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Abstract 
Many design tasks have search spaces that are vague 
and evaluation criteria that are subjective. We present 
a model of design that can solve such problems using 
a method of plausible design adaptation. In our ap- 
proach, adaptation transformations are used to mod- 
ify the components and structure of a design and con- 
straints on the design problem. This adaptation pro- 
cess plays multiple roles in design: 1) It is used as 
part of case-based reasoning to modify previous de- 
sign cases. 2) It accommodates constraints that arrive 
late in the design process by adapting previous deci- 
sions rather than by retracting them. 3) It resolves 
impasses in the design process by weakening prefer- 
ence constraints. This model of design has been im- 
plemented in a computer program called JULIA that 
designs the presentation and menu of a meal to satisfy 
multiple, interacting constraints. 

Introduction 
In Artificial Intelligence, design has typically been clas- 
sified as being either the selection of components to 
instantiate a skeletal design [Ward & Seering, 19891, 
the configuration of a given set of components 
[McDermott, 19801, the fixing of numerical param- 
eters [Brown & Chandrasekaran, 1985, Mittal & 
Araya, 19861, or the construction of designs from 
scratch [Tong, 19881. While useful for routine sorts 
of design, these rigid classifications do not begin 
to capture the flexibility that real designers exhibit 
[Goel & Pirolli, 19891. For high-level conceptual de- 
sign especially, these tasks are often inseparable. 

In addition, many design tasks are ill-defined; they 
have search spaces that are vague and evaluation crite- 
ria that are subjective. This is in part because design 
categories may be defined not in terms of necessary 
and sufficient conditions, but instead by experience 
and expectations. For such tasks, it is unreasonable 
to assume that a designer can systematically enumer- 
ate possible designs. Architectural design, for example, 
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cannot easily be reduced to searching a discrete prob- 
lem space of alternative configurations or components. 

Moreover, real-world designs may have requirements 
that change over time. In fact, for relatively complex 
problems such as architectural or aerospace design, 
specifications are updated constantly as the solution 
is refined. A problem solver should be able to accom- 
modate such changes with minimal disruption. Part of 
the solution is to use dependency-directed backtrack- 
ing [Stallman & Sussman, 19771, but even that can be 
too heavy-handed if decisions have many consequences. 

In this paper, we present a strategy for automat- 
ing high-level design that addresses these three critical 
issues: 

How can a design architecture transcend the rigid 
classifications of the design task (i.e., selection, con- 
figuration, parameter fixing, and construction)? 
How can a design problem solver avoid searching 
problem spaces that are vague and ill-defined? 
How can the introduction of new constraints late in 
the design process be accommodated in a computa- 
tionally efficient way? 
Our solution to these problems is a model 

of design that incorporates case-based reasoning 
[Kolodner et al., 1985, Bammond, 19891, constraint 
posting [Stefik, 1981a], and problem reduction. Cen- 
tral to this model is a process of plausible design adap- 
tation. Design adaptation is a heuristic debugging pro- 
cess that takes as input a source concept, a set of 
constraint violations and a set of adaptation transfor- 
mations and returns a new concept that satisfies con- 
straints. This process plays multiple roles in our model 
of design: 1) It is used as part of case-based reasoning 
to modify previous design cases. 2) It accommodates 
constraints that arrive late in the design process by 
adapting previous decisions rather than by retracting 
them. 3) It resolves impasses in the design process by 
weakening preference constraints. 

We have implemented and tested our model of design 
in a computer program called JULIA [Hinrichs, 1988, 
Hinrichs, 19891 that interactively designs the presen- 
tation and menu of a meal to satisfy multiple, inter- 
acting constraints. Meal planning entails the selection 
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of dishes, the configuration of those dishes and courses 
within a meal, the parametric manipulation of quan- 
tities such as cost and calories, and occasionally the 
construction of new dishes to meet idiosyncratic con- 
straints. Design is done in JULIA at the request of a 
client who both approves selections as the design of a 
meal progresses and often adds information late in the 
design process. 

In the next section, we present a series of exam- 
ples that demonstrate the use of adaptation in JULIA. 
Section 3 describes the different roles that adaptation 
plays in our model of design. Section 4 presents an 
overview of how JULIA works and section 5 summa- 
rizes an experiment that shows the effect of adaptation 
on different types of problems. 

Examples from JULIA 
In the first example, we see JULIA dealing with an 
under-constrained problem. It is asked to plan a meal 
for which there are enormous numbers of satisficing 
solutions. In this example, JULIA uses adaptation for 
several different tasks: to specialize the structure of 
the meal, to change the structure of the meal in re- 
sponse to a contradiction, and to change a component 
in the meal, again in response to a contradiction. JU- 
LIA deals with the enormous search space by using a 
suggestion made by its case-based reasoner as a start- 
ing point and adapting it to fit the constraints of the 
new situation. 

Problem 1 
Plan a meal that is cheap, easy to prepare and 
includes tomato and cheese in its main dish. JU- 
LIA begins by choosing a cuisine. It remembers 
several cases, some of which are Italian and some 
Mexican. It makes both suggestions to its client 
and asks for a preference. The client chooses Ital- 
ian. 

A meal is generally composed of an appetizer, 
salad, main course, and dessert, but an Italian 
meal is different. Its appetizer is antipasto, and 
rather than a salad course, it has a pasta course. 
JULIA adapts the normal (default) meal struc- 
ture it assumed in the beginning to conform to 
the structure of an Italian meal. 

JULIA now concentrates on coming up with 
its main course (the part of the meal that pro- 
vides the most constraint for the remainder of the 
meal). JULIA is reminded of an Italian meal it 
once planned. In that meal, lasagne, garlic bread, 
and red wine were served. It proposes this to its 
client, who accepts it. 

Lasagne, however, violates an important meal 
constraint: main ingredients of dishes are not 
allowed to be repeated across courses. JULIA 
uses an adaptation transformation called SHARE- 
FUNCTION to combine the pasta course and the 
main course. 

Now the client adds a new constraint: The 
meal should be vegetarian. This introduces a con- 
tradiction that is resolved by adapting lasagne to 
vegetarian lasagne using the SPEClAhlZE trans- 
formation. JULIA proceeds to propose vegetar- 
ian antipasto, spumoni-messina and coffee. 

In the next example, adaptation is used in a different 
way. JULIA solves an over-constrained problem by 
adapting the structure of the meal to allow conflicting 
constraints to be solved independently. It recognizes 
that the problem is over-constrained when it reaches 
an impasse in its reasoning. 

Problem 2 
Plan a meal that is inexpensive, easy to prepare, 
and uses eggplant. Furthermore, it should sat- 
isfy Guestl, a vegetarian, and Guest& a ‘meat 
and potatoes’ person who requires meat in his 
meal. In general, JULIA attempts to find single 
solutions to each of its subgoals. In this situa- 
tion, however, it fails to find a single dish that 
will satisfy both guests. JULIA examines the 
constraints that are responsible for this impasse. 
One adaptation transformation it has available, 
SPLIT-FUNCTION, specifies that if conflicting 
constraints derive from different sources, the con- 
flict can be alleviated by increasing choice, i.e., 
using two items to achieve the goal instead of 
just one. Since the conflicting constraints arise 
from two different guests, JULIA suggests baba- 
ghanouj for guest-l and skewered-lamb and egg- 
plant for guest-2. It supplements this with 
hummus, pita-bread, retsina, greek-salad, and 
baklava. 

In the next example, adaptation is used a third 
way. Here, the problem solver reaches another impasse. 
While above the impasse was resolved by adapting the 
structure of the meal, here it is resolved by adapting 
one of the conflicting constraints. 

Problem 3 
Plan a brunch for a group of 5 people. Some sort 
of eggs should be the main dish. One of the guests 
is on a low cholesterol diet. In attempting to 
solve this problem, JULIA reaches an impasse. 
It cannot serve a meal with eggs as the main 
dish that is also low in cholesterol. It resolves 
this problem by relaxing the constraint that eggs 
should be a main ingredient of the main dish. It 
allows eggs to be a secondary ingredient. It then 
chooses high-protein pancakes as its main dish. 
Eggs is only a secondary ingredient and very lit- 
tle egg is used. 

The last example shows JULIA anticipating a failure 
and taking steps to avoid it. When the case-based 
reasoner uncovers a potential failure, JULIA adds the 
necessary constraints to its problem description that 
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allow it to avoid the problem. It then continues to solve 
the problem by remembering another meal whose menu 
is appropriate to the client. No adaptation is done. 

Problem 4 
Plan a Mexican meal for my research group that 
includes tomatoes. JULIA is reminded of a sim- 
ilar meal that failed when someone wouldn’t eat 
spicy chili, and inquires whether this will be a 
problem. When the client says yes, JULIA adds a 
constraint to rule out spicy dishes. It remembers 
another meal, and based on its menu, suggests 
guacamole, tacos, coffee and flan for dessert. 

Roles of Adaptation 
The examples 
adaptation can 
1. 

2. 

3. 

4. 

Adaptation facilitates making decisions in under- 
constrained problems by allowing a problem solver 
to re-use an ‘almost right’ plan rather than re- 
solving from scratch. 
Adaptation resolves over-constrained problems by 
serving as a alternative to retraction. 
Adaptation relaxes preference constraints by mini- 
mally weakening them. 
Adaptation extends the vocabulary of a problem 
solver by designing new components as variations 
of known components. 

above suggest 
play in design: 

some of the roles that 

Adaptation and Under-constraint 
An under-constrained problem is one for which there 
may be many possible solutions, but the problem con- 
straints do not help to deduce or construct a solution. 
Informal tasks such as meal planning tend to be under- 
constrained and to have large search spaces. Because 
these search spaces may be ill-defined, it is important 
for a problem solver to avoid trying to exhaustively 
search them. 

One strategy that can be used is to retrieve previ- 
ous solutions that are nearly adequate and adapt them 
to fit the current problem. This is called case-based 
reasoning. Case-based reasoning zeros in on a part of 
the search space that has proven relevant in the past, 
and in effect, searches only in the neighborhood lo- 
cal to the solution provided by the remembered case. 
JULIA uses case-based reasoning to propose plausible 
solutions, and in so doing, trades off guaranteed cor- 
rectness for search efficiency. In this light, adaptation 
can be viewed as switching to a smaller, more tractable 
search space. 

Adaptation is a kind of heuristic search in which 
transformations are applied to a source concept in or- 
der to repair constraint violations. The transforma- 
tions are indexed by constraint violation and type of 
source concept, and are ranked by their expected cost 
of application. In JULIA, adaptation transformations 
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structure and substitute the components of a concept, 
and those that retain the components of a concept but 
alter its structure. Examples of adaptation transfor- 
mations are: 

e SPEClALlZE substitutes a component with a more 
specific variant that satisfies constraints. 

e GENERALIZE substitutes a component with a more 
general variant that satisfies constraints. 

o SUBSTITUTE-BY-FUNCTION substitutes a compo- 
nent with one that is functionally-identical. 

o SUBSTITUTE-SIBLING substitutes a component 
with a taxonomic sibling. 

e SHARE-FUNCTION re-structures a concept such 
that one component serves two functions. 

e SPLIT-FUNCTION re-structures a concept such that 
two components serve a single function in tandem. 

The first four are applicable when some feature of 
a selected design component violates a design con- 
straint. SHARE-FUNCTION is applicable when two 
components with the same function have been in- 
serted into the design. SPLIT-FUNCTION is cho- 
sen when there is an impasse caused by a failure 
to be able to solve a conjunctive set of constraints. 
These transformations are described in more detail in 
[Hinrichs, 1989, Hinrichs, 19911. 

Adaptation and Over-constraint 
An over-constrained problem is one that has no known 
solution. There are two types of overconstraint: A 
contradiction denotes a situation in which the problem 
solver is in an inconsistent state. Problem 1 illustrates 
several of these. An impasse is a situation in which 
the solution is incomplete and the problem solver can 
make no further progress. Problems 2 and 3 illustrate 
impasses. Two classical techniques for dealing with 
overconstraint are (a) to switch to a different context 
and (b) to backtrack to a previous decision and retract 
all of its consequences. 

Our approach shows that a contradictory decision 
need not always be retracted completely to solve a 
problem. Instead, the decision can often be adapted 
by finding a similar value that will fulfill all of the 
constraints while preserving the consequences of the 
previous decision. For example, in Problem 1, the de- 
cision to serve lasagne is adapted by specializing it to 
vegetarian lasagne. This makes it unnecessary to re- 
tract other decisions that depend on lasagne, such as 
garlic bread and red wine. 

Another way to look at this role of adaptation is that 
while dependency-directed backtracking is intended to 
retract just those decisions of a problem that are rel- 
evant to a contradiction, the adaptation approach is 
designed to modify only those features of a decision 
that are contradictory. This can involve substituting 
one known concept for another, or it can involve cre- 
ating an entirely new concept on the fly. 



There are several reasons why adaptation is an 
appropriate strategy for dealing with both overcon- 
strained and underconstrained problems: 
I. Satisficing solutions are often ‘nearby’ in the search 

space. If a component of a solution ‘doesn’t quite’ 
fit, it is likely that one of its neighbors or relatives 
will. 

2. Replacing one decision with a similar one often 
leaves consequences of the original decision intact. 

3. Minimally altering the solution makes it easier for a 
human client or user to keep track of what is going 
on. 

Adapting Constraints 
When it is not possible to adapt a value or the structure 
of a problem to satisfy constraints (as in problem 3), 
it is sometimes possible to relax the constraints on the 
decision. Typically, constraints are relaxed by ordering 
them in terms of their importance or utility, and then 
simply retracting the least important constraint. 

Our approach is to ardept an offending constraint in 
order to weaken it just enough so that the problem 
can be solved. For example, consider the following 
constraint that the main ingredients of a dish must 
contain cheese: 

(contains (?dish main-ingredients) cheese 
relaxable) 

In this constraint, the first argument defines its scope, 
or domain, and the second argument, cheese, defines 
its range. Constraints such as this can be adapted by 
enlarging or contracting their domain and range. 

The constraint adaptation routine resolves an over- 
constrained decision by first examining the values that 
have been considered and ruled out, and then sorting 
them by the number of relaxable constraints they vio- 
late. It then attempts to establish the ruled-out value 
by relaxing each of its violated constraints. An indi- 
vidual constraint is relaxed by applying one of four 
transformations: 
1. ENLARGE-DOMAIN substitutes the scope of the 

constraint with one that is higher on the partonomic 
hierarchy. 

2. REDUCE-DOMAIN substitutes the scope of the con- 
straint with one that is lower on the partonomic 
hierarchy. 

3. GENERALIZE-RANGE replaces the range of a con- 
straint with a generalization of the range (for nomi- 
nal constraints) or increases the numeric range (for 
ordinal constraints). 

4. DIMINISH-RANGE specializes the range (for nomi- 
nal constraints) or contracts the numeric range (for 
ordinal constraints). 
Each constraint type indicates in which direction it 

must be adapted in order to weaken it. For example, 
the constraint described above could be adapted by 
enlarging its domain: 

(contains (?dish ingredients) cheese 
relaxable), 

or by generalizing its range: 
(contains (?dish main-ingredients) 

dairy-product relaxable). 
In this way, values that almost satisfy constraints can 
be re-considered if no better solution is discovered. 
This is a less drastic approach than retracting con- 
straints altogether, because it provides a means of par- 
tially satisfying a constraint. 

Extending Vocabulary 
Adaptation in JULIA does more than simply improve 
efficiency; it also permits some problems to be solved 
that would otherwise be impossible. It does this by 
opening up new search spaces in order to construct 
concepts that can serve as components of the overall 
solution. For example, consider the situation in Prob- 
lem 1 again, in which a decision to serve lasagne con- 
tradicts a constraint that the meal be vegetarian. The 
given search space for this problem is the set of dishes 
that JULIA knows about. If JULIA didn’t know of a 
vegetarian version of lasagne, then exhaustively search- 
ing for a dish wouldn’t help. 

The adaptation process can solve this problem by 
reasoning about which feature of lasagne violates the 
constraint and recursively adapting that feature. In 
this example, lasagne could be made vegetarian in two 
ways: either by substituting the meat with vegetarian 
burger (a functional substitution), or by applying the 
DELETE transformation to the set of secondary ingre- 
dients and eliminating the meat. When a feature is 
substituted, a new concept is created as a variant of 
the original. In this way, the problem-solving vocabu- 
lary is extended as a by-product of adaptation. 

A critical step in this process is determining the le- 
gality and plausibility of proposed adaptations. For 
example, it would make no sense to delete noodles from 
lasagne, or to make a low calorie version of a dish just 
by changing the value of its calories attribute. JU- 
LIA restricts adaptations in two main ways. First, 
its representation of objects distinguishes between sec- 
ondary features that are easy to change and primary 
features that are critical or definitional in some way. 
For example, secondary-ingredients can be deleted, 
while main-ingredients, such as the noodles in lasagne, 
can only be substituted, not deleted. This is one way of 
representing a partial domain theory. In other words, 
some kind of lasagne noodle is necessary but not suffi- 
cient for a dish to be lasagne. 

The second way adaptations are restricted is by us- 
ing heuristics to infer which features correspond to in- 
dependent variables and what their ranges of variabil- 
ity are. Instead of directly altering dependent features 
such as the calories of a dish, it analyzes constraints 
internal to the concept and regresses back to indepen- 
dent variables (e.g., the ingredients of the dish) and 
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adapts them. Reasoning of this sort is essential if a 
problem solver is to create new concepts without the 
benefit of a strong domain theory. 

It is this ability to construct new concepts that al- 
lows JULIA to overcome the rigid classifications of se- 
lection, configuration and parametric design. If the vo- 
cabulary were constant, then JULIA could be viewed 
as selecting dishes from a known set. However, the 
ability to adapt components and their structural con- 
figuration enables JULIA to do constructive design, 
but only in the highly circumscribed space of adapta- 
tion transformations. 

Evaluation 
One claim of this research is that adaptation can re- 
duce the amount of work needed to solve problems. To 
establish this, we measured the number of constraints 
that JULIA checked as it solved three of the problems 
described above. We then ran each problem two more 
times, once with the adaptation capability turned off 
for contradiction resolution (Modifictstdon Only), and 
once with no adaptation at all. The results of this 
study are shown in table 1: 

Table 1: Number of Constraints Checked 

Although these numbers are not especially informa- 
tive by themselves, the intent of this experiment is to 
study the relative costs and benefits of adaptation. To 
this end, the example problems presented were chosen 
to illustrate three different effects. For problem 1, the 
problem-solving performance degrades monotonically 
as adaptation is turned off. This is because the con- 
tradiction introduced into the problem requires that 
lasagne be retracted rather than adapted. When the 
program cannot recall another case containing an ac- 
ceptable solution, it is reduced to linearly searching all 
dishes it knows about. 

Problem 2 cannot be solved at all without adapta- 
tion because there is no single dish in JULIA’s knowl- 
edge base that satisfies the constraints. Problems that 
require structural modification cannot be solved by 
simply searching through categories. 

While the results from problems 1 and 2 were as ex- 
pected, problem 4 was a surprise. Since its solution 
did not rely on adaptation, we expected no effect on 
efficiency. As it turns out, however, there can be a 
hidden cost of adaptation. The process of attempting 
to adapt a value entails looking for substitutions and 
checking constraints on those values. If no satisfactory 
solution is found in this way, JULIA proceeds on to 

the next ‘best’ reminding and checks components from 
that case. What happened in problem 4 was that JU- 
LIA did not pick the most appropriate case right off the 
bat, and therefore spent some time chasing down blind 
alleys attempting to adapt dishes that could never suf- 
fice. 

Problem 4 may simply be a pathological case. For 
the vast majority of cases we have run, adaptation ap- 
pears to be beneficial. However, adaptation clearly 
involves a tradeoff between flexibility and efficiency. 
It opens up search spaces that can lead to otherwise 
inaccessible solutions, but it may also explore dead- 
ends. Because of this, models of problem solving that 
rely on relatively expensive deep reasoning for adap- 
tation should take into account the arccurcacy of the 
indexing mechanism and the density of the solution 
space. For problem solvers that index cases accurately 
and for problems that have sparse solution spaces, it is 
worthwhile to expend a lot of effort in trying to adapt 
previous cases. For problem solvers that index cases 
less accurately and for problems with dense solution 
spaces, it is often better to expend less effort adapting 
cases since a better solution may be found in the next 
case considered. 

In principle, the cost of a complex adaptation pro- 
cess could be amortized if the problem solver were to 
store and re-use its own reasoning steps. JULIA is lim- 
ited in this regard because it only applies case-based 
reasoning to propose design solutions. However, if the 
cost of adaptation were more significant, then recur- 
sively applying case-based reasoning would be worth 
investigating. 

JULIA draws heavily on ideas from other work in case- 
based reasoning, such as CHEF [Hammond, 19891. 
From the perspective of adaptation, CHEF implements 
modification of cases independently from repair of fail- 
ures. In JULIA, they are both applications of the 
same process of adaptation, and rely on the same set of 
transformations. Also, CHEF does not adapt previous 
decisions as part of its control strategy. 

Using adaptation to augment dependency-directed 
backtracking is not new to JULIA, and has been ad- 
dressed in PRIDE [Mittal & Araya, 19861, where it 
is referred to as modification advice, and DONTE 
[Tong, 19881, where it is called patching. We extend 
the technique to cover the adaptation of structure (ie, 
configuration) and constraints. Also, both PRIDE and 
DONTE solve problems that have well-defined search 
spaces. Modification in PRIDE cannot design new 
components. In JULIA, adaptation can construct new 
components, and thus partially determines the class of 
problems that can be solved. 

Like VEXED [Steinberg, 19871, JULIA is a design 
advisor. As advisory systems, the two systems differ 
in how they define the division of labor between the 
user and the program. VEXED assumes responsibility 
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for evaluating completeness and correctness of designs 
and delegates control decisions to the user. JULIA, on 
the other hand, makes its own control decisions, but 
leaves the user as the final arbiter of design adequacy. 

Discussion and Conclusions 
We have presented a model of design that employs 
adaptation in multiple roles. This model provides the 
capability to solve design problems that require the in- 
tegration of processes for selection, configuration, para- 
metric manipulation, and construction from scratch. 
By adapting similar known solutions, we trade a poorly 
defined design search space (meals in the case of JU- 
LIA) for the better-defined space of adaptation trans- 
formations. This technique is appropriate when so- 
lutions to similar problems are known, and when the 
criteria for judging similarity are well understood. 

Another feature of our model is a control strategy 
that exploits adaptation as an alternative to retrac- 
tion. While this idea has been explored in some previ- 
ous work, we extend the idea in two ways: First, adap- 
tation constructs new concepts as a side-effect, so that 
it permits the solution of problems that would other- 
wise not be possible. Second, the ability to adapt con- 
straints unifies the ideas of backtracking and constraint 
relaxation. This technique is appropriate when deci- 
sions have many consequences and the solution space 
is dense. 
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