
David A.

AT&T Bell Laboratories U S West Advanced Technologies
600 Mountain View Avenue 4001 Discovery Drive

Murray Hill, NJ 08827 Boulder, CO 80303
terveen@research.att.com davew@uswest.com

Abstract
We develop the notion that knowledge editing is a
cooperative activity that requires knowledge editors to
reach consensus as they represent information in a
knowledge base. We de&be an intelligent knowledge
editing tool, the HITS Knowledge Editor, and illustrate
how it assists knowledge editors in reaching consensus.

Introduction
For the past several years, we have been studying the task
of knowledge editing and have constructed a tool - the
HITS Knowledge Editor (HKE) - based on our
understanding of the task. A theme that has emerged is
that knowledge editing is a cooperative activity that
requires knowledge editors to reach consensus as they
represent information in a knowledge base (Hill 1989). In
this paper, we describe the role of consensus in knowledge
editing, discuss how HKE supports users in achieving
consensus, and illustrate the process of reaching
consensus with examples taken from user studies.

design features are relevant to this paper. First, it
provides a workspace - a sort of sketchpad - for user-
system problem solving. This lets users sketch graphs
representing new information they intend to enter into the
knowledge base. When users are satisfied with a sketch,
they request HKE to incorporate it into the knowledge
base. The second relevant feature of HKE is that it
includes design critics (Fischer, Lemke, Mastaglio &
March 1990) that assist users in incorporating new
information. Critics deliver various sorts of assistance
(Terveen 1991); in this paper we discuss only troubles -
inconsistencies between proposed information and the
existing knowledge base.

HKE embodies an analysis of knowledge editing into
six sub-activities (Terveen 1991). Briefly, these sub-
activities are defined as follows:

Knowledge editing involves the entry, viewing, access,
and maintenance of information in a knowledge base.
Knowledge editing is difficult for many reasons; we state
three that are relevant to this paper. First, users often
modify an existing knowledge base rather than starting
from scratch; therefore, the representational decisions they
make must be in harmony with existing information and
representational conventions. Second, there is no single
correct representation of a domain; therefore, any
representational design involves reasoned identification,
deliberation, and resolution of representational issues.
Third, knowledge bases often are designed and built by
groups of knowledge editors. Since there is no right
solution, representational decisions must be understood by
all members of a design group.

During exploration, users view the knowledge base in
order to understand its contents and the representational
conventions that guided its construction.
During aggregation, users gather objects from the
knowledge base that are potentially relevant for the
work at hand and place them in the sketch.

During specification, users sketch out new knowledge
they intend to enter into the knowledge base. A sketch
is a buffer between users and the knowledge base; the
KB is not modified until the incorporation activity.

During annotation, the users or the system makes notes
about the state of the work in progress, usually
describing some outstanding issue.
During incorporation, the system merges the
specification into the knowledge base and computes
assistance. Incorporation is done at the users’ request,
when they are satisfied with the specification.
During repair, the system presents the issues it has
detected and works with the users to resolve them.

The HITS Knowledge Editor @IKE) has been designed
to assist users in the task of knowledge editing. HKE is
an interface to CYC (Lenat & Guha, 1990). Two of its

This paper focuses on the activities of specification,
incorporation, and repair, since they constitute knowledge
entry, and it is primarily during the entry of new
knowledge that the problem of reaching consensus arises.

lThis work was done while both authors were at the
MCC Human Interface Laboratory.

One of the factors that makes building knowledge bases
difficult is that there is no single correct representation of
a domain. Representing a domain requires knowledge
editors to identify and resolve design issues. The thesis of

74 USER INTERFACES

iev

From: AAAI-91 Proceedings. Copyright ©1991, AAAI (www.aaai.org). All rights reserved.

this paper is that this process of achieving consensus is a
critical element of knowledge editing. We introduce the
notions of synchronous and asynchronous consensus and
illustrate them with examples taken from user studies
done as a part of (.Terveen 1991).

We define consensus as a mutual understanding of a
design issue, how the issue was resolved, and the reasons
why that resolution was chosen. This means that two
designers have achieved consensus even if they disagree on
the resolution, as long as either can use the rationale
behind it in understanding the state of the knowledge base.
For example, consider the (apparently) simple task of
representing your family in a knowledge base. Suppose
you first deal with the case of representing who is married
to whom. A number of issues instantly arise. How
should individuals be represented? Should there be a
single class named P e r s on (we denote objects in the
knowledge base using Courier font), and what should the
relevant subclasses be? Male and Female? Perhaps
there should instead be a slot called sex that can hold an
appropriate value? Should there be one reflexive relation
s pou se or two relations husband and w ife, each
asserted to be the inverse of the other? In either case, is
the slot single or multiple valued? If it is single valued,
is polygamy then impossible to represent? Does that
matter for this knowledge base? What about divorced or
separated couples. 7 What about widows and widowers?
This gives a flavor of the type of issues that must be
resolved in even apparently simple domains. If a work
group gathers together to resolve such issues, we refer to
this process as reaching synchronous consensus.

Contrast this with the following situation. Again you
wish to represent your family, but discover upon
inspecting the knowledge base that an ontology for
families already exists. Now you must evaluate the
existing ontology, determine if it is suitable for your
family, and modify it if necessary. Unfortunately, if you
modify the knowledge base you may have to update all
the families already represented under the current
ontology. In order to perform this evaluation, you must
inform yourself of the design decisions inherent in this

ontology and the factors that influenced those decisions.
You must, in other words, reach consensus with the
original designers of that data; your modifications to the
knowledge base must be consistent with the existing
design. This is asynchronous consensus - multiple
designers, separated by time and perhaps space, achieve a
shared understanding of a domain mediated by a formal
representation of that domain in the knowledge base.

Figure 1 illustrates the most important parameters in
building consensus - spatial and temporal distance - and
summarizes how I-IKE supports achieving consensus.

Designers working on the same problem at the same
time must achieve synchronous consensus. HKE provides
facilities that support designers who are working on the
same problem at the same time and in the same place,
i.e., in front of a workstation running I-IKE.

We believe that asynchronous consensus is of critical
importance throughout the design, implementation, and
evolution of a knowledge base. A knowledge base often
is changed to meet new needs or to remedy newly
discovered shortcomings, long after the original design
has been in place, and long after the original designers
have left the organization. Nevertheless, attempts to
change the design must proceed from an understanding of
the issues driving the existing design.

This topic has been the focus of several “design
recovery” projects. Carroll’s (1990) “claims extraction”
can be viewed as a process by which the principles behind
existing interfaces can be brought to light, even if they
were not articulated by the original designers in any
medium but the final artifact. Biggerstaff (1988) has
looked at methods of “recovering” a design specification
from a piece of software. Both of these efforts have
focused on extracting the design issues from a finished
work; our work differs in that we assume that the design
process is never completely finished, but merely slowly
evolving. Shared, evolving knowledge bases require new
designers to comprehend the consensus underlying the
existing design of the knowledge base; thus HKE
attempts to mediate constructing and maintaining a
consensus throughout this evolutionary process.

Spatial Distance

near

Temporal Distance

far

Figure 1: Dimensions bf consensus and HKE facilities to support them.

TERVEEN & WROBLEWSKI 75

The HITS Knowledge Editor (HKE)
IKE mediates the process of achieving consensus in three
ways.
l It serves as a design medium - sketches allow users to

surface and track representational issues that must be
resolved as they reach synchronous consensus.

. It serves as an intelligent assistant - HKE raises issues
during incorporation (these are symptoms of a lack of
consensus with the existing design) and then works
with users to resolve them during repair.

0 It serves as a design recorder - sketches capture
significant aspects of the design activity. Sketches can
be stored and reused, making parts of the design process
available as a resource to other users in the future.

We illustrate each of these properties with an episode
taken from a user study (Terveen 1991). In the study,
pairs of subjects were given the task of representing
knowledge about the structure of their organization (the
Artificial Intelligence or Human Interface Laboratory at
MCC), including researchers and their areas of expertise,
research projects, and software systems.

Example I: Reaching Synchronous
Consensus in a Design Medi
When a group of knowledge editors represent a domain,
they must achieve synchronous consensus, i.e., they must
identify and resolve representational issues. IIKE
supports this process with a direct manipulation interface
that makes it easy for users to surface and track issues.
Users specify new information by sketching a graph of
objects and their relationships. The sketch is a buffer

between the users and the knowledge base; the KF8 is not
modified until the users are satisfied with their sketch.
When they are, they request EKE to incorporate it into
the KB, which it does automatically.

This example shows how HKE supported one pair of
subjects (we’ll refer to them as subjects 3 & 4) in
resolving the representational issue “should researchers be
represented as working for a research laboratory or a
particular project within the laboratory?” Figure 2 shows
an early point in their work. They have stated the super
organization of the lab, its manager, several of the
researchers, and one of its sub-projects.

At this point, subject 3 raises a new issue:
Maybe I should put those three (using the mouse to

indicate the objects GaleMartin, ~R[=haFman, and
JayPittman) under that (indicating the object
TwSProject), and break these links (indicating the
links from &KXHmInterfaceLab to GaleMartin,
DFXham and JayPit-) . . . or maybe they stay
there.

Subject 4 responds:
You can always restructure projects and you still
work for the lab.

At this point, however, the subjects remain unsure
about how to resolve this issue, so they leave the sketch
as is and continue on in their task. About 10 minutes
later, they have specified another of the sub-projects of the
XCHurranInterfaceIab, H ITSPro ject, and several of
the researchers of this project. The state of their work is
shown in figure 3.

Subjects 3 & 4
@EJl

4 hriZxq
/ I \

/ / I \
(GaleMartinI I

I

lDRChapnan[

Double lines around an icon indicate that an object by this name exists in the knowledge base, e.g., MX exists but Curtis does not.
The Choose Slot menu functions like the legend of a map. Each slot has an associated line pattern, e.g., hasManagers is represented
by a thick dashed line. The icons for two objects related by one of these slots are linked by the appropriate line pattern, e.g.,
ICCHummInterfacdab and Curtis are related by the ha&Tanagers slot, so their icons are linked by a thick dashed line.

Figure 2: Surfacing a representational issue in a sketch

76 USER INTERFACES

Subjects 3 & 4

pEJ

Figure 3: Noting an inconsistent resolution of a representational issue

At this point, it becomes apparent that they have not
resolved consistently the issue “should researchers be
represented as working for a research laboratory or a
particular project within the laboratory?” Subject 4 says:

You’ve now made the picture inconsistent.
Subject 3 responds:

Yeah, I have. I should move these (indicating the
researchers linked to -urmnInterfaceLab) over
here (indicating IwSPro ject).

They then do so, thus resolving the issue by
associating researchers with the most specific organization
for which they work.

To summarize, sketches serve as an external memory
that aids users in tracking and resolving issues. Terveen
(1991) shows that other tools for CYC do not have this
property, and this can lead users to lose track of issues.
Notice that so far it is not even important that HKE is a
computer-based tool - after all, even a whiteboard could
help designers track issues. The next example shows
additional advantages of HKE due to the fact that sketches
are machine-interpretable.

Example 2: caching Asynchronous
Consensus Assisted by an Intelligent Agent
A knowledge base embodies representational decisions
that reflect a consensus view of a domain. Edits to the
knowledge base must be based on an understanding of the
existing consensus - lack of understanding manifests
itself as trouble that occurs while trying to update the
knowledge base. This section considers a particular
representational decision embodied in CYC and shows
how HKE helped subjects to detect an inconsistency
between that decision and one they had made. The issue
is “should a particular computer program (like HKE) be
represented as a subclass or an instance of the general
concept of a CoqmterPrograd?" In the knowledge base,
particular programs are represented as subclasses of the
class CorrputerPrcgrm however, two subjects (we’ll
refer to them as subjects 7 & 8) decided to make particular
programs instances of CorrputerPrcgram.

Figure 4 - Problem in achieving asynchronous consensus

TERVEEN & WROBLEWSKI 77

Figure 4 shows an early point in the work of subjects 7
Jz 8 as they were representing the MCC AI Lab.
Windows 3 and 4 show exploratory information-gathering
moves into the existing knowledge base. Window 5
shows the sketch the subjects are constructing. Notice
that the class hierarchy in window 4 shows that both
CYCUserInterfaceProgram and I nterfacerogram
already are represented as subclasses of CorrputerProgram
in the knowledge base. Through additional inheritance,
both objects already are known to be derived instances of
the class Collection, the set of all sets of things.
However, in the subjects’ sketch, they stated that
CYCUserInterfaceProgram is an instance of
InterfaczProgram, which through inheritance will make
CYCUserInterfaceProgram an instance of
CcxrputerPrcgram, and through additional inheritance, an
instance of the class IndividualObject. However, no
object can be an instance of both collection and
IndividualObject-
disjoint.

they are declared to be mutually

Recall that a sketch is a buffer, and that the knowledge
base is not updated until the users request HKE to
incorporate a sketch. When they do so, and HKE
attempts to incorporate the assertion instanceOf(
CXtJserlhterfaceProgram, InterfacePrograk) into
the knowledge base, it detects this trouble. Users then
can access the repair resource shown in figure 5 as an aid
in understanding and resolving the problem. This
resource suggests that the trouble be repaired by making
-serInterfaceProgram a subclass (rather than an
instance) of InterfaceProgram This repair option is
appropriate since ~~~~~ser~nterface~rograrn and
Interfac&?rogram both are members of the class
hierarchy of computer programs.

To summarize, HKE detects a trouble when attempting
to incorporate an assertion into the knowledge base. The

trouble is a symptom of a lack of consensus between
previous knowledge editors and the current knowledge
editors. HKE suggests a repair action that may fulfill the
intention of the current knowledge editors and does fit in
with the existing consensus. The principle underlying
both examples 1 and 2 is that HKE supports users in
achieving consensus by making symptoms of non-
consensus visible.

Example 3: Achieving Asynchronous
Consensus through Design Recording
A sketch embodies aspects of users’ problem solving
activity. Sketches can be stored and used as a resource for
future representational activity; thus, problem solving
does not have to be duplicated. Figure 6 shows the
completed sketch for subjects 7 & 8. This sketch
embodies several decisions useful for similar tasks.
0 It shows the vocabulary (classes and slots) that two

users have found appropriate for representing a domain.
0 It records particular facts that users asserted about

objects in the domain. This information can be used as
a template by users representing a similar domain.

e It filters out information about objects that users do not
consider important.
This sketch could be useful to other users representing

an organization. They would not have to do as much
exploration of the existing knowledge base to find
relevant information and filter out irrelevant information,
they could use the vocabulary chosen by subjects 7 & 8,
and they could represent much of their domain simply by
copying and editing the sketch of subjects 7 & 8. Note
that these benefits do not require extra work on the part of
knowledge editors - they are not forced to go “off-task” to
document their work.

rfaceProwam is a subclass o

IndividualObject Collection

How do YOU want to repair this trouble?

Figure 5 - A repair resource

78 USER INTERFACES

012 AAC!h$ffl8
Subjects 7 & 8

Figure 6 - A sketch as a resource for future activity

Summary: Strengths and eaknesses
HISE supports users in achieving consensus in three
ways. It provides a design medium that allows users to
surface and track issues that must be resolved to reach
synchronous consensus. It offers intelligent assistance
that helps users work in harmony with representational
decisions embodied in the knowledge base. And it serves
as a design recorder, capturing significant aspects of the
design activity that can be used as a resource for doing
similar tasks in the future.

There are three ways that HKE does not support users
in reaching consensus. First, it does not capture the
rationale behind representational decisions. Issue-based
information systems (Conklin & Begeman 1987, Fischer,
McCall, & March 1989) are a promising approach to
capturing design rationale. However, they require
designers to go off-task to document their work, and
software developers are notoriously loathe to do this sort
of documentation.

Second, sketches do not capture repair activity. While
IKE provides repair resources like the one shown in
figure 5, it does not update the sketch to record either the
repair decision or the reasoning behind it. We have
experimented with special sketches that graphically depict
a trouble and resources for solving it. This allows the
trouble, the problem solving work done by users to
resolve it, and the resolution to be stored and available as
resources for subsequent representational activity.

Finally, I-IKE currently offers no support in achieving
synchronous distributed consensus, i.e., to people who are
geographically separated but are working on a shared
knowledge base at the same time. We have experimented
with methods that (1) allow users to mark sections of the
knowledge base as being of personal interest, and (2)

embed agents in the knowledge base that watch for other
users to access these sections and notify the original user.

We thank Will Hill for identifying the issue of consensus,
Steven Tighe for implementing HKE’s sketching
functionality, and Gerhard Fischer for his constructive
comments on a version of this paper that we presented at
the 1991 HCIC workshop.

eferenees
Biggerstaff, T. (1988). Design Recovery for Maintenance

and Reuse. TR SIP-378-88. Austin Texas: MCC.
Carroll, J.M., Kellogg, W.A., & Rosson, M.B. (1990).

The Task-Artifact Cycle. In J. Carroll (ed.) Designing
Interaction: Psychology at the Human-Computer
Interface. New York: Cambridge University Press.

Conklin, J. & Begeman, M. (1987) gIBIS: A Hypertext
Tool for Team Design Deliberation. In Hypertext’87
Papers. 247-251. Chapel Hill, NC.

Fischer, G., McCall, R., & March, A.I. (1989). Design
Environments for Constructive and Argumentative
Design. CHI’89. 269-275. Austin, TX.

Fischer, G., Lemke, A.C., Mastaglio, T., & March, A.I.
(1989). Using Critics to Empower Users. CHI’90.
337-348. Seattle, WA.

Hill, W.C. (1989). The Mind at AI: Horseless Carriage to
Clock. AI Magazine, lO(2): 28-4 1.

Lenat, D.B. Jz Guha, R.V. (1990). Building Large
Knowledge Based Systems. Reading, MA: Addision-
Wesley.

Terveen, L.G. (199 1). Person-Computer Cooperation
Through Collaborative Manipulation. Ph.D. Thesis.
Dept. of Computer Sciences, The University of Texas.

TERVEEN & WROBLEWSKI 79

