely high. The 
latter disjunct is an escape clause to accept analogies 
between overwhelmingly similar problems, even if there 
are not enough data for a significant accuracy reading. 
All “high enough” clauses above are implemented via 
comparison with thresholds. The thresholds are set by 
a learning procedure that generates training analogies 
for itself from the case library [Golding, 19911. 

Example Consider again the analogy from Johnson 
to Smith. Should it be judged compelling? To de- 
cide, the system first runs an inductive verification. It 
turns out that the arule applies to four clients in the 
database: Johnson and three others. Three of them are 
listed as high risk, one as low. This gives an accuracy 
of 3/4. The significance of this accuracy rating works 
out to be 0.648. Also, as mentioned earlier, the simi- 
larity score of the analogy is 5. The thresholds in this 
domain have been set to 3 for the similarity score, 0.75 
for accuracy, and 0.50 for significance.4 Thus the anal- 

*These thresholds were set by hand rather than by the 
usual learning procedure, because the toy domain has too 
few cases to apply the learning procedure meaningfully. 



ogy is deemed compelling, although it was marginal in 
the accuracy department. The upshot is that Smith is 
assessed as high risk, by analogy to a similar high-risk 
student from the same fraternity. 

3 Experhental Results 

The architecture described here was developed in the 
context of Anapron, a system for pronouncing sur- 
names. In particular, the architecture was applied to 
two subtasks of pronunciation: transcription and stress 
assignment. Transcription converts a spelling into a 
string of phonetic segments. Stress assignment places 
a level of emphasis on each syllable. Although there 
has been little work on pronunciation within the CBR 
community - with a few notable exceptions [Lelmert, 
1987; Stanfill, 1987]- the domain was selected for the 
present research for several reasons. First, both rules 
and cases are already available; rules have been de- 
veloped in previous pronunciation efforts [Hunnicutt , 
19761, and case libraries can be derived from pronounc- 
ing dictionaries of names. This makes the domain 
amenable to the hybrid rule/case approach. Second, 
pronouncing names in particular is an open problem 
[Mlatt, 19871, due to the unique etymology and mor- 
phology of names. To give an idea of the size of the 
system, there are 619 transcription rules and 29 stress 
rules, covering five major languages. There are 5000 
cases in the system, derived from a name dictionary of 
the same size. Below we give results on the overall level 
of performance of the system, and on the contribution 
of RBR and CBR to this performance. 

3.1 Overall Performance5 

To establish the initial credibility of the architecture 
for the pronunciation domain, we include here the re- 
sults of a pilot study comparing Anapron with six 
other name-pronunciation systems: three state-of-the- 
art commercial systems (from Bell Labs, Bellcore, and 
DEC), one machine-learning system (NETta.11; [Se- 
jnowski and Rosenberg, 19871, trained on Anapron’s 
name dictionary), and two humans. Each system was 
run on a test set of 400 names, and the acceptability of 
its pronunciations was measured. This 1la.d to be done 
by taking a poll of public opinion, as there is no ob- 
jective standard for surname pronunciations. To hide 
the identities of the systems in the poll, the order of 
systems was randomized for each test name, and a.11 
pronunciations were read by the DECtalk speech syn- 
thesizer. The pilot study was conducted on just one 

‘The authors gratefully acknowledge the assistance on 
this experiment of the following people: Cecil Coker at Bell 
Labs, Murray Spiegel at Bellcore, and Tony Vitale at DEC, 
for supplying data from their systems; Tom Dietterich, for 
providing the non-copyrighted portion of NETtalk; John 
Laird, for providing a fast machine for training NETtalk; 
Mark Liberman, for making the test set of names available; 
and Connie Burton, for providing access to DECtalk. 

83 92 93 
v- 

Anapron Humans 

Figure 3: Results of pilot study comparing seven name- 
pronunciation systems. Each line marks the percent- 
age of acceptable pronunciations for one system. The 
scale goes from 50% to 100%. 

test subject; at this point, the exact numbers in the 
results should not be taken too seriously. 

The test set for this experiment was drawn from the 
Donnelly corpus, a database of over 1.5 million sur- 
names in the US. The names in Donnelly raage from 
extremely common (Smith, which occurs in 676,080 
households) to extremely rare (Chavriacouty, which 
occurs in 1 household). The test set contains 100 
randomly selected names from each of four points 
along this spectrum: names that occurred in about 
2048 households, 256 households, 32 households, and 1 
household. Rare names are known to be harder to pro- 
nounce than common ones. The test set therefore rep- 
resents a fairly challenging cross-section of Donnelly. 
Results The results of the pilot study are shown in 
Figure 3. The identities of most systems have been 
omitted due to the preliminary nature of the results. 
The initial indications are that Anapron performs near 
the level of the best commercial systems, which is 
barely short of human performance. One reason that 
the commercial systems may outperform Anapron is 
simply that they have better rules. Presumably, giv- 
ing these same rules to Anapron would help its perfor- 
mance; moreover, the point of Anapron is that it can 
then achieve further gains by leveraging off CBR. 

3.2 The Contribution of RBR and CBR 
An experiment was run on Anapron to evaluate the 
effect of combining RBR and CBR in practice. The 
results can be taken as one example of how the archi- 
tecture behaves when instantiated for a task. The ex- 
periment involved independently varying the strength 
of the rules and of the case library, and observing how 
system performance was affected on a particular test 
set. The rules were set to four different strengths: 0, 
l/3, 2/3, and 1. Strength 1 means that all rules were 
retained in the system; 0 means that all rules were 
deleted, except default rules.6 As strength decreases 

‘The rules are arranged in a partial order by specificity; 
more specialized rules take precedence over more general 
ones. A default rule is one that is maximally general. Such 
a rule must not be deleted, otherwise the system will no 
longer be guaranteed to produce an answer for every prob- 
lem. Default rules constitute 137 of the 619 transcription 
rules and 16 of the 29 stress rules. 

GOLDING & ROSENBLOOM 25 



Table 1: System accuracy results. Each value is the 
percentage of names in the test set for which the system 
produced an acceptable pronunciation. 

from 1 to 0, we delete proportionately more rules. Each 
weakening deletes a random subset of the non-default 
rules in the previous rule set. As for the case library, 
it was set to six different strengths: 0, 1000, 2000, 
3000,4000, and 5000. The strength is just the number 
of names included in the case library. Each weakening 
deletes an arbitrary subset of the previous case library. 

System performance was measured by two param- 
eters: accuracy and run time. Accuracy is the per- 
centage of names in the test set for which the system 
produced an acceptable pronunciation. The same 400- 
name test set was used as in the previous experiment, 
except that the names were chosen to be disjoint from 
the case library. This time the decisions of acceptabil- 
ity were made by a single, harsh human judge (the 
first author). 7 All judgements were cached and reused 
if a pronunciation recurred, to help enforce consistency. 
The other parameter of system performance, run time, 
is just the average time, in seconds, for the system 
to pronounce a name in the test set. The data are 
for the system running in CommonLisp on a Texas 
Instruments Microexplorer with 8M physical memory, 
and are inclusive of garbage collection and paging. 

Accuracy Results System accuracy, for each com- 
bination of rule and case strength, is shown in Table 1. 
The important result is that accuracy improves mono- 
tonically as rule or case strength increases. The total 
improvement in accuracy due to adding rules is be- 
tween 32% and 38% of the test set (depending on case 
strength). For cases it is between 12% and 17% (de- 
pending on rule strength). This shows that by combin- 
ing rules and cases, the system achieves a higher ac- 
curacy than it could with either one alone - both are 
essential to the accuracy of the combined system. This 
suggests dual views of the architecture: as a means 
of improving rule-based systems through CBR, or im- 
proving case-based systems through RBR. 

Run-time Results Table 2 gives the results on run 
time. The interesting point here is that when the case 
library is large, adding rules to the system actually de- 

‘The resulting scores are not directly comparable to 
those in section 3.1, primarily because the judge there ap- 
plied native-speaker intuitions to the spoken pronuncia- 
tions, whereas the first author applied more formal notions 
of acceptability to the written transcriptions. 

26 CASE-BASED REASONING 

Table 2: System run-time results. Each value is the 
average time, in seconds, for the system to pronounce 
a name in the test set. 

creases run time. For example, with the case library 
at size 5000, increasing the rules from strength 0 to 
1 lowers run time from 10.2 to 7.2 seconds per name. 
The basic reason is that adding rules to the system 
improves the overall accuracy of the rules, barring so- 
ciopathic effects. When the rules are more accurate, 
they will have fewer exceptions. This translates into 
fewer negative exemplars, and thus fewer opportuni- 
ties to draw analogies. The forgone analogies result in 
a corresponding savings in run time. In short, adding 
rules to the system speeds up the CBR component. 
This shows that RBR and CBR do not merely coexist 
in the system, they interact beneficially. 

4 Related Work 
A number of other methods have been proposed in the 
literature for combining RBR and CBR. They fall into 
two basic classes, according to whether their rules and 
cases are independent, or whether one was derived from 
the other. The primary motivation for the former class 
of systems is to maximize accuracy by exploiting multi- 
ple knowledge sources. For the latter class of systems, 
it is to express their knowledge in whatever form will 
make problem solving most efficient. 

The systems whose rules and cases were derived from 
each other can be further classified according to which 
knowledge source was derived from which. Most CBR 
systems that include a rule component [Koton, 1988; 
Hammond and Hurwitz, 1988, etc.] have cases that 
are derived from their rules. The cases are records 
of how the rules were applied to particular examples 
encountered previously. By reasoning from cases, the 
systems bypass the potentially lengthy process of solv- 
ing a new problem from scratch via the rules. The 
systems whose rules are derived from their cases ex- 
tract the rules by some generalization procedure. The 
systems must still keep the cases around, because their 
rules do not encode all of the knowledge in the cases. 
The rules in these systems can serve various purposes, 
such as enabling a more compact representation of the 
data [Quinlan and Rivest, 19891, or providing more ef- 
ficient access to the cases [Allen and Langley, 19901. 

Systems utilizing independent rules and cases are 
much closer in spirit to the system described here. 
Again the systems fall into two groups. In the first 
group [Rissland and Skalak, 1989; Branting, 19891, the 



focus is on deciding how and when it is appropriate to 
invoke RBR and CBR. For example, CABARET [Riss- 
land and Skalak, 19891 uses heuristics for this purpose. 
These systems do not try to reconcile conflicts between 
RBR and CBR, they merely report all of the evidence. 

In the second group of systems, the focus is on rec- 
onciling the conclusions of RBR and CBR. Anapron 
falls into this group, and so does MARS [Dutta and 
Bonissone, 19901. MARS represents cases not as cases 
per se, but as rules derived from the cases. It ac- 
quires these rules from written documents via natural- 
language processing. The documents in MARS’s do- 
main of mergers and acquisitions are the rulings of the 
judges who decided each case. Once everything is rep- 
resented as rules, MARS is able to aggregate the evi- 
dence from multiple rules using possibilistic reasoning. 
This requires that each rule specify a level of necessity 
and sufficiency with which its conclusion is implied. 
Thus MARS takes the approach mentioned earlier (see 
section 1) of converting cases to rules, and then inte- 
grating the derived and original rules. 

The fundamental difference between MARS and 
Anapron is that MARS specifies the knowledge 
for drawing analogies on a per-case basis, whereas 
Anapron specifies it all at once in a more general 
form. That is, in MARS, each case is written as a 
rule that says which of its features must match the tar- 
get problem; it also gives necessity/sufficiency values 
that specify its strength for purposes of aggregation. 
In Anapron, the similarity metric gives the equiva- 
lent knowledge for matching cases and evaluating their 
strength. This indicates that the two systems are ap- 
propriate in different situations. When it is practical 
to do the knowledge engineering of cases that MARS 
requires, MARS is appropriate. When it is practical 
to specify a similarity metric, Anapron is appropriate. 

5 Collclusion 
A general architecture was presented for improving the 
performance of rule-based systems through CBR. The 
motivation for turning to CBR was that cases are of- 
ten easier to obtain than additional rules. The ar- 
chitecture was implemented for the full-scale problem 
of name pronunciation. Preliminary results indicate 
that the system performs near the level of the best 
commercial systems. However, this only reflects how 
the system does with its current rules and cases. The 
more significant finding was that the system could not 
have achieved this level of accuracy with its rules alone. 
This illustrates the capacity of the architecture to im- 
prove on the rule-based system it starts with. The 
results also showed that RBR and CBR interact ben- 
eficially in the system, in that improving the rules 
speeds up CBR. Finally, the architecture fills a new 
niche among rule/case hybrids - it is an accuracy- 
improving system; it focuses on reconciling the conclu- 
sions of RBR and CBR; and it requires weak domain 
knowledge in the form of a similarity metric, instead 

of complex knowledge engineering of the case library. 
Directions for future work include improving the sys- 

tem for pronunciation; applying the architecture to 
other domains; allowing the system to save its arules; 
and generating similarity metrics automatically. 

eferences 
John A. Allen and Pat Langley. A unified framework 

for planning and learning. In Proc. of Work. on 
Innovative Approaches to Planning, Scheduling, and ’ 
Control, San Diego, 1990. Morgan Kaufmann. 

Ralph Barletta and William Mark. Explanation-based 
indexing of cases. In Proceedings of the CBR Work- 
shop, Clearwater Beach, 1988. 

L. Karl Branting. Integrating generalizations with 
exemplar-based reasoning. In Proceedings of the 
CBR Workshop, Pensacola Beach, 1989. 

Soumitra Dutta and Piero Bonissone. Integrating case 
based and rule based reasoning: The possibilistic 
connection. In Proceedings of the Sixth Conference 
on Uncertainty in Artificial Intelligence, July 1990. 

Andrew R. Golding. Pronouncing Names by a Com- 
bination of Case-Based and Rule-Based Reasoning. 
PhD thesis, Stanford University, 1991. Forthcoming. 

Kristian J. Hammond and Neil Hurwitz. Extracting 
diagnostic features from explanations. In Proc. of 
CBR Workshop, Clearwater Beach, 1988. 

Sharon Hunnicutt. Phonological rules for a text-to- 
speech system. American Journal of Computational 
Linguistics, 1976. Microfiche 57. 

Dennis H. Klatt. Review of text-to-speech conversion 
for English. J. Acoust. Sot. Am., 82(3), 1987. 

Phyllis Koton. Reasoning about evidence in causal ex- 
planations. In Proc. of AAAI-88, St. Paul, 1988, 

John E. Laird, Allen Newell, and Paul S. Rosenbloom. 
Soar: An architecture for general intelligence. Arti- 
ficial Intelligence, 33, 1987. 

Wendy G. Lehnert. Case-based problem solving with a 
large knowledge base of learned cases. In Proceedings 
of AAAI-87, Seattle, 1987. 

J. Ross Quinlan and Ronald L. Rivest. Inferring de- 
cision trees using the minimum description length 
principle. Information and Computation, 80, 1989. 

Edwina L. Rissland and David B. Skalak. Combining 
case-based and rule-based reasoning: A heuristic ap- 
proach. In Proc. of IJCAI-89, Detroit, 1989. 

Terrence J. Sejnowski and Charles R. Rosenberg. Par- 
allel networks that learn to pronounce English text. 
Complex Systems, 1, 1987. 

Craig W. Stanfill. Memory-based reasoning applied to 
English pronunciation. In Proceedings of AAAI-87, 
Seattle, 1987. 

GOLDING & ROSENBLOOM 27 


