
Hinrichs and Janet slodner
School of Information and Computer Science

Georgia Institute of Technology
Atlanta, Georgia 30332

Abstract
Many design tasks have search spaces that are vague
and evaluation criteria that are subjective. We present
a model of design that can solve such problems using
a method of plausible design adaptation. In our ap-
proach, adaptation transformations are used to mod-
ify the components and structure of a design and con-
straints on the design problem. This adaptation pro-
cess plays multiple roles in design: 1) It is used as
part of case-based reasoning to modify previous de-
sign cases. 2) It accommodates constraints that arrive
late in the design process by adapting previous deci-
sions rather than by retracting them. 3) It resolves
impasses in the design process by weakening prefer-
ence constraints. This model of design has been im-
plemented in a computer program called JULIA that
designs the presentation and menu of a meal to satisfy
multiple, interacting constraints.

Introduction
In Artificial Intelligence, design has typically been clas-
sified as being either the selection of components to
instantiate a skeletal design [Ward & Seering, 19891,
the configuration of a given set of components
[McDermott, 19801, the fixing of numerical param-
eters [Brown & Chandrasekaran, 1985, Mittal &
Araya, 19861, or the construction of designs from
scratch [Tong, 19881. While useful for routine sorts
of design, these rigid classifications do not begin
to capture the flexibility that real designers exhibit
[Goel & Pirolli, 19891. For high-level conceptual de-
sign especially, these tasks are often inseparable.

In addition, many design tasks are ill-defined; they
have search spaces that are vague and evaluation crite-
ria that are subjective. This is in part because design
categories may be defined not in terms of necessary
and sufficient conditions, but instead by experience
and expectations. For such tasks, it is unreasonable
to assume that a designer can systematically enumer-
ate possible designs. Architectural design, for example,

*This research was funded in part by NSF Grant No.
IST-8608362, in part by DARPA Grant No. F49620-88-C-
0058

28 TRANSFORMATION IN DESIGN

cannot easily be reduced to searching a discrete prob-
lem space of alternative configurations or components.

Moreover, real-world designs may have requirements
that change over time. In fact, for relatively complex
problems such as architectural or aerospace design,
specifications are updated constantly as the solution
is refined. A problem solver should be able to accom-
modate such changes with minimal disruption. Part of
the solution is to use dependency-directed backtrack-
ing [Stallman & Sussman, 19771, but even that can be
too heavy-handed if decisions have many consequences.

In this paper, we present a strategy for automat-
ing high-level design that addresses these three critical
issues:

How can a design architecture transcend the rigid
classifications of the design task (i.e., selection, con-
figuration, parameter fixing, and construction)?
How can a design problem solver avoid searching
problem spaces that are vague and ill-defined?
How can the introduction of new constraints late in
the design process be accommodated in a computa-
tionally efficient way?
Our solution to these problems is a model

of design that incorporates case-based reasoning
[Kolodner et al., 1985, Bammond, 19891, constraint
posting [Stefik, 1981a], and problem reduction. Cen-
tral to this model is a process of plausible design adap-
tation. Design adaptation is a heuristic debugging pro-
cess that takes as input a source concept, a set of
constraint violations and a set of adaptation transfor-
mations and returns a new concept that satisfies con-
straints. This process plays multiple roles in our model
of design: 1) It is used as part of case-based reasoning
to modify previous design cases. 2) It accommodates
constraints that arrive late in the design process by
adapting previous decisions rather than by retracting
them. 3) It resolves impasses in the design process by
weakening preference constraints.

We have implemented and tested our model of design
in a computer program called JULIA [Hinrichs, 1988,
Hinrichs, 19891 that interactively designs the presen-
tation and menu of a meal to satisfy multiple, inter-
acting constraints. Meal planning entails the selection

From: AAAI-91 Proceedings. Copyright ©1991, AAAI (www.aaai.org). All rights reserved.

of dishes, the configuration of those dishes and courses
within a meal, the parametric manipulation of quan-
tities such as cost and calories, and occasionally the
construction of new dishes to meet idiosyncratic con-
straints. Design is done in JULIA at the request of a
client who both approves selections as the design of a
meal progresses and often adds information late in the
design process.

In the next section, we present a series of exam-
ples that demonstrate the use of adaptation in JULIA.
Section 3 describes the different roles that adaptation
plays in our model of design. Section 4 presents an
overview of how JULIA works and section 5 summa-
rizes an experiment that shows the effect of adaptation
on different types of problems.

Examples from JULIA
In the first example, we see JULIA dealing with an
under-constrained problem. It is asked to plan a meal
for which there are enormous numbers of satisficing
solutions. In this example, JULIA uses adaptation for
several different tasks: to specialize the structure of
the meal, to change the structure of the meal in re-
sponse to a contradiction, and to change a component
in the meal, again in response to a contradiction. JU-
LIA deals with the enormous search space by using a
suggestion made by its case-based reasoner as a start-
ing point and adapting it to fit the constraints of the
new situation.

Problem 1
Plan a meal that is cheap, easy to prepare and
includes tomato and cheese in its main dish. JU-
LIA begins by choosing a cuisine. It remembers
several cases, some of which are Italian and some
Mexican. It makes both suggestions to its client
and asks for a preference. The client chooses Ital-
ian.

A meal is generally composed of an appetizer,
salad, main course, and dessert, but an Italian
meal is different. Its appetizer is antipasto, and
rather than a salad course, it has a pasta course.
JULIA adapts the normal (default) meal struc-
ture it assumed in the beginning to conform to
the structure of an Italian meal.

JULIA now concentrates on coming up with
its main course (the part of the meal that pro-
vides the most constraint for the remainder of the
meal). JULIA is reminded of an Italian meal it
once planned. In that meal, lasagne, garlic bread,
and red wine were served. It proposes this to its
client, who accepts it.

Lasagne, however, violates an important meal
constraint: main ingredients of dishes are not
allowed to be repeated across courses. JULIA
uses an adaptation transformation called SHARE-
FUNCTION to combine the pasta course and the
main course.

Now the client adds a new constraint: The
meal should be vegetarian. This introduces a con-
tradiction that is resolved by adapting lasagne to
vegetarian lasagne using the SPEClAhlZE trans-
formation. JULIA proceeds to propose vegetar-
ian antipasto, spumoni-messina and coffee.

In the next example, adaptation is used in a different
way. JULIA solves an over-constrained problem by
adapting the structure of the meal to allow conflicting
constraints to be solved independently. It recognizes
that the problem is over-constrained when it reaches
an impasse in its reasoning.

Problem 2
Plan a meal that is inexpensive, easy to prepare,
and uses eggplant. Furthermore, it should sat-
isfy Guestl, a vegetarian, and Guest& a ‘meat
and potatoes’ person who requires meat in his
meal. In general, JULIA attempts to find single
solutions to each of its subgoals. In this situa-
tion, however, it fails to find a single dish that
will satisfy both guests. JULIA examines the
constraints that are responsible for this impasse.
One adaptation transformation it has available,
SPLIT-FUNCTION, specifies that if conflicting
constraints derive from different sources, the con-
flict can be alleviated by increasing choice, i.e.,
using two items to achieve the goal instead of
just one. Since the conflicting constraints arise
from two different guests, JULIA suggests baba-
ghanouj for guest-l and skewered-lamb and egg-
plant for guest-2. It supplements this with
hummus, pita-bread, retsina, greek-salad, and
baklava.

In the next example, adaptation is used a third
way. Here, the problem solver reaches another impasse.
While above the impasse was resolved by adapting the
structure of the meal, here it is resolved by adapting
one of the conflicting constraints.

Problem 3
Plan a brunch for a group of 5 people. Some sort
of eggs should be the main dish. One of the guests
is on a low cholesterol diet. In attempting to
solve this problem, JULIA reaches an impasse.
It cannot serve a meal with eggs as the main
dish that is also low in cholesterol. It resolves
this problem by relaxing the constraint that eggs
should be a main ingredient of the main dish. It
allows eggs to be a secondary ingredient. It then
chooses high-protein pancakes as its main dish.
Eggs is only a secondary ingredient and very lit-
tle egg is used.

The last example shows JULIA anticipating a failure
and taking steps to avoid it. When the case-based
reasoner uncovers a potential failure, JULIA adds the
necessary constraints to its problem description that

HINRICHS & KOLODNER 29

allow it to avoid the problem. It then continues to solve
the problem by remembering another meal whose menu
is appropriate to the client. No adaptation is done.

Problem 4
Plan a Mexican meal for my research group that
includes tomatoes. JULIA is reminded of a sim-
ilar meal that failed when someone wouldn’t eat
spicy chili, and inquires whether this will be a
problem. When the client says yes, JULIA adds a
constraint to rule out spicy dishes. It remembers
another meal, and based on its menu, suggests
guacamole, tacos, coffee and flan for dessert.

Roles of Adaptation
The examples
adaptation can
1.

2.

3.

4.

Adaptation facilitates making decisions in under-
constrained problems by allowing a problem solver
to re-use an ‘almost right’ plan rather than re-
solving from scratch.
Adaptation resolves over-constrained problems by
serving as a alternative to retraction.
Adaptation relaxes preference constraints by mini-
mally weakening them.
Adaptation extends the vocabulary of a problem
solver by designing new components as variations
of known components.

above suggest
play in design:

some of the roles that

Adaptation and Under-constraint
An under-constrained problem is one for which there
may be many possible solutions, but the problem con-
straints do not help to deduce or construct a solution.
Informal tasks such as meal planning tend to be under-
constrained and to have large search spaces. Because
these search spaces may be ill-defined, it is important
for a problem solver to avoid trying to exhaustively
search them.

One strategy that can be used is to retrieve previ-
ous solutions that are nearly adequate and adapt them
to fit the current problem. This is called case-based
reasoning. Case-based reasoning zeros in on a part of
the search space that has proven relevant in the past,
and in effect, searches only in the neighborhood lo-
cal to the solution provided by the remembered case.
JULIA uses case-based reasoning to propose plausible
solutions, and in so doing, trades off guaranteed cor-
rectness for search efficiency. In this light, adaptation
can be viewed as switching to a smaller, more tractable
search space.

Adaptation is a kind of heuristic search in which
transformations are applied to a source concept in or-
der to repair constraint violations. The transforma-
tions are indexed by constraint violation and type of
source concept, and are ranked by their expected cost
of application. In JULIA, adaptation transformations
-I^ -l!-22-J I-L- L--w- I--‘- A.-----. LL--- Ll--I --I-‘-- Al--

30 TRANSFORMATION IN DESIGN

structure and substitute the components of a concept,
and those that retain the components of a concept but
alter its structure. Examples of adaptation transfor-
mations are:

e SPEClALlZE substitutes a component with a more
specific variant that satisfies constraints.

e GENERALIZE substitutes a component with a more
general variant that satisfies constraints.

o SUBSTITUTE-BY-FUNCTION substitutes a compo-
nent with one that is functionally-identical.

o SUBSTITUTE-SIBLING substitutes a component
with a taxonomic sibling.

e SHARE-FUNCTION re-structures a concept such
that one component serves two functions.

e SPLIT-FUNCTION re-structures a concept such that
two components serve a single function in tandem.

The first four are applicable when some feature of
a selected design component violates a design con-
straint. SHARE-FUNCTION is applicable when two
components with the same function have been in-
serted into the design. SPLIT-FUNCTION is cho-
sen when there is an impasse caused by a failure
to be able to solve a conjunctive set of constraints.
These transformations are described in more detail in
[Hinrichs, 1989, Hinrichs, 19911.

Adaptation and Over-constraint
An over-constrained problem is one that has no known
solution. There are two types of overconstraint: A
contradiction denotes a situation in which the problem
solver is in an inconsistent state. Problem 1 illustrates
several of these. An impasse is a situation in which
the solution is incomplete and the problem solver can
make no further progress. Problems 2 and 3 illustrate
impasses. Two classical techniques for dealing with
overconstraint are (a) to switch to a different context
and (b) to backtrack to a previous decision and retract
all of its consequences.

Our approach shows that a contradictory decision
need not always be retracted completely to solve a
problem. Instead, the decision can often be adapted
by finding a similar value that will fulfill all of the
constraints while preserving the consequences of the
previous decision. For example, in Problem 1, the de-
cision to serve lasagne is adapted by specializing it to
vegetarian lasagne. This makes it unnecessary to re-
tract other decisions that depend on lasagne, such as
garlic bread and red wine.

Another way to look at this role of adaptation is that
while dependency-directed backtracking is intended to
retract just those decisions of a problem that are rel-
evant to a contradiction, the adaptation approach is
designed to modify only those features of a decision
that are contradictory. This can involve substituting
one known concept for another, or it can involve cre-
ating an entirely new concept on the fly.

There are several reasons why adaptation is an
appropriate strategy for dealing with both overcon-
strained and underconstrained problems:
I. Satisficing solutions are often ‘nearby’ in the search

space. If a component of a solution ‘doesn’t quite’
fit, it is likely that one of its neighbors or relatives
will.

2. Replacing one decision with a similar one often
leaves consequences of the original decision intact.

3. Minimally altering the solution makes it easier for a
human client or user to keep track of what is going
on.

Adapting Constraints
When it is not possible to adapt a value or the structure
of a problem to satisfy constraints (as in problem 3),
it is sometimes possible to relax the constraints on the
decision. Typically, constraints are relaxed by ordering
them in terms of their importance or utility, and then
simply retracting the least important constraint.

Our approach is to ardept an offending constraint in
order to weaken it just enough so that the problem
can be solved. For example, consider the following
constraint that the main ingredients of a dish must
contain cheese:

(contains (?dish main-ingredients) cheese
relaxable)

In this constraint, the first argument defines its scope,
or domain, and the second argument, cheese, defines
its range. Constraints such as this can be adapted by
enlarging or contracting their domain and range.

The constraint adaptation routine resolves an over-
constrained decision by first examining the values that
have been considered and ruled out, and then sorting
them by the number of relaxable constraints they vio-
late. It then attempts to establish the ruled-out value
by relaxing each of its violated constraints. An indi-
vidual constraint is relaxed by applying one of four
transformations:
1. ENLARGE-DOMAIN substitutes the scope of the

constraint with one that is higher on the partonomic
hierarchy.

2. REDUCE-DOMAIN substitutes the scope of the con-
straint with one that is lower on the partonomic
hierarchy.

3. GENERALIZE-RANGE replaces the range of a con-
straint with a generalization of the range (for nomi-
nal constraints) or increases the numeric range (for
ordinal constraints).

4. DIMINISH-RANGE specializes the range (for nomi-
nal constraints) or contracts the numeric range (for
ordinal constraints).
Each constraint type indicates in which direction it

must be adapted in order to weaken it. For example,
the constraint described above could be adapted by
enlarging its domain:

(contains (?dish ingredients) cheese
relaxable),

or by generalizing its range:
(contains (?dish main-ingredients)

dairy-product relaxable).
In this way, values that almost satisfy constraints can
be re-considered if no better solution is discovered.
This is a less drastic approach than retracting con-
straints altogether, because it provides a means of par-
tially satisfying a constraint.

Extending Vocabulary
Adaptation in JULIA does more than simply improve
efficiency; it also permits some problems to be solved
that would otherwise be impossible. It does this by
opening up new search spaces in order to construct
concepts that can serve as components of the overall
solution. For example, consider the situation in Prob-
lem 1 again, in which a decision to serve lasagne con-
tradicts a constraint that the meal be vegetarian. The
given search space for this problem is the set of dishes
that JULIA knows about. If JULIA didn’t know of a
vegetarian version of lasagne, then exhaustively search-
ing for a dish wouldn’t help.

The adaptation process can solve this problem by
reasoning about which feature of lasagne violates the
constraint and recursively adapting that feature. In
this example, lasagne could be made vegetarian in two
ways: either by substituting the meat with vegetarian
burger (a functional substitution), or by applying the
DELETE transformation to the set of secondary ingre-
dients and eliminating the meat. When a feature is
substituted, a new concept is created as a variant of
the original. In this way, the problem-solving vocabu-
lary is extended as a by-product of adaptation.

A critical step in this process is determining the le-
gality and plausibility of proposed adaptations. For
example, it would make no sense to delete noodles from
lasagne, or to make a low calorie version of a dish just
by changing the value of its calories attribute. JU-
LIA restricts adaptations in two main ways. First,
its representation of objects distinguishes between sec-
ondary features that are easy to change and primary
features that are critical or definitional in some way.
For example, secondary-ingredients can be deleted,
while main-ingredients, such as the noodles in lasagne,
can only be substituted, not deleted. This is one way of
representing a partial domain theory. In other words,
some kind of lasagne noodle is necessary but not suffi-
cient for a dish to be lasagne.

The second way adaptations are restricted is by us-
ing heuristics to infer which features correspond to in-
dependent variables and what their ranges of variabil-
ity are. Instead of directly altering dependent features
such as the calories of a dish, it analyzes constraints
internal to the concept and regresses back to indepen-
dent variables (e.g., the ingredients of the dish) and

HINRICHS & KOLODNER 31

adapts them. Reasoning of this sort is essential if a
problem solver is to create new concepts without the
benefit of a strong domain theory.

It is this ability to construct new concepts that al-
lows JULIA to overcome the rigid classifications of se-
lection, configuration and parametric design. If the vo-
cabulary were constant, then JULIA could be viewed
as selecting dishes from a known set. However, the
ability to adapt components and their structural con-
figuration enables JULIA to do constructive design,
but only in the highly circumscribed space of adapta-
tion transformations.

Evaluation
One claim of this research is that adaptation can re-
duce the amount of work needed to solve problems. To
establish this, we measured the number of constraints
that JULIA checked as it solved three of the problems
described above. We then ran each problem two more
times, once with the adaptation capability turned off
for contradiction resolution (Modifictstdon Only), and
once with no adaptation at all. The results of this
study are shown in table 1:

Table 1: Number of Constraints Checked

Although these numbers are not especially informa-
tive by themselves, the intent of this experiment is to
study the relative costs and benefits of adaptation. To
this end, the example problems presented were chosen
to illustrate three different effects. For problem 1, the
problem-solving performance degrades monotonically
as adaptation is turned off. This is because the con-
tradiction introduced into the problem requires that
lasagne be retracted rather than adapted. When the
program cannot recall another case containing an ac-
ceptable solution, it is reduced to linearly searching all
dishes it knows about.

Problem 2 cannot be solved at all without adapta-
tion because there is no single dish in JULIA’s knowl-
edge base that satisfies the constraints. Problems that
require structural modification cannot be solved by
simply searching through categories.

While the results from problems 1 and 2 were as ex-
pected, problem 4 was a surprise. Since its solution
did not rely on adaptation, we expected no effect on
efficiency. As it turns out, however, there can be a
hidden cost of adaptation. The process of attempting
to adapt a value entails looking for substitutions and
checking constraints on those values. If no satisfactory
solution is found in this way, JULIA proceeds on to

the next ‘best’ reminding and checks components from
that case. What happened in problem 4 was that JU-
LIA did not pick the most appropriate case right off the
bat, and therefore spent some time chasing down blind
alleys attempting to adapt dishes that could never suf-
fice.

Problem 4 may simply be a pathological case. For
the vast majority of cases we have run, adaptation ap-
pears to be beneficial. However, adaptation clearly
involves a tradeoff between flexibility and efficiency.
It opens up search spaces that can lead to otherwise
inaccessible solutions, but it may also explore dead-
ends. Because of this, models of problem solving that
rely on relatively expensive deep reasoning for adap-
tation should take into account the arccurcacy of the
indexing mechanism and the density of the solution
space. For problem solvers that index cases accurately
and for problems that have sparse solution spaces, it is
worthwhile to expend a lot of effort in trying to adapt
previous cases. For problem solvers that index cases
less accurately and for problems with dense solution
spaces, it is often better to expend less effort adapting
cases since a better solution may be found in the next
case considered.

In principle, the cost of a complex adaptation pro-
cess could be amortized if the problem solver were to
store and re-use its own reasoning steps. JULIA is lim-
ited in this regard because it only applies case-based
reasoning to propose design solutions. However, if the
cost of adaptation were more significant, then recur-
sively applying case-based reasoning would be worth
investigating.

JULIA draws heavily on ideas from other work in case-
based reasoning, such as CHEF [Hammond, 19891.
From the perspective of adaptation, CHEF implements
modification of cases independently from repair of fail-
ures. In JULIA, they are both applications of the
same process of adaptation, and rely on the same set of
transformations. Also, CHEF does not adapt previous
decisions as part of its control strategy.

Using adaptation to augment dependency-directed
backtracking is not new to JULIA, and has been ad-
dressed in PRIDE [Mittal & Araya, 19861, where it
is referred to as modification advice, and DONTE
[Tong, 19881, where it is called patching. We extend
the technique to cover the adaptation of structure (ie,
configuration) and constraints. Also, both PRIDE and
DONTE solve problems that have well-defined search
spaces. Modification in PRIDE cannot design new
components. In JULIA, adaptation can construct new
components, and thus partially determines the class of
problems that can be solved.

Like VEXED [Steinberg, 19871, JULIA is a design
advisor. As advisory systems, the two systems differ
in how they define the division of labor between the
user and the program. VEXED assumes responsibility

32 TRANSFORMATION IN DESIGN

for evaluating completeness and correctness of designs
and delegates control decisions to the user. JULIA, on
the other hand, makes its own control decisions, but
leaves the user as the final arbiter of design adequacy.

Discussion and Conclusions
We have presented a model of design that employs
adaptation in multiple roles. This model provides the
capability to solve design problems that require the in-
tegration of processes for selection, configuration, para-
metric manipulation, and construction from scratch.
By adapting similar known solutions, we trade a poorly
defined design search space (meals in the case of JU-
LIA) for the better-defined space of adaptation trans-
formations. This technique is appropriate when so-
lutions to similar problems are known, and when the
criteria for judging similarity are well understood.

Another feature of our model is a control strategy
that exploits adaptation as an alternative to retrac-
tion. While this idea has been explored in some previ-
ous work, we extend the idea in two ways: First, adap-
tation constructs new concepts as a side-effect, so that
it permits the solution of problems that would other-
wise not be possible. Second, the ability to adapt con-
straints unifies the ideas of backtracking and constraint
relaxation. This technique is appropriate when deci-
sions have many consequences and the solution space
is dense.

References
D.C. Brown and B. Chandrasekaran. Expert sys-
tems for a class of mechanical design activity. In J.S.
Gero, editor, Knowledge Engineering in Computer-
Aided Design. Elsevier Science Publishers B.V., North
Holland, 1985.
J. Doyle. A truth maintenance system. Artificial In-
telligence, 12(3), 1979.
V. Goel and P. Pirolli. Design within information pro-
cessing theory: The design problem space. AI Maga-
zine, Vol. 10, No. 1, 1989.
K.J. Hammond. Case-based Planning: Viewing Plan-
ning as a Memory Task. Academic Press, New York,
1989.
T.R. Hinrichs. Towards an architecture for open world
problem solving. In J.L. Kolodner, editor, Proceedings
of the 1988 DARPA Workshop on Case-Based Rea-
soning, pages 182-189, 1988.
T.R. Hinrichs. Strategies for adaptation and recovery
in a design problem solver. In K. Hammond, editor,
Proceedings of the 1989 DARPA Workshop on Case-
Based Reasoning, pages 115-118,1989.
T.R. Hinrichs Problem Solving in Open Worlds: A
Case Study in Design. PhD thesis, Georgia Institute
of Technology, 1991. forthcoming.
J.L. Kolodner. Retrieval and Organizational Strate-
&es in Concevtual Memory: A Computer Model.

Lawrence Erlbaum and Associates, Hillsdale, NJ,
1984.
J.L. Kolodner, R.L. Simpson, and K. Sycara. A pro-
cess model of case-based reasoning in problem solving.
In Proceedings of the International Joint Conference
on Artificial Intelligence, pages 284-290, Los Angeles,
1985.
S. Mittal and A. Araya. A knowledge based frame-
work for design. In Proceedings of the Fifth National
Conference on Arti$cial Intelligence, pages 856-865,
Philadelphia, PA, August 1986.
J. McDermott. Rl: An expert in the computer sys-
tems domain. In Proceedings of the First National
Conference on Artificial Intelligence, pages 269-271,
August 1980.
R.C. Schank. Dynamic Memory: A theory of remind-
ing and learning in computers and people. Cambridge
University Press, London, 1982.
R.M. Stallman and G.J. Sussman. Forward reason-
ing and dependency-directed backtracking in a system
for computer aided circuit analysis. Artificial Intelli-
gence, 9:135-196,1977.
M.J. Stefik. Planning with constraints. Artificial In-
telligence, 16(2):111-140, 1981.
M.J. Stefik. Planning and meta-planning. Artificial
Intelligence, 16(2):141-170,198I.
L.I. Steinberg. Design as refinement plus constraint
propagation: The VEXED experience. In Proceedings
of the Sixth National Conference on Artificial Intelli-
gence, pages 830-835,1987.
C.H. Tong. Knowledge-Based Circuit Design. PhD
thesis, Stanford University, 1988. (Rutgers University
Report No. LCSR-TR-108).
A.C. Ward and W.P. Seering. Quantitative inference
in a mechanical design “compiler”. memo AIM-1062,
MIT AI Lab, January 1989.

HINRICHS & KOLODNER 33

