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Abstract 

When intelligent agents who have different knowl- 
edge and capabilities must work together, they 
must communicate the right information to coor- 
dinate their actions. Developing techniques for de- 
ciding what to communicate, however, is problem- 
atic, because it requires an agent to have a model 
of a message recipient and to infer the impact of a 
message on the recipient based on that model. We 
have developed a method by which agents build re- 
cursive models of each other, where the models are 
probabilistic and decision-theoretic. In this paper, 
we show how an agent can compute the impact 
of a message in terms of how it increases (or de- 
creases) its expected utility. By treating the im- 
perfect communication channel probabilistically, 
our method allows agents to account for risk in 
committing to nonintuitive courses of action, and 
to compute the utility of acknowledging messages. 

Introduction 
When operating in multiagent environments, intelli- 
gent agents must generally coordinate their activities 
to avoid interfering with each other and to cooper- 
ate when they can mutually benefit. A crucial hin- 
drance to effective coordination, however, is that in- 
telligent agents might not know enough about each 
other’s intentions, abilities, and perspectives to antic- 
ipate interactions. Unless they are somehow designed 
initially with rich models of each other, the intelligent 
agents must rely on communication among themselves 
to share the knowledge that is vital for coordination. 

Communication is, however, a two-edged sword. If 
agents communicate too little, they risk interfering 
with each other and missing opportunities for achiev- 
ing goals more efficiently. If agents communicate too 
much, they risk overwhelming each other with unim- 
portant information, which impedes timely decision 
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making. The challenge in designing algorithms for 
communication decision making, therefore, is in pro- 
viding those algorithms with the ability to estimate the 
impact-or utility-of a message on both the sender 
and receiver. This ability is especially critical when 
communication bandwidth is extremely restricted, so 
that agents must be very selective about what mes- 
sages are worth sending. 

An agent that is considering sending a message 
should thus base its decision on an estimate of whether 
the message’s recursive impact on the sender’s and re- 
ceiver’s beliefs will improve the expected outcome of its 
decisions. We have developed a rigorous approach for 
modeling the utility of communication based on deci- 
sion and game theoretic methods. In our approach, an 
agent begins with a recursively elaborated set of mod- 
els about another agent. Using the probabilistic nature 
of these models, the agent can compute the expected 
utilities for the other agents’ alternative decisions in 
the situation. It can then model how an exchange of 
information will influence the probabilities, and thus 
affect the other agent’s decisions’ expected utilities. 
This in turn will impact the initial agent’s probability 
distribution about the other agent’s activities, which 
can increase the expected utility of the initial agent’s 
action. 

As we describe in the next section, previous work on 
intelligent communication has emphasized static poli- 
cies for deciding what messages are important to send, 
or treated communication as a tool for making deals 
among the agents. The contribution of the work we 
report in the subsequent sections is that it uses a re- 
cursive modeling technique to explicitly compute the 
expected utility of a message as the expected utility 
of the decision given the message minus the expected 
utility of the best decision prior to the message. This 
allows an agent to quantitatively estimate the impor- 
tance of a message. Moreover, by working backward 
from a desired recursive model, it can guide the search 
for appropriate messages to transform the current re- 
cursive model into the desired one. We also show how 
our method can be applied to cases in which the com- 
munication is transmitted via an imperfect channel. 
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Related Work 
The intuition that communication is an essential tool 
for coordination has been demonstrated using game- 
and decision-theoretic frameworks, and is evident even 
in simple two-person games such as the “Battle of 
the Sexes” [Lute and Raiffa, 19571. These frame- 
works provide analytical tools for describing the con- 
sequences of communication, and have been extended 
by Rosenschein and his colleagues, who have been de- 
veloping a unified negotiation protocol [Rosenschein 
and Genesereth, 1985; Zlotkin and Rosenschein, 1989; 
Zlotkin and Rosenschein, 1990b]. In their work, com- 
munication is primarily a tool to get agents to con- 
verge on a joint plan, or deal, that guarantees them 
payoffs higher than they expect to get if they do not 
make a deal. They have also examined how agents 
can exchange joint plans or the information needed to 
converge on joint plans [Rosenschein and Genesereth, 
19871, and our results similarly show the importance 
of both types of messages. 

Whereas Rosenschein and Genesereth have devel- 
oped communication strategies for logic-based agents, 
other researchers have developed strategies for other 
types of agents. For example, Durfee and his col- 
leagues have employed heuristic communication poli- 
cies to balance the relevance, timeliness, and complete- 
ness of messages [Durfee et al., 19871. These heuristics 
guide cooperating problem solvers into selectively ex- 
changing partial solutions in a more effective manner. 

Speech act theory [Cohen and Levesque, 1990; Per- 
rault, 19901 is also concerned with the impact of a com- 
munication act on a recipient agent. Thus, agents need 
to model each other, and to model how others model 
them, and so on. While our approach also exploits 
the agents’ recursive nesting of beliefs, our emphasis 
is not so much on developing a logical formalism for 
modeling interagent communication as it is on quanti- 
fying the expected utility of communication. Halpern 
and Moses [Halpern and Moses, 19841 have considered 
how the recursive nesting of beliefs leads to difficulties 
in converging on “common knowledge.” Our investi- 
gations confirm these difficulties, but emphasize that 
decisions are possible in some cases without common 
knowledge. 

The Recursive Modeling Method 
@MM) 

In multiagent worlds, the utility of an agent’s ac- 
tion can depend on the concurrent actions of other 
agents, so an agent should attempt to predict the in- 
tended actions of others when deciding on its own. Be- 
cause the other agents are likely to be modeling it as 
well, the agent must recursively build models of oth- 
ers and itself. We have developed a Recursive Model- 
ing Method (RMM) to create these models explicitly 
[Gmytrasiewicz et al., 1991a]. By employing RMM, an 
agent exploits any information about others that it has, 
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Figure 1: Example Scenario of Interacting Agents 

and summarizes uncertainties as probability distribu- 
tions. Furthermore, an agent can use RMM to model 
how other agents model it, and so on into deeper levels 
of modeling. 

Before we introduce the general form of RMM, con- 
sider this example (Figure 1). We assume that the en- 
vironment can be populated by type A agents and type 
B agents. Type A agents can perceive all of the goals in 
the environment, can perform actions to achieve them 
all, and know about both types of agents. Type B 
agents can only see goals of type Gl, cannot perform 
actions to achieve type G2 goals, and know only about 
type B agents. The utility of achieving goals of type Gl 
is 2 for both types of agents, and for achieving goals of 
type G2 is 5 for type A agents and 0 for type B agents. 
The cost of attempting to achieve the farther goal is 2, 
and the closer goal 1, irrespective of an agent’s type. 
For simplicity, each agent can only achieve one goal. 

Agent Rl, a type A agent, has 3 options: pursue 
Gl, pursue G2, or do something (including nothing) 
else (Gl, 62 and S for short). Rl computes its pay- 
offs as the difference between the sum of the worth it 
assigns to all the achieved goals (whether or not it per- 
sonally performed them all) and the costs it personally 
incurred in achieving its own goal. These payoffs are 
represented as a matrix (top of the hierarchy in Fig- 
ure 2). The expected utilities of Rl’s options naturally 
depend on what R2 chooses to do concurrently. Rl can 
assume that R2 will maximize its own payoff [Dennett, 
19861, but Rl does not know whether R2 is of type A 
or B, so Rl does not know whether R2 will pursue G2. 
The payoff matrices of R2, as modeled by Rl, depend 
on R2 being type A or B, with probabilities pii(A1 and . , 
pg$,), respectively (where pit(,) + pi:(B) = 1). The 
alternative views are depicted on the second level of 
the hierarchy in Figure 2. 

Furthermore, if R2 is of type B, then it will model 
Rl as type B as well (because it does not know of type 
A agents). If R2 is of type A, then its model of Rl 
would account for Rl being either type A or B. Thus, 
Rl will model R2, and R2’s model of Rl, and R2’s 
model of Rl’s model of R2, and so on, as depicted in 
Figure 2. 

Rl builds and uses this hierarchy to help guess what 
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Figure 2: Example of the Recursive Hierarchy 

R2 will decide to do. It summarizes its guesses as a 
probability distribution pgi = (phi , pG2, ps) indicat- 
ing the probability that R2 will intend to pursue Gl, 
G2, and S. We call this representation an intentional 
probability distribution, because it specifies Rl’s view 
of R2’s intentions, given what Rl knows about R2. As- 
sume that p;:(A) = pg$$ = . . . = 0.5, meaning that 
Rl believes that R2 is equally likely to be type A or B, 
and that R2, if type A, will believe that Rl is equally 
likely to be type A or B, and that R2, if type A, will be- 
lieve that Rl will believe that R2 is equally likely to be 
type A or B, and so on. Treating all other uncertainties 
equiprobabilistically as well, Rl uses the hierarchy to 
compute the intentional probability distribution over 
R2’s options as pgi = (0,0.5,0.5). Intuitively, if R2 
is type B, then it will expect Rl to pursue Gl and S 
with equal probability, and so R2 would be better off, 
on average, pursuing S. If R2 is type A, then it will 
see Rl as either type A (and so expect it to pursue 
G2) or type B (and so expect it to pursue Gl or S), 
and R2 would thus do best pursuing G2 (the details of 
the computation are given elsewhere [Gmytrasiewicz et 
al., 1991a]). The p gf distribution gives expected utili- 
ties of 3.5, 3, and 2.5 for Rl’s options Gl, G2, and S, 
respectively. Rl should thus pursue Gl. 

Temporarily stepping back from this example, the 
more general formulation of RMM assumes that Rl 
is interacting with (N - 1) other agents, R2-RN. The 
utility of Rl’s m-th alternative option can be evaluated 
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X3: 

u!z’ = x ..- ~{P~~-E...P~~-,u~tk,...,o (1) 
k 1 

where pg,l- E represents the probability Rl assigns to 
Ri’s intending to act on the Lth element of Ri’s set of 
options; as mentioned before, we will refer to these as 
intentional probabilities. z~fit~,...,~ is Rl’s payoff (util- 
ity) as an element of the N-dimensional game matrix. 

Rl can estimate the intentional probabilities pgtBk 
by guessing how the game looks from Ri’s point of view. 
Rl models each Ri using probability distributions pgt, 
P!2 9 and ppi’;, which we call modeling probabilities. 
pet summarizes Rl’s knowledge about Ri’s preferences 
(goals it will value). p$ summarizes Rl’s knowledge 
about Ri’s abilities (goals it can pursue), given its pref- 
erences. pzi summarizes Rl’s knowledge about Ri’s 
world model, given its abilities.’ In every case of Ri 
having various preferences, abilities and world models, 
Rl assumes that Ri is rational and considers the prob- 
ability that the Ic-th element of Ri’s set of options is of 
the highest utility to Ri. The modeling probabilities 
can then be used to compute the intentional probabil- 
ities pgi-,, as the following probabilistic mixture: 

lIn the example shown in Figure 2, the modeling prob- 
abilities were combined into probabilities over agent types. 
This simplifies the example because agent types serve to 
encapsulate preferences, abilities, and world models. 



Pg:-k = CPi CAI C,,CPEPEP”w’, x 
Prob( Maxkt (z@Ri) = t.~;~)~‘)} (2) 

where uptRi is the utility Rl estimates that Ri will 
assign to its option k’, and is computed as 

tpRi = x . . . c(pl;l:~~...p~~~~~~~~~,,,} (3) 
r 8 

The $iR’ is how Rl sees Ri’s payoffs in the N- 
dimensio&l$ame matrix. The probabilities Rl thinks 
Ri assigns to agent Rn acting on its o-th option pgffi, 
can in turn be expressed in terms of pEif2Rn and 
Rl,Ri,Rn UI 0 ,w,... and so on. 
As we detail elsewhere [Gmytrasiewicz et al., 1991a], 

it is possible to determine the convergence of RMM 
without going very deep into the recursive levels (usu- 
ally 4-th or 5-th level). In the cases when RMM does 
not converge on a unique probability distribution over 
options of the other agents, we compute the expected 
intentional distribution as a probabilistic mixture of 
the distributions between which RMM cannot decide 
and use it to uniquely determine the agent’s best op- 
tion (see [Gmytrasiewicz et al., 1991a] for an example). 

The Utility of Communication 
We treat decisions about communication just like de- 
cisions about any other actions, and thus employ 
decision-theoretic techniques to select the action with 
the highest expected utility [Gmytrasiewicz et al., 
1991b]. For communication actions, the agents use 
their nested models to predict the impact of messages 
on the expected utilities of alternative actions, and 
then send the highest utility message-the message 
that causes the greatest gain in the expected utility 
of the agent’s action. 

For example, using a hierarchy such as that in Fig- 
ure 2, an agent computes an intentional probability 
distribution p (ignoring the superscript and subscript 
for now), over the other agents’ options. The initial 
agent can thus compute its best choice, which we de- 
note as X, as the action with the highest expected 
utility UP(X). 

If the initial agent sends a message M to the other 
agent, the message causes the receiving agent to mod- 
ify its hierarchy, and thus causes the intentional prob- 
ability distribution over its options to change to PM. 
This new distribution in turn can affect the expected 
utilities of the initial agents actions, such that the ac- 
tion Y that it will now take (which may or may not 
be the same as X) has an expected utility of V,,(Y). 
The utility of a message, M, is defined as the difference 
between the expected utility of the preferred action be- 
fore IM was sent and the expected utility of the agent’s 
chosen action after the message was sent: 

R2 
Gl G2S 

Gl 1 6 1 
Rl G2 5 3 3 

Rl 
Rl 

Gl 
R2 61 0 

s 2 

Figure 3: Recursive Hierarchy After a Received Inten- 
tional Message 

We broadly classify messages into types, depending on 
how they will impact a recipient and sender. In this 
paper we investigate two types-intentional and mod- 
eling messages. 

Intentional Messages 
An intentional message corresponds to an agent com- 
mitting to a choice of action, and informing other 
agents about it, i.e. it contains information about 
the intentional probabilities pE;fj in equation (3). If 
we assume that agents must meet their commitments, 
then a recipient can use this message to predict ex- 
actly what the sender will do. In modeling the recip- 
ient, therefore, the sender can truncate the recursion 
because it knows exactly how it will be modeled by the 
recipient. 

For example, consider the scenario in Figure 1 and 
the hierarchy in Figure 2. As discussed before, Rl’s 
best option before communication is to pursue Gl, 
with its expected utility of 3.5. On inspecting the hi- 
erarchy (Figure 2), however, note that Rl has, on the 
average, better payoffs if it pursues G2. The question 
is, can it change R2’s preferences to take advantage of 
these payoffs? 

The answer, in this case, is yes. Suppose that Rl 
considers transmitting an intentional message Mr to 
R2 declaring its intention to pursue G2. Rl can thus 
truncate the hierarchy (Figure 3). If R2 is type B 
and receives Ml, it models Rl as pursuing S, and so, 
for R2, the options G 1 and S are equally good and 
equally likely. If R2 is type A and receives Ml, it 
also sees options Gl and S as equally likely. Thus, 
the new probability distribution over R2’s options is 
PM1 = (O.S,O,O.S). Rl h as committed itself to G2, 
but now Rl computes the expected utility of G2 as 4. 
According to equation (4), therefore, the utility of the 
message Mi is U( Ml) = UpM, (G2) - U,(Gl) = 0.5. 

The above analysis assumes that R2 is guaranteed 
to receive Ml. Unfortunately, communication chan- 
nels are seldom so reliable. 2 Because Mi commits Rl 

2 W hile low-le vel networking protocols can make commu- 
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Figure 4: Variation of the Example Scenario 

to pursuing G2, which is not what R2 will expect it to 
do, the failure of the message to arrive at R2 might dis- 
advantage Rl. We can formalize Rl’s risk by assuming 
that the communication channel will correctly deliver 
a message with probability pc, where 0 < pc < 1. From 
Rl’s perspective: with probability pe, Ml will be re- 
ceived, in which case the probability distribution over 
R2’s options is (0.5,0,0.5) as we just derived; and with 
probability (1 - p,.), Ml will not be received, so the 
probability distribution over R2’s o tions is the same 
as with no communication at all: 
bining these we get: 

P 0,0.5,0.5). Com- 

pc(0.5,0,0.5)+(1--pc)(o, 0.5,O.S) = (0.5&, o.s-0.5pc,0.5). 

Because Rl is committed to pursuing 62, it com- 
putes the expected utility of this option to be 
h4 (G2) = 3 + pc, so U(Ml) = p, - 0.5. In other 
words, Rl should only send Mr when p, > 0.5. When 
pc < 0.5, in fact, the communication is ill-advised: Rl 
is taking too big a risk that it will commit to an option 
that R2 will not know to support. 

Modeling Messages 
Modeling messages contain informat ion about the 
modeling probabilities p$i, pzf , and phi in equation 
(2) and update the hearer’s and the speaker’s model 
of the multiagent world. For example, consider what 
would happen in a variation of our original scenario. 
In this variation (Figure 4), both agents are of type A 
and, instead of G2, we have Gl’, so that both agents 
will regard both goals as equally valuable. Also, there 
is a wall that probably obstructs R2’s view of Gl’. 

The recursive hierarchy Rl will build for this sce- 
nario is depicted in Figure 5, where p~2cG1,j repre- 
sents the probability that Rl assigns to R2 having Gl’ 
in its world model, which we assume to be low (0.01) 
because of the wall. Rl also assumes that, if R2 does 
see Gl’, it knows that Rl sees it too. As the progres- 
sively deeper levels of the left branch are analyzed, the 
solution quickly converges on R2’s best option being S. 
The analysis of the right branch shows that the best 

nication more reliable, they still cannot ensure that mes- 
sage exchan e can lead to common knowledge [Halpern and 
Moses, 1984 . ‘i 
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option of R2, if it sees Gl’, is to pursue it. The result- 
ing probability distribution over R2’s moves is then 
p = (O,O.Ol, 0.99), w ic results in Gl being Rl’s best h’ h 
choice, with its expected utility of 1.02. 

Intentional messages will not help in this case: Rl’s 
committing itself to Gl results in the same expected 
utility (because that is what Rl believes R2 will ex- 
pect Rl to do, anyway); Rl’s commitment to Gl’ gives 
P”Gd = (0.5,0,0.5) over R2’s options, which results in 
an expected utility of Gl’ of 1; and Rl’s commitment 
to S results in an expected utility of 1.01. Thus, none 
of these messages can better the expected utility of 
1.02 gained without communication. 

However, on inspecting Rl’s payoff matrix, it is clear 
that Rl’s option of Gl will be better if Rl can increase 
the chances of R2 pursuing 61’. This requires that 
Rl increase the probability of the right branch of the 
model. A simple way to do this is for Rl to send R2 
message A82 stating that goal Gl’ is behind the wall. 
If, for the time being, we assume that communication 
channels never lose messages. then Rl models R2’s re- 
sponse by changing p$2c&,l 

I 

to 1) and p~~~~i~ to 1, 
and so on. Due to message ii/r,, the hierarchy has only 
one branch all the way down. Computing utilities, Rl’s 
best option is still Gl, but now it expects R2 to pursue 
Gl’. Rl’s option thus now has an expected utility of 3 
rather than 1.02, so U(M2) = 1.98. 

Considering that communication channels are not 
perfect, let us see how the probability of communica- 
tion p, factors into these calculations-. Combining the 
weighted intentional probabilities for R2, we get: 

PM, = pc(0, 1,O) + (1 - pc)(O, 0.01,0.99) 
= (O,O.Ol + 0.99p,, 0.99 - 0.99pc) 

which gives an expected utility for Gl (still Rl’s best 
choice) as UPMz (Gl) = 1.02 + 1 .98pc, for a message 
utility of U(M2) = 1.98p,. In other words, sending 
the message is always to Rl’s benefit, unless pe = 0. 
And if p, = 1, the message allows Rl to maximize its 
expected utility. 

Finally, consider how Rl’s model changes if R2 ac- 
knowledges receiving M2, as depicted in Figure 6. 
Even after an acknowledgement, the model still in- 
cludes uncertainty associated with R2 not knowing 
whether Rl received the acknowledgement. Because 
Rl now knows that R2 knows about Gl’, p, no longer 
enters into the probability mixture Rl has of R2’s in- 
tentions (because R2’s only rational option given that 
it now knows about Gl’ is to pursue Gl’). Gl is still 
Rl’s best choice, but now has an expected utility of 
3, meaning that the utility of the acknowledgement 
message is equal to 1.98( 1 - pc). Additional acknowl- 
edgement messages have no influence on Rl’s expected 
utility in this case because, once it knows that R2 has 
received the message, it knows that R2 should pursue 
Cl’ regardless of deeper uncertainties about knowledge 
about knowledge. Thus, in this case, the agents con- 
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Figure 5: Recursive Hierarchy for Scenario Variation 

verge on appropriate actions without “common knowl- 
edge” [Halpern and Moses, 19841. More generally, our 
analysis of cases where the choices of actions depend 
on deeper levels of knowledge indicate that the utility 
of successive acknowledgement messages decreases due 
to higher polynomial terms in pc. By deciding upon a 
threshold for message utility, for instance equal to the 
price of message transmission, the agents can truncate 
this infinite regress of acknowledgements. 

Discussion 

It is intuitive that, when deciding whether or not to 
send a message to another agent, a sending agent 
should consider the expected benefits it will accrue due 
to that message. Given that it must limit communica- 
tions to the most important messages (due to limited 
communication and/or processing resources), comput- 
ing the utilities of messages and using this measure to 
guide communication decisions makes sense. What we 
have developed in this paper is a formalization of these 
intuitions, in which agents recursively model each other 
and can assess the expected impact of messages based 
on these models. These results advance the state of 
the art, which generally employs static strategies for 
making communication decisions rather than evaluat- 
ing the expected utility of each potential message. The 
tradeoff, however, is that the recursive modeling can 
be computationally costly, and this overhead must be 
weighed against the costs and benefits of a simpler but 
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Gl S Gl Gl’ S 61 Gl’ S 

R2y ozoo R2Gl’ Gl 0 3 2 1 0 1 R2 Gl Gl’ 0 3 2 1 0 1 
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Figure 6: Recursive Hierarchy After M2 was Acknowl- 
edged 

cruder approach. 
We are now extending our investigation in several 
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ways. The reader will likely have noticed in our anal- 
yses that the generation of messages was only vaguely 
described in terms of an agent trying to prune or irun- 
cate the probabilistic models. While we have identi- 
fied some criteria for generating potential messages, 
we need to define an algorithm for this process. More- 
over, we would like to account for other message types, 
such as requests for information and imperatives [Co- 
hen and Levesque, 19901. We would also like to extend 
the modeling and messaging to allow agents to poten- 
tially lie to each other, and to model each other as po- 
tential liars [Zlotkin and Rosenschein, 199Oa]. Finally, 
we are exploring the practical implications of using this 
approach in the context of a robotic application for nu- 
clear power plant environments, which are rigorously 
designed such that developing probabilistic models is 
especially feasible. 
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