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Abstract 

This paper reports experimental results of a high perfor- 
mance (real-time) memory-based translation. Memory- 
based translation is a new approach to machine transla- 
tion which uses examples, or cases, of past translations 
to carry out translation of sentences. This idea is counter 
to traditional machine translation systems which rely on 
extensive use of rules in parsing, transfer and genera- 
tion. Although, there are some preliminary reports on 
the superiority of the memory-based translation in terms 
of its scalability, quality of translation, and easiness of 
grammar writing, we have not seen any reports on its 
performance. This is perhaps, the first report discussing 
the feasibility and problems of the approach based on ac- 
tual massively parallel implementation using real data. 
We also claim that the architecture of the IXM2 asso- 
ciative processor is highly suitable for memory-based 
translation tasks. Parsing performance of the memory- 
based translation system attained a few milliseconds per 
sentence. 

1 troduction 

In this paper, we demonstrate that the memory-based transla- 
tion model offers extremely high performance (real-time) on 
massively parallel machines, and exhibits a desirable scal- 
ing property. We will also show that the architecture of 
the IXM2 parallel associative processor, which extensively 
uses associative memory for storing and processing memory- 
base, offers much higher performance than other massively 

arallel architectures such as the CM-2 Connection Machine 
P Thinking Machine Corp., 19891. 

The traditional approach to machine translation (MT) has 
been to rely on extensive rule application. This approach, 
however, exhibits several undesirable properties when a sys- 
tem grows to substantial size. There are several major prob- 
lems in the current approach to machine translation which 
is widely recognized by researchers and industrial engineers 
engaged in this field. These are: 

Performance: Performance of most existing machine trans- 
lation systems is not good. It takes about a few seconds 
to a few minutes to translate one sentence. This per- 
formance is totally insufficient to carry out real-time 
spoken language translation or bulk text translation. 

*This work is supported in part by the Pittsburgh Supercomput- 
ing Center under grant TRA900105P and IN-910002P 

higuchi@etl.go.jp 
Scalability: Current machine translation systems are diffi- 

cult to scale up because their processing complexity 
makes the systems’ behavior almost intractable. 

Quality: Intractability of a system’s behavior combined with 
other factors lowers the quality of translations. 

Grammar Writing: By the same token, grammar writing 
is very difficult since a complex sentence has to be 
described by the piecewise rules. It is a hard and time 
consuming task partly due to the intractability of the 
behavior when they are added into the whole system. 

We propose memory-based translation to overcome these 
problems. All of these problems are equally important; how- 
ever, as a conference paper, we do not have the space to 
discuss them. Instead, we will focus on the performance is- 
sues. Since memory-based translation was initially proposed 
to improve the quality of translation and to improve the pro- 
ductivity of grammar writing, there are some reports about 
experiments which shows the advantages of the memory- 
based translation over the traditional machine translation ap- 
proach in these aspects. Those who are interested in the 
quality and the grammar aspect of this approach should refer 
to [Nagao, 19841, [Sate and Nagao, 19901, [Furuse et. al., 
19901, and [Sumita and Iida, 19911. 

In this paper, we will focus on the performance issue, par- 
ticularly on parsing. The performance problem is one of the 
most serious problems of current machine translation sys- 
tems, especially when machine translation is to be applied 
to spoken language translation and other applications which 
require real-time translation. Wh+en the translation process 
takes from a few seconds to a few minutes its is hopeless that 
any form of spoken language translation or any other real- 
time applications can be deployed either experimentally or 
commercially. However, most of the current parsing strate- 
gies require extensive computing time. ATR’s translation 
system requires a translation process from 61 seconds to 119 
seconds to complete, even for sentences in their conference 
registration task [Ogura et. al., 19891. Our goal, therefore, 
is to develop a system which carries out translation in real- 
time, i.e. at milliseconds order. The real-time translation 
is the significant goal in MT research due to its potential 
breadth of applications. Besides its obvious application to 
spoken language processing, the ability to process natural 
language with high-performance has a large industrial im- 
pact. Its applications are wide spread including intelligent 
full text-retrieval, text classification, summarization, speech 
interface, large corpora processing, etc. 

The poor performance of traditional machine translation 
systems (also applies to traditional parsers in general) can be 
attributed to the serial application of piecewise rules. Thus, 
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the time complexity of parsing algorithms has been one of 
the central issues of the research. The most efficient parsing 
algorithm known to date is Tomita’s generalized LR parser 
which takes less than O(n3) for most practical cases[Tomita, 
19861. Although some attempt has been made to implement 
a parallel parsing process to im 
as [Tanaka and Numazaki, 1989 

rove its performance (such 
‘; ), the degree of parallelism 

attained by implementing a parallel version of the traditional 
parsing scheme is rather low. Plus, it degrades more than 
linearly as the length of the input sentence gets longer. Thus, 
no dramatic increase in speed can be expected unless a highly 
parallel algorithm is employed. 

A highly parallel algorithm, however, requires extensive 
computational cost for search in memory when executed on 
serial machines, hence no significant improvement of perfor- 
mance can be expected. Massively parallel machines are the 
obvious choice to implement such highly parallel algorithms. 
Surprisingly, massively parallel machines such as CM-2 do 
not exhibit a high performance when the knowledge-base has 
a high average fanout factor which is the case in our appli- 
cation. This is due to its serial link constraint to propagate 
markers between processors. Our alternative to this problem 
is the use of the IXM2 architecture which extensively uses 
associative memory so that parallel marker-propagation to 
search memory can be carried out in constant time regardless 
of the fanout factor. 

In this paper, we wish to demonstrate that the performance 
problem can be solved, or at least significantly mitigated, by 
using memory-based translation on massively parallel ma- 
chines. We would also like to demonstrate that the ma- 
chine architecture which we advocate in this paper provides 
a significantly better performance than do other massively 
parallel machines. Although it is generally argued that time- 
complexity can be transferred to space-complexity, and use 
of massively parallel machines can attain high performance, 
there is no previous study to experimentally prove this hy- 
pothesis. This paper is, perhaps, the first paper addressing 
this issue using actual experimental data. 

2 Memory-Based Translation 
The idea of usin examples for translation was first proposed 
by [Nagao, 1984 as ‘Translation by Analogy.’ Recently, this 4 
approach began gaining increasing attention due to the prob- 
lems in the traditional machine translation approach. There 
are already some papers which report preliminary ideas and 
on preliminary experiments (CSato and Na ao, 19901, [Furuse 
et. al,, 19901, and [Sumita and Iida, 1991 4 ). This increasing 
interest in memory-based translation coincides with recent 
excitement about memory-based reasoning (MBR) [Stanfill 
and Waltz, 19861 and case-based reasoning (CBR) IRies- 
beck and Schank, 19891. The basic idea of memory-based 
reasoning places memory at the foundation of intelligence. 
It assumes that large numbers of specific events are stored 
in memory; and response to new events is handled by first 
recalling past events which are similar to the new input, and 
invoking actions associated with these retrieved events to 
handle the new input. This idea runs counter to most AI ap- 
proaches which place rules or heuristics as the central thrust 
of reasoning. 

The memory-based approach works well in machine trans- 
lation, too. For example, in the ATR’s conference registra- 
tion corpus, almost all the sentences that involve the word 
‘would’ can be expressed by a template <I would like 
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English 1 Interlingua 1 Japanese 
d would like to *action> I *Sentence I <*action shitai nodesuB 
<that would be *state> 
<*office for *even0 
<*action for *evenD 
<*action for *person> 
<*action for *objecti 
<*object for *action> 
<*object for *event> 
<*object for *objecD 
<*object for *person> 
<hello> 
CHOW’S your business?> 

*Sentence 
*office 
*action 
*action 
*action 
*object 
*object 
*object 
*object 
*hello-tel 
*greeting-bus 

<soreha *state desu> 
<*event *office> 
<*event ni *action> 
<*person ui *action> 
<*object ni *action> 
<*action *objecp 
<*event no (you no) *object> 
<*object you no *object> 
<*person ni *objecD 
anoshimoshb 
dnoukattemakka?> 

Table 1: Concept Sequences for Source and Target Language 

to *action>, this is called the Concept Sequence. It is 
clear from the following KWIC view of the corpus: 

I would like to register for the conference. 
I would like to take part in the conference. 
I would like to attend the conference. 
I would like to contribute a paper to the conference. 

That would be helpful for me. Thank you very much. 
I would like to know the details of the conference. 

so I would like to cancel. 
I would like to contribute a paper to the conference. 
I would like to ask you about hotel accommodations for the conference. 

Then I would like to make a reservation for the Hilton Hotel. 

Thus by having a few pairs of templates all the cases of 
sentences using ‘would’ in the corpus can be translated. In 
addition, only seven templates would translate all the cases 
in the corpus of the phrase filling *action. Although, at a 
glance, this seems to be a naive approach, the method essen- 
tially entails comparable or even superior translation capabil- 
ity than current MT systems. Given the fact that large-scale 
MT systems have a few thousand grammar rules in which 
most of them are for the exception handling of each specific 
case, the Memory-Based Translation is a straightforward and 
tractable approach to translation because it uniformally han- 
dles regular and irregular cases. A part of concept sequences 
for English-Japanese translation is shown in Table 1. 

Unlike other machine translation systems which employ 
a single level of abstraction in parsing and generation, our 
model uses multi 
KBMT-89 system Goodman and Nirenberg, 19911 uses Lexi- P 

le levels of abstraction. For instance, the 

cal Functional Grammar (LFG) as a basis for parsing and gen- 
eration, but it does not use any phrasal lexicons or semantic- 
grammars along with the LFG rules. On the contrary, in 
our model, specific case, generalized case and unijication 
grammar co-exist. This is illustrated in Figure 1. There, 
line (cu) represents the process of translating a specific case, 
i.e. a representation of a particular source language sentence. 
The level of abstraction increases as we move up to line (p), 
which traces the translation of what we call “generalized 
cases” or conceptual representations (given as <*person 
*want *to *ci rcum>). At the most abstract level, (r), 
we rely on a unification-based grammar. Translation occurs 
at the lowest - the least abstract - possible level. 

Advantages of using multiple levels of abstraction are the 
following. The approach: 

1. Improves performance by performing translations 
whenever possible at a level closer to the surface; there 
is no need for expensive unification or constraint-based 
processes. 

2. Ensures scalablity since new sentence structures can be 
handled simply by adding new concept sequences, or 
templates. 
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Figure 1: Translation paths at different levels of abstraction 

Translatibn 

associative memory multi-processor 

Memory-Based Translation Unification-based Translation 

Figure 2: Diagram of the System Integrating Memory-Based 
and Unification Approach 

3. Attains high performance with massively parallel ma- 
chines because, in most cases, the translation can be 
done by finding specific or generalized cases during 
parsing and by invoking corresponding cases in the tar- 
get language. This essentially converts time-complexity 
into space-complexity, which is not a problem with mas- 
sively parallel machines. 

When none of the cases is applicable for the input, the 
unification- or constraint-based process is invoked on the 
coarse-grain multi-processors as shown in figure 2. The 
memory-based translation carried out on the IXM2 will cover 
translation paths such as cy and ,f3 in figure 1. A coarse-grain 
parallel machine or a high performance serial machine will 
cover the rest, y in figure 1. We expect that the memory- 
based translation process (Q and y) covers most of cases 
(more than 99%). 

3 The Massively Parallel Associative 
Processor IXM2 

IXM2 is a massively parallel associative processor designed 
and developed at the Electrotechnical Laboratory [Higuchi 
et. al., 19911. It is dedicated to semantic network processing 
using marker-passing. 

IXM2 consists of 64 processors, called associativeproces- 
sors, which operate with associative memory, each of which 
has a memory capacity of 4K words by 40 bits. Each asso- 
ciative processor is connected to other associative processors 
through network processors. 

An associative processor consists of an IMS T8OO trans- 
puter, 8 associative memory chips, RAM, link adapters, and 
associated logic. When operated at 20 MHz clock, T800 at- 
tains 10 MIPS [Inmos, 19871. Each associative memory chip 
is a 20 Kbit CAM (512 words x 40 bits). The IXM2 has 64 
such processors, thus attaining 256K parallelism which is far 
larger than 64K parallel of the Connection Machine [Hillis, 
19851. This high level of parallelism allows us to implement 

Atstractlon Hierarchy conceptu01 sqmnse Layer 

1 ke . . . . . 

Figure 3: Overall Architecture of the Parsing Part 

practical memory-based systems. The design decision to use 
associate memory chips driven by 32 bit CPUs, instead of 
having thousands of l-bit CPUs, is the major contributing 
factor for performance, processor efficiency, and cost perfor- 
mance. 

Network processors are used to handle communication be- 
tween associative processors. There is one top-level network 
processor which deals with communication among the lower- 
level network processors, and 8 lower-level network proces- 
sors each of which is connected to 8 associative processors. 
Unlike most other massively parallel architectures which use 
N-cube connections or cross-bar connections, IXM2 employs 
a full connection so that communication between any two 
processors can be attained by going through only 2 network 
processors. This full connection architecture ensures high 
communication bandwidth and expandability which are crit- 
ical factors in implementing real-time applications. Each 
interconnection attains high speed serial links (20 Mbits/set) 
which enable the maximum transfer rate per link at the speed 
of 2.4 Mbyte&c. 

tal System 

ASTRAL’ is an implementation of the memory-based trans- 
lation on IXM2. The overall architecture is shown in figure 
3. The memory consists of four layers: a phoneme sequence 
layer, a lexical entry layer, abstraction hierarchy, and a con- 
cept sequence layer. 
Phoneme Layer: Phonemes are represented as nodes in the 

network, and they are connected to each instance of 
phoneme in the phoneme sequence layer. Weights are 
associated to links which represent the likelyhood of 
acoustic confusion between phonemes. 

Phoneme Sequence Layer: The phoneme sequence of each 
word is represented in the form of a network. This part 
is shown in figure 4. 

Lexical Entry Layer: The lexical entry layer is a set of 
nodes each of which represents a specific lexical en- 
@Y- 

Abstraction Hierarchy: The class/subclass relation is rep- 
resented using IS-A links. The highest (the most gen- 
eral) concept is *all which entails all the possible con- 
cepts in the network. Subclasses are linked under the 
*all node, and each subclass node has its own sub- 
classes. As a basis of the ontological hierarchy, we 

‘ASTRAL is an acronym for the Associative model of 
@zmlation of Language. 
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link (first,ax31,about). 
link (last, t34,about) . 
link(instance of,ax3l,ax). 
link(destinatzon,ax31,b32). 
link (instance of, b32, b) . 
link idestinatIon, b32, aw33) . 
link(instance of,aw33,aw). 
link (destinatTon,aw33,t34) . 
link (instance-of, t34, t) . 

Figure 4: Network for ‘about’ and its phoneme sequence 

use the hierarchy developed for the MU project [Tsujii, 
19851, and domain specific knowledge has been added. 

Concept Sequence: Concept sequences which represent 
patterns of input sentences are represented in the form 
of a network. Concept sequences capture linguistic 
knowledge (syntax) with selectional restrictions. 

Figure 4 shows a part of the network. The figure shows a 
node for the word ‘about’, and how the phoneme sequence is 
represented. The left side of the figure is a set of IXM instruc- 
tions to encode the network in the right side on the IXM2 
processor. Refer [Higuchi et. al., 19911 for details of the 
mapping of semantic networks to IXM2. We have encoded 
a network including phonemes, phoneme sequences, lexi- 
cal entries, abstraction hierarchies, concept sequences which 
cover the entire task of the ATR’s conference registration 
domain [Ogura et. al., 19891. The vocabulary size is 405 
words in one language, and at least over 300 sentences in 
the corpus have been covered. The average fanout of the 
network is 40.6. The weight value has not been set in this 
experiment in order to compare the performance with other 
parsers which do not handle stochastic inputs. In the real 
operation, however, a fully tuned weight is used. The imple- 
mentation in this paper is different from [Kitano and Higuchi, 
19911 which simply stores flat sequences of syntactic cate- 
gories. The implementation in this paper uses a hiearchical 
memory networks thereby attaining a wider coverage with 
smaller memory requirements2. 

The table for templates of the target language is stored in 
the host computer (SUN-3/250). The binding-table of each 
concept and concept sequence, and specific substrings are 
also created. When the parsing is complete, the generation 
process is invoked on the host. It is also possible to com- 
pute distributively on 64 T800 transputers. The generation 
process is computationally cheap since it only retrieves and 
concatenates substrings (which is a lexical realization in the 
target language) bound to conceptual nodes following the 
patterns of the concept sequence in the target language. The 
system implemented in this paper is based on the genera- 
tion algorithm described in [Kitano, 199Obl with substantial 
modifications to meet hardware constraints. 

The algorithm is simple. Iwo markers, activation markers 
(A-Markers) and prediction markers (P-Markers) are used 
to control the parsing process. A-Markers are propagated 
through the memory network from the lexical items which 
are activated by the input. P-Markers are used to mark the 
next possible elements to be activated. This algorithm is 
similar to the basic framework of the @DMDIAL~G speech- 
to-speech translation system Kitano, 199Oal, and inherits the 

2An alternative method of covering wider inputs is to use 
similarity-based matching as seen in ISumita and Iida, 1991 I. Com- 
bining such an approach with our model is feasible. 
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basic notion of the direct memory access parsing (DMAP) 
[Riesbeck and Martin, 19861. The parsing algorithm can 
process context-free grammar (CFG) and augmented CFG 
using constraints (in effect, augment CFG is Context Sensi- 
tive Grammar due to constraints added to CFG). Part of the 
parsing process is analogous to the Earley-type shift-reduce 
parser. To help understanding, shift and reduce have been 
labeled where appropriate. However, the basic operation is 
highly parallel. Particularly, it exhibits the data-parallel na- 
ture of the operation due to simultaneous operations for all 
the data in the memory. A general algorithm follows (only a 
basic framework is shown. Some extra procedures are nec- 
essary to handle CFG and Augmented CFG.): 

1. 

2. 
3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

5 

Place P-Markers at all first elements of Concept Se- 
quence. 
Activate Phoneme Node. 
Pass A-Markers from the Phoneme Node to Nodes of 
Phoneme Sequences. 
If the A-Marker and a P-Marker co-exist (this is called an 
A-F-Collision) at an element in the Phoneme Sequence, 
then the P-Marker is moved to the next element of the 
Phoneme Sequence. (Shift) 
If the A-P-Collision takes place at the last element of 
the phoneme sequence, an A-Marker is passed up to the 
Lexical Entry. (Reduce) Else, Goto 2. 
Pass the A-Marker from the lexical entry to the Concept 
Node. 
Pass the A-Marker from the Concept Node to the ele- 
ments in the Concept Sequence. 
If the A-Marker and a P-Marker co-exist at an element 
in the Concept Sequence, 
then the P-Marker is moved to the next element of the 
Concept Sequence (Shift). 
If an A-P-Collision takes place at the last element of the 
Concept Sequence, the Concept Sequence is temporarily 
accepted (Reduce), 
and an A-Marker is passed up to abstract nodes. 
Else, Goto 2. 
If the Top-level Concept Sequence is accepted, invoke 
the generation process. 

Performance 
We carried out several experiments to measure the system’s 
performance Figure 5 shows the parsing time against sen- 
tences of various lengths. Parsing at milliseconds order is 
attained. PLR is a parallel version of Tomita’s LR parser. 
The performance for PLR was shown only to provide a gen- 
eral idea of the speed of the traditional parsing models. Since 
machines and grammars are different from PLR and our ex- 
periments, we can not make a direct comparison. However, 
its order of time required, and exponentially increasing pars- 
ing time clearly demonstrate the problems inherent in the 
traditional approach. The memory-based approach on IXM2 
(MBT on IXM2) shows a magnituate faster parsing perfor- 
mance. Also, its parsing time increases almost linearly to the 
length of the input sentences, as opposed to the exponential 
increase seen in the PLR. Notice that this graph is drawn 
in log scale for the Y-axis. CM-2 is slow in speed, but ex- 
hibits similar characteristics with IXM2. The speed is due 
to PE’s capabilities and machine architecture, and the fact 
that CM-2 shows a similar curveture indicates the benefits of 
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the RIBT. The SUN-4 shows a similar curve, too. However, 
because the SUN-4 is a serial machine, its performance de- 
grades drastically as the size of the KB grows, as discussed 
below. 

Scalability is demonstrated in figure 6. The parsing time 
of a sentence with 14 input symbols is shown for various 
sizes of KBs. The size of the KB is measured by the number 
of nodes in the network. The performance degradation is less 
than linear due to the local activation of the algorithm. This 
trend is the opposite of the traditional parser in which the 
parsing time grows beyond linear to the size of the grammar 
KB (which generally grows square to the size of grammar 
rules, o(G2)) due to a combinatorial explosion of the serial 
rule applications. CM-2 shows a similar curve with IXM2, 
but is much slower due to the slow processing capability 
of l-bit PEs. The SUN-4 has a disadvantage in a scaled 
up KB due to its serial architecture. Particularly, the MBT 
algorithm involves an extensive set operations to find nodes 
with the A-P-Collision, which is suitable for SIMD machines. 
Serial machines need to search the entire KB which lead to 

the undesirable performance as shown in the figures in this 
section. 

In this paper, we described a massively parallel memory- 
based translation on the IXM2 associative processor. We 
have shown, using data obtained from our experiments, that 
the massively parallel memory-based translation is a promis- 
ing approach to implement a high-performance real-time 
parsing system. Major claims and observations made from 
our experiments include: 

e The massively parallel memory-based translation at- 
tains real-time translation when implemented on a mas- 
sively parallel machine. Our experiments using the 
IXM2 associative memory processor show that pars- 
ing is completed on the order of a few milliseconds, 
whereas the traditional parsers requires a few seconds 
to even a few minutes. The main reason for this perfor- 
mance is the data-parallel nature of the memory-based 
translation paradigm where a parallel search is carried 
out for all sentence patterns (represented as conceptual 
sequences). In addition, the parsing time grows only lin- 
early (or sublinearly) to the size of the inputs (5 o(n)), 
whereas traditional parsers generally require o(n3). The 
system not only attains milli-second order parsing per- 
formance, but also exhibits a desirable scaling property. 
The parsing time required grows only sublinearly to 
the size of the knowledge-base loaded. This scaling 
property is the real benefit of using a massively parallel 
machine. Also, we can state that the memory-based 
approach is promising for large-scale domains. 

8 The effectiveness of the IXM2’s architecture for large- 
scale parallelism has been confirmed. In the memory- 
based translation, a large set of sentence patterns are 
stored in associative memory. In natural language pro- 
cessing, each phoneme, word, and concept appear in 
various places due to the vast combinatorial possibil- 
ities of sentence production. This is particularly true 
for the memory-based translation because surface, near- 
surface, and conceptual sequences are used, .which are 
more specific than most grammar rules. Because of this 
representation level, the average fanout of the semantic 
network which represents linguistic knowledge is large. 
The network used in this experiment has an average 
fanout of 40.6. The IXM2 has an architectural advan- 
tage in processing networks with a large fanout. An ad- 
ditional experiment verifies the advantage of the IXM2 
architecture for this typeof processing. Given a network 
with a different fanout, the IXM2 has an overwhelming 
performance over other machines as average fanout be- 
comes larger (Figure 7). While other machines degrade 
its performance, the IXM2 keeps a constant time to com- 
plete the propagation of the markers to all nodes linked 
to the source of activation. This is due to the use of as- 
sociative memory in IXM2. For memory-based natural 
language processing, this approach is extremely pow- 
erful because semantic networks for natural language 
processing tend to have a large fanout factor as seem in 
the example in this paper. 

One of the major contributions of this paper, however, is 
that we have shown that the time-complexity of the natural 
language processing can be transferred to space-complexity, 
thereby drastically improving the performance of the pars- 
ing when executed on massively parallel machines. This 
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assumption is the basic thrust of the memory-based and case- 
based reasoning paradigm. This point has been clearly illus- 
trated by comparing a version of Tomita’s LR parsing algo- 
rithm and the memory-based parsing approach. Traditional 
parsing strategies exhibited an exponential degradation due 
to extensive rule application, even in a parallel algorithm. 
The memory-based approach avoids this problem by using 
hierarchical network which compiles grammars and knowl- 
edge in a memory-intensive way. While many AI researchers 
have been speculatively assuming the speed up by massively 
parallel machines, this is the dirst report to actually support 
thebenefit of the memory-based approach to natural language 
processing on massively parallel machines. 

In addition, we have shown that the difference in archi- 
tectures between massively parallel machines significantly 
affects the total performance of the application. The IXM2 is 
significantly faster than the CM-2, mainly due to its parallel 
marker-passing capability of associative memory. 
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