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Abstract 
Plan-recognition requires the construction of possible 
plans which could explain a set of observed actions, and 
then selecting one or more of them as providing the best 
explanation. In this paper we present a formal model 
of the latter process based upon probability theory. 
Our model consists of a knowledge-base of facts about 
the world expressed in a first-order language, and rules 
for using that knowledge-base to construct a Bayesian 
network. The network is then evaluated to find the 
plans with the highest probability. 

Introduction 
Plan recognition is the problem of inferring an agent’s 
plans from observations. Typically the observations 
are actions performed by the agent, and previous work 
has limited itself to this case. We will do so as well, 
although the approach we suggest generalizes to other 
types of observations (states of affairs, actions of oth- 
ers, etc.). A plan-recognition system must be able to 
retrieve, or construct, possible explanatory plans, and 
decide to what degree the evidence supports any par- 
ticular plan hypothesis. In what follows we will con- 
centrate exclusively on the second of these tasks. 

Probably the best-known work in the area is that 
of Kautz [8,9]. Kautz provides a formal basis for the 
problem in terms of minimizing (in the circumscriptive 
sense) the number of “top-level plans.” The idea is that 
every observed action is part of one or more top-level 
plans. With this restriction plan-recognition becomes 
a task of nonmonotonic deduction. For example, if 
action Al can only be part of PI or P2, while A2 can 
only be part of Pz or P3, after asserting that there is 
only one top-level plan, it follows deductively that A1 
and A2 are both part of P2. While this work is justly 
noted for the clarity with which it lays out its logical 
and algorithmic basis, as a theory of plan-recognition 
it suffers from three major flaws. 

First, because this approach is, essentially, minimal 
set covering, it cannot decide that a particular plan, no 
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matter how likely, explains a set of actions, as long as 
there is another plan, no matter how unlikely, which 
could also explain the observed actions. Consider 

Jack packed a bag. He went to the airport. 

Any normal reader would assume that Jack is tak- 
ing a plane-trip. But Kautz’s plan-recognition system 
would not be able to decide between plane-trip, and 
air-terrorist-bombing, since the latter also has the ter- 
rorist packing a bag (with a bomb) and going to the 
airport (to get the bag on the plane). Bayesians (such 
as your authors) would say that Kautz’s program ig- 
nores the priors on the plans, and thus cannot make 
the right decision. Nor can one simply say that the 
program should defer the decision. There will be cases 
where a decision must be made. Imagine the following: 

Personl: Is Jack around? 
Person2: I saw him leave for the airport with his 
bag this morning. 
Personl: Yes, but is he around? 

Person1 must ask this question because Jack might be 
bombing the plane, rather than flying on it, and if he 
is bombing the plane he will not have boarded, so Jack 
might still be in town. 

Second, the distinction between top-level plans, 
which are minimized, and the rest, which are not, is 
problematic. While most of the time walking is in ser- 
vice of a higher plan (getting some place), occasionally 
we walk “because we feel like it.” So sometimes walk- 
ing is a top-level plan, and sometimes it is not. Nor 
can Kautz do away with the distinction. If one mini- 
mized over all actions, then one would never postulate 
a top-level plan at all. 

Finally, set minimization as a principle for abduction 
(reasoning from effects to causes) is simply wrong. In 
medicine it may be correct to diagnose two common 
ailments rather than a single uncommon one, particu- 
larly if the symptoms are strongly associated with the 
common ailments, but not with the uncommon one. 

Indeed, because of such objections, and particularly 
because of the need for priors, we doubt that any model 
which does not incorporate some theory of reasoning 
under uncertainty can be adequate. The only other 
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such model that we are aware of is Carberry’s [ 11, which 
uses Dempster-Shafer (D-S) belief functions. We ap- 
plaud her decision to confront the issues of reasoning 
under uncertainty and her use of numerical measures 
for belief, and thus the criticisms we have of her work 
are of a much narrower sort. These criticisms have to 
do with our preference for probability theory over D-S 
for this problem, and the architecture of her approach. 

We prefer Bayesian probability theory to D-S on gen- 
eral principles. It is instructive to note that many at- 
tempts to give a semantics to D-S belief functions do so 
by relating them to probabilities, thus admitting that 
probability is on a much firmer footing than ‘“beliefs.” 
Given this, it seems to us that it is incumbent on any- 
one using D-S to justify why probability theory would 
not do. Carberry has not. 

Carberry makes two arguments against probability 
theory. First she claims that probability theory re- 
quires “a great deal of time-consuming and compli- 
cated computation.” In response we note that while 
evaluating Bayesian networks is NP hard, so are D- 
S calculations. In fact, since point-valued probability 
theory is a limit case of the D-S calculus, D-S calcula- 
tions are zt Ieast as expensive as probability updating. 
Furthermore, Carberry’s updating problems involve 
extensive independence assumptions, and she assumes 
that an action is part of only one plan. If these com- 
putations were rephrased in terms of Bayesian proba- 
bility, they could be computed in linear time. 

Carberry’s second complaint is that “probability 
computations are extremely difficult to explain and 
justify to a lay person.” We have yet to see an ar- 
gument that Dempster’s rule of combination is more 
intuitively comprehensible than Bayes’ ru1e.l In any 
case, one does not explain the computations, one ex- 
plains their results. This is what Carberry does with 
her D-S computation, and we would do likewise. 

Lastly, we have subsumed more of our system’s rea- 
soning within our uncertainty calculus than Carberry 
has done with hers. In particular, several of Carberry’s 
heuristic rules are not needed in our system.2 

Our work on plan recognition is in the context of 
Wimp3, our Bayesian story understander. Earlier 
publications have discussed its knowledge representa- 
tion [4], problems assessing its probabilities [3], and 
rule-based network construction [6]. Here we concen- 
trate on plan recognition. However, our scheme inter- 
acts with other language tasks like pronoun resolution, 
word-sense disambiguation, etc., something the above 
researchers have yet to attack. 

Our Plan Representation 

Our model of plan recognition consists of a knowledge- 
base K of facts about the world, which is used in the 

‘In fact, there has recently been very promising work on 

explaining probability updating in networks [‘i’]. 

2Rules D4,D5, and D6, for those familiar with her paper. 

production of a set of Bayesian networks, P, called 
“plan-recognition Bayesian networks.” K is expressed 
in a first-order notation. The language consists of 
terms denoting actions and physical objects (which will 
have names consisting of a type name, followed by a 
distinguishing number e.g., buy43, milkshake2), terms 
denoting sets of action and object natural kinds (type 
name followed by a hyphen, e.g. buy-, milkshake-), 

functions from terms to other terms, typically used to 
indicate roles, (either common case names e.g., agent, 
patient, or ending with “-of’, e.g., straw-of, so we might 
have (agent buy43) denoting the agent of the event 
buy43), the three predicates ==, inst, and isa; and the 
usual truth-functional predicates. 

The predicate inst (set membership), as in (inst 

buy43 buy-) says that the first term is a member of 
the set of buying events buy-. The predicate isa, (sub- 
set) as in (isa buy- obtain-) says that the first term is 
a subset of the second. The predicate == (the bet- 
ter name relation) as in (== (agent buy43) jack2) says 

that the second argument is a better name for the first. 
The better name relationship is used for noun-phrase 
reference, as in (== it22 milk8) would be the proposi- 
tion that milk-8 is a better name for it22. This would 
be true if the pronoun “it” which gave rise to it22 re- 
ferred to the milk in question. We abbreviate == to 
= when space is important. 

We make no distinction between plans and actions. 
Plans are complicated actions - those with sub- 
actions. The sub-actions of a plan relate to the plan in 
the same way that roles do, as functions from the plan- 
instance to the sub-action. So (== (pay-stp shop%) 

pay76) indicates that the paying event; pay76, was the 
“pay step” of the shopping event, shop55. Thus, in 
this notation, recognizing a plan p from sub-actions 
al . . . a,, is inferring the following: 

(inst p plen-type) (== (stpl p) al) 
. . . (== (&h p) an) 

Making such inferences requires generic information 
about plans and their parts. This information can be 
represented using the above predicates, functions and 
terms. For example, to state that actions of type A 
can fill the A-of slot in of plans of type B, and that if 
it does then the Al-of slot of A must be filled by the 
entity which fills the Pr-of slot of P, and the AZ-of by 
P2-of etc would come out as this: 

(inst ?P P) + (and (inst (A-of?P) A) 
(== (Al-of (A-of ?P)) 

(&of?P)) . . . ) 

For example: 

(inst ?shop shopping-) ---) 

(and (inst (go-stp ?shop) go-) 

(== (agent (go-stp ?shop)) (agent ?shop)) 

(== (destination (go-stp ?shop)) 

(store-of ?shop))) 
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Figure 1: A Bayesian network for plan-recognition 

(inst gal), (== (go-stp lss3) gol), (inst ls2), 
(== (store-of lss3) ls2). 

That is, we have two entities, go1 and ls2, which the 
two slot-filler statements (the two equality statements) 
fit into the lss3 plan. As we noted earlier in our discus- 
sion of the basic model, the first of these, (== (go-stp 
lss3) gol) constitutes the direct explanation of the go- 
ing event in terms of the higher-level plan of shopping 
at a liquor store.3 

Next, note the arcs from the inst statements to the 
slot-filler statements involving the instances (e.g., the 
two arcs into (== (store-of lss3) 1~2)). These arcs are 
there to capture the fact that the probability that two 
entities ((store-of lss3) and ls2) are the same is zero if _ 
they are of different types, and _ ,$ (= ?#) if they are 

both of type t. (Remember that we are assuming a set 
of equiprobable elements.) 

The Probabilistic Model 
Given this model of plan schemas (as actions which can 
be broken down into distinct sub-actions), and plan There is an extra arc (marked with a 3 in Figure 1) 
recognition (finding the plan instances for which the from the plan to the inst node of one of its slot-fillers, 
given actions are sub-actions) we can now talk about gol. We call this the existential slot-filler. It is distin- 
how a probabilistic model can make choices between guished from the rest of the plan’s slot fillers by having 
competing hypotheses. a different probability distribution at its inst node and 

Figure 1 shows a Bayesian network for plan recog- slot-filler proposition, (== (go-stp lss3) gal). To see 
nition. In this section we first informally explain what the need for this, consider the difference between how 
is going on in this network, and then formally describe 
the class of Bayesian networks which we use. We as- 
sume that the reader is already familiar with the details 
of Bayesian networks. 

The random variables in our network are of two 
sorts. Most denote propositions, i.e., boolean vari- 
ables. The only exception are random variables which 
indicate types of things (e.g., (inst gal) in Figure 1). 
The sample space for this type of variable is the set 
of primitive types (types with no sub-types) in the isa 
hierarchy. Thus the possibility that, go1 is a driving 
event would be expressed as (inst gol) E drive-. 

Figure 1 is a the network constructed to represent 
the possibility that someone’s going to a liquor store 
(1~2) is part of a liquor-store shopping event (1~~3). 
At the top of the network is the hypothesized high- 
level plan itself. Our belief in this plan-recognition hy- 
pothesis will be expressed by the probability that the 
value of this random variable is liquor-store-shopping- 

. The hypothesized plans are typically root nodes in 
the Bayesian network so we need to specify their pri- 
ors. This is done according to the semantics outlined 
in [4] by which Iss3 is a random variable (in particular, 
a Bernoulli trial) with a sample space consisting of all 
entities in the world. We assume a large, but finite 
domain D of equiprobable elements. Thus the prior of 

(inst i) = type is t e 
9 ID - If an inst is not a root (e.g., 

(inst gol) in Figure 1) its distribution is given by the 
“existential” rules described below. 

Below the node denoting the plan are propositions 
describing the entities in the input which are to be 
“explained” by fitting them into the high-level plan as 
slot fillers. In Figure 1 these are 

this going event fits into lss3, and how, say a subse- 
quent paying event might fit into it. When we see the 
going event we have no shopping hypothesis. Thus 
when we create it, the going event serves to “define” it 
in the sense that if there is a shopping event here, it is 
the one into which this going event fits (as the go-stp). 
The random variable lss3 is akin to an existential vari- 
able scoped within gol. Thus, the probability of the 
inst being the appropriate type, and filling the slot, 
given that lss3 is a shopping event is 1: the probabil- 
ity that go1 fills the go-step slot of the liquor-shopping 
plan which explains gol. We call this the ezistentia2 
slot filler because of the exists in the interpretation, 
and the arc is called an “up existential” arc. (We will 
shortly encounter “down existentials ” as well.) 

On the other hand, consider the possibility that a 
subsequently mentioned paying event fills the pay-stp 
in lss3. Here lss3 already exists, and thus cannot be 
interpreted as, by definition, the shopping plan into 
which the paying fits. Rather we must interpret this as 
a “random” paying event which might not fit into lss3, 
even if lss3 is of the correct type. Thus the probability 
that the paying event fills the (pay-stp lss3) is not the 

probability that such a paying event exists (given lss3 
is a shopping), but rather the probability that it exists, 
and that the one mentioned is the one for lss3. We did 
not have this second part for go1 because it was true 
by definition of lss3. 

We would like to point out two complications. 
First, we do not allow up-existentials from objects to 

‘This direct explanation might be part of a more com- 
plicated explanation such as the agent’s plan to buy re- 
freshments for a party. 
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actions. For example, we could not define lss3 as the 
liquor-store shopping which occurred at Is2 since there 
are many such events. Second, in some more compli- 
cated cases we also allow “down existential” arcs from 
a plan down to an otherwise undefined sub-part. This 
may be between actions and objects, since (in our ax- 
iomatisation) there is only one filler for each slot. 

Now let us consider evidence other than the pres- 
ence of objects. Items of evidence for a hypothesis 
are facts in the input which are (probabilistically) im- 
plied by the hypothesis. 4 For example, in Figure 1 the 
statement (== (destination gol) 152) is evidence for the 
shopping hypothesis. It is evidence because if one is 
shopping, then one will go to the store at which one is 
shopping. Note that this fact would also constitute ev- 
idence in favor of any other hypothesis which predicted 
going to a liquor-store. Later we will address the issue 
of how the model handles competing hypotheses. 

We will now give a formal definition of our networks. 
In this description we will use et to denote the edge 
from a down to b. In what follows we will only give the 
probabilities for the case where there is only a single 
proposed plan in the network. In the case of more 
than one the joint distribution will be that specified 
by the “noisy or” gate [lo]. (Those unfamiliar with 
this can simply think of it as normal or-gate, i.e., the 
probability is 1 iff at least one of the plans is true.) 

The set of “Plan-recognition Bayesian networks” (P) 
for a knowledge-base K, and a set of instances I, are 
Bayesian networks (which are pairs (N, E) of nodes 
and edges) defined as follows: 

(Basis) (0, 0) E p 
(Object Evidence) Let (N, E) E P, and b = (inst 

j) (j E I), then ((b) U N, (E)) E P. Any formula 
introduced this way is part of the evidence. 

(Up-Existential) Let (N, E) E P. If b = (inst j) 
E N, (inst ?i tl) 3 (inst (slot ?i) tz) E K, i, j E I, 
and either t2 is an event or tl is an object, then 
(N U (a, c), EU (e,f , eb,, et}) E P, where a = (inst i), 
c = (= (Sk& i) j), and a, c 4 N. The probability 
of b = t2 given that a c tl is 1. The probability of 
b= t2 given that Q QT tl is P(t2) - P(t,]a c tr) . 
P(u c tr). The probability of c given that a c tl 
and b c t2, is 1, else 0. 

(Down-Existential) Let (N, E) E P. If a = (inst i) 

E N (inst ?i tl) -+ (inst (slot ?i) t2) E K, and i, j G 1, 
then (Nu(b, c), EU{ e:, eb,, et)) E P, where b = (inst 

j), c = (= (slot ;) j), and a, c @ N. The probabilities 
are defined as in the up-existential case. 

(Slot-filler) Let (N, E) E P. If a = (inst i), and 
b = (inst j) E N, (inst ?i tl) --) (inst (slot ?i) t2) 
E K, and i, j E I, then (N U (c}, E U {ez,ef!}) E P, 

where c = (= (slot i) j). The probability of c given 

uCtl,bCts= p’: ,elseO. 
-H 

*I e the propositions E such that P(E(hypothesis) > 
P(Ej. ” 

Figure 2: Structure of Wimp3 

(Other Evidence) if (N, E) E P, and (al, . . . , ai, =1 
, . . . , =,,} C N - E where E is the evidence in- 
troduced by rule 2, all =i are equality statements, 
and Al,..., Ai 3 C is a member of K, such that 
after using the equality statements, al,. . . , ai uni- 
fies with the antecedent of the rule, then the net- 
work created by adding C plus edges from all of 
a1 '"'8 $9 =I, l a S, =n to C is a member of P, pro- 
vided that if C is a member of N, then it was intro- 
duced by this rule. The probabilities are given by 
the rule. 

Nothing else is in P. 

Creating Hypotheses 

We have built a program, Wimp3, which automatically 
creates the networks we have described. Wimp3 deals 
with more than just plan recognition. It produces such 
networks directly from English narratives, and thus 
must (and can) deal with other problems such as pro- 
noun reference, word-sense ambiguity, case ambiguity, 
and syntactic ambiguity. In what follows we will con- 
centrate on how Wimp3 goes about plan recognition 
and ignore these other issues. It should be noted, how- 
ever, that the machinery we describe for plan recogni- 
tion is also used in these other tasks. 

The structure of Wimp3 is shown in Figure 2. Words 
from a narrative are fed to the parser one at a time, and 
a syntactic parse is produced (as a series of first-order 
formulas) which are then fed to “Frail,” our inference 
engine. Frail produces the Bayesian network. Directly 
responsible for this are a set of forward chaining rules 
which produce not simply propositions, but Bayesian 
networks [6]. 

The forward chaining rules pretty much follow the 
formal description of P. ’ The major difference be- 
tween the forward-chaining rules which construct Ps 
and the rules which define them is that the former 
contain restrictions on when to apply them. These re- 
strictions are there to avoid the construction of useless 
sections of the network. 

6Although currently Wimp3 does not have 
existentials, they would be easy to add. 

down- 
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Figure 3: Competition between shopping and robbing 

For example, consider the rule for up-existentials. 
The description of P says that if we have a token j, 
and a rule stating that things of type t2 can fill slots 
in things of type tl, then propose a thing of type tl of 
which j fills the appropriate slot. The corresponding 
rule also requires a) some suggestion that j is, in fact, 
of type ta, and b) the approval of a marker passer [2] 
which is responsible for proposing hypotheses. 

Competing Hypotheses 

In a story like “Jack went to the liquor store. He 
pointed a gun at the owner,” Wimp will believe with 
high probability that Jack is shopping at a liquor store 
after reading just the first line.6 It does this even 
though it has in its knowledge-base a plan for robbing 
stores. After reading the second sentence, Wimp will 
“change its mind,” and decide that the robbery hy- 
pothesis is more likely. It is examples such as this that 
to us most decidedly argue against a non-monotonic 
logic approach, and for a system which uses numbers 
to encode the prior probabilities of events. In this sec- 
tion we will examine this example in more detail, to 
show how Wimp “changes its mind.” 

Given this story, and a knowledge-base containing 
both liquor-shop and rob- the competition between 
them would be expressed by the Bayesian network 
shown in Figure 3. The two explanations, lss3 and 
rob4, compete for belief because they both serve to 
explain the same evidence, (= (destination gol) 1~2). 
The node for this latter proposition is, as we have said 
above, a noisy-or node. That is to say, this proposition 
can be explained either by the hypothesis lss3 or7 the 
hypothesis rob4. Evidence at or-nodes in Bayesian net- 
works gives support to all their possible causes roughly 
in proportion to how probable these explanations are 

‘We spolo&ee for the anthropomorphic terminology; it 
is simply more succinct. 

7 inclusive 
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based on any other evidence 0bserved.s In the case at 
hand this means that the evidence (= (destination gol) 
ls2) will support lss3 and rob4 roughly in proportion to 
the prior probabilities of shopping and robbing liquor 
stores, since there is no other evidence. Since shopping 
is much more common, we find that the probability as- 
signed to it is quite high (about .8 in our system) while 
that for rob4 is only slightly above its prior probability 
(currently about 10w6). 

Actually, Wimp does not construct the network 
shown in Figure 3 after seeing “Jack went to a liquor- 
store.” Rather the network it constructs is the simpler 
one shown in Figure 1, without an explicit robbery hy- 
pothesis at all. The reason for this is that Wimp uses a 
marker passing scheme to find potential explanations, 
and the scheme weeds out the robbery hypothesis. In 
[2] it is shown that the marker passer is sound with 
respect to the probabilistic evaluation mechanism in 
that the number it computes as a cut-off mechanism 
for its search is an upper bound on the probability of 
the hypothesis (given certain reasonable assumptions 
above the evidence). Thus while the marker passer will 
sometimes suggest an hypothesis which does not pan 
out, if it does not find an hypothesis, it means that 
the hypothesis would have been rejected even it if had 
been proposed. This is what happens to robbery. 

The situation, however, is quite different after read- 
ing “He pointed a gun at the owner.” Figure 4 shows 
a part of the network which Wimp constructs after 
“pointed a gun.“g From an intuitive point of view, the 
fact that Jack pointed a gun suggests robbery, and does 
so even more strongly after we learn that he is point- 
ing it at the owner of the liquor store. This tips the 
balance in the competition over the evidence that (= 
(destination gal) ls2) so that now this evidence is seen 

‘This follows simply as a consequence of Bayes’ law. 
‘We have omitted the section of the network concerned 

with the pronoun reference of “He” and the evidence pro- 
vided by the fact that Jack is the agent of both activities. 



Figure 4: Competition after pointing a gun 

to support rob4, not lss3, and the posterior probability 
of lss3 now goes down. 

Gonclusion 
A crucial component of any plan-recognition system is 
the ability to decide between competing hypotheses. 
We have presented a model of this process in which 
a Bayesian network evaluates the conditional proba- 
bility of the competing hypotheses given the evidence. 
This model has been implemented within the Wimp3 
story understanding system and it is completely com- 
patible with the other decision processes of Wimp3, 
such as pronoun referent resolution, word-sense disam- 
biguation, case-determination, and syntactic ambigu- 
ity resolution. Wimp3 as been subjected to a single- 
blind test in which it had to pair-up stories (which had 
the same plans) after being debugged on half of each 
pair. The results are reported in [5]. To summarize 
these results, the program correctly paired 19 out of 
25 after 3 lexical items were added to its lexicon, and 
24 out of 25 after the further addition of 4 formulas to 
the knowledge base. The remaining example generated 
a network too large to evaluate, pointing to what re- 
mains the most important impediment to the scheme 
we have proposed. 
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