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Abstract 

When autonomous agents attempt to coordinate 
action, it is often necessary that they reach some 
kind of consensus. Reaching such a consensus has 
traditionally been dealt with in the Distributed 
Artific.ial Intelligence literature via the mechanism 
of negotiation. Another alternative is to have 
agents bypass negotiation by using a voting mech- 
anism; each agent expresses its preferences, and 
a group choice mechanism is used to select the 
result. Some choice mechanisms are better than 
others, and ideally we would like one that. cannot 
be manipulated by an untruthful agent. 
One such non-manipulable choice mechanism is 
the Clarke tax [Clarke, 19711. Though theoreti- 
cally attractive, the Clarke tax presents a num- 
ber of difficulties when one attempts to use it in 
a practical implementation. This paper examines 
how the Clarke tax could be used a.s an effective 
“preference revealer” in the domain of automated 
agents, reducing the need for explicit negotiation. 

ackground and Motivation 
When autonomous agents attempt to coordina.te ac- 
tion, it is often necessary that they reach some kind 
of consensus. Multi-agent activity is obviously facil- 
itated by, and sometimes requires, agreement by the 
agents as to how they will act in the world. Reach- 
ing such a. consensus has traditionally been dealt with 
in the Distributed Artificial Intelligence literature via 
the mechanism of negotiation [Rosenschein and Gene- 
sereth, 1985; Durfee, 1988; Sycara, 1988; Kuwabara 
and Lesser, 1989; Conry et al., 1988; Kreifelts and von 
Martial, 1990; Kraus and Wilkenfeld, 1990; Laasri et 
al., 19901. 

One scenario [Zlotkin and Rosenschein, 1990b] that 
has been addressed in the research on negotiation in- 
volves a group of agents and a negotiation set. The 
role of negotiation is to reach consensus by allowing 
the agents to choose one element of this set. The main 
concern of a negotiation protocol is usually that the 
agreed-upon decision will be optimal in some sense. 

A basic assumption of the negotiation process is that 
each of the pa.rticipating a.gents has a private prefer- 
ence relation over the set of alternatives. Optimality 
is measured with respect to these preferences. Given 
the agents’ preferences and the optimality criterion, 
determining the optimal choice is a matter of direct 
computation. Thus, the substantive role of the negoti- 
ation process is to reveal preferences. If there existed 
another method of revealing the true preferences of 
agents, the need for negotiation would be 1essened.l 

There have been several attempts, both inside of Ar- 
tificial Intelligence (AI) and outside, to consider mar- 
ket mechanisms as a way of revealing agents’ true pref- 
erences (and thus efficiently allocate resources). No- 
table among the AI work is that of Smith’s Contract 
Net [Smith, 19781, Malone’s Enterprise system [Mal- 
one et al., 19881, and the work of Miller and Drexler on 
Agoric Open Systems [Miller and Drexler, 19881. Fol- 
lowing in this line of work, we present an alternative 
method for revealing agents’ preferences, the Clarke 
tax, and consider how it could be used among auto- 
mated agents. 

The General Framework 
Assume a group of N a.gents A operating in a world 
currently in the state SO, facing the decision of what 
to do next. One way of formulating this problem is to 
consider that the a.gents are trying to agree into which 
member of the set S of m. possible states the current 
world should be moved. Each agent in A has a worth, 
or utility, that he associates with each state; that worth 
gives rise to a preference relation over states. Agent i’s 
true worth for state k will be denoted by W(i, k). How- 
ever, the preferences declared by an agent might differ 
from his true preferences. The decision procedure that 
chooses one state from S is a function from the agents’ 
declared preferences to a member of the set { 1, . . . . m}. 
It maps the agents’ declared preferences into a group 
decision as to how the world will be transformed. 

‘This assumes the agents’ preference relations are static 
during the negotiation process. Otherwise, the negotiation 
itself could cause the agents to acquire new information and 
alter their preferences, thus remaining useful. 

EPHRATI & ROSENSCHEIN 173 

From: AAAI-91 Proceedings. Copyright ©1991, AAAI (www.aaai.org). All rights reserved. 



There a.re many decision procedures that reach a 
pareto optimal decision, but they suffer from two major 
drawbacks. First, they are manipulable, which means 
that an agent can benefit by declaring a preference 
other than his true preference.2 Second, they only take 
into consideration the ordinal preferences of the agents, 
i.e., the order in which an agent ranks choices, without 
assigning relative weights. 

Attempts to overcome this latter drawback moti- 
vated the development of voting procedures based on 
cardinal orderings over alternatives (that is, allow- 
ing agents to weight their choices, including negative 
weights). The most straightforward procedure, “sealed 
bidding,” allows each voter to specify an amount of 
money (positive or negative) for each alterna,tive. The 
alternative that has the maximal sum is chosen. Pos- 
itive bids are then collected, and some of this money 
is then handed over to those agents (if any) who gave 
negative bids with respect to the chosen alternative. 

Although a voter can guarantee his max-min 
value [Dubins, 19771, he does have an incentive to 
underbid-if he assumes other agents will cause some 
alternative to win even without the full strength of his 
vote, he can underbid, get what he wants, and pay less. 
However, since the a.gent might be mistaken as to how 
others will vote, a sub-optimal alternative might be 
chosen. In the literature of Economics, this problem is 
known as the free rider problem; for many years it was 
believed to be unsolvable. 

A solution to the problem was presented by E. H. 
Clarke in 1971 [Clarke, 1971; Clarke, 1972; Straffin, 
19801. In the following sections, we present Clarke’s 
scheme and analyze ways in which it can be used by 
communities of automated agents. 

The Clarke Tax 
The basic idea of Clarke’s solution is to make sure 
that each voter has only one dominant strategy, telling 
the truth. This phenomenon is established by slightly 
changing the sealed-bid mechanism: instead of simply 
collecting the bids, each agent is fined with a tax. The 
tax equals t,he portion of his bid that made a* difference 
to the outcome. The example in Figure 1 shows how to 

2Unfortunately, a theorem due to Gibbard [Gibbard, 
19731 and Satterthwaite [Satterthwaite, 19751 states that 
any non-manipulable choice function that ranges over more 
than two alternatives is dictatorial. This means that there 
is no choice function (other than one corresponding strictly 
to one of the agents’ preferences), that motivates all partic- 
ipating agents to reveal their true desires. This is related 
to Arrow’s famous “impossibility theorem” [Arrow, 19631, 
which showed how a group of reasonable criteria could not 
be simultaneously met by any social decision function (a 
function that produces a complete social preference order- 
ing over alternatives, not just a single “best” choice). The 
technique presented in this paper, the Clarke tax, is dis- 
tinguished in the literature as a “voting procedure” rather 
than as a pure decision function; it includes a kind of “in- 
centive mechanism.” 
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calculate this tax. Each row of the table shows several 
pieces of information regarding an agent. First, his 
preferences for each state are listed. Then, the total 
score that each state would have gotten, had the agent 
not voted , are listed . An asterisk marks the wi nning 
choice in each situation. 

state without i 

a4 -18 -15 33 -1 *5 -4 9 
a5 17 2 -19 -36 -12 “48 0 

Sum -19 -10 *29 

Figure 1: Calculating the Clarke Tax 

For example, when all the agents voted, state ss 
was chosen. If ~22 had not voted, s1 would have been 
chosen. The score in this situation would have been 
(17, -22,5), and s1 would have beaten sg by 12. Thus, 
agent a2 has affected the outcome by his vote, and he 
has affected it by a “magnitude” of 12; he is therefore 
fined 12. Agents al, as, and u5 are not fined because 
even if they had not voted, ss would still have been 
chosen. 

Given this scheme, revealing true preferences is the 
dominant strategy. An agent that overbids (so that 
some given state will win) risks having to pay a tax 
larger than his true preferences warrant. Similarly, 
the only way to Pay less tax is to actually change the 
outcome-and any a.gent that underbids (to change 
the outcome and save himself some tax) will always 
come out behind; the saved tax will never compensate 
him for his lost utility. For a proof that revealing true 
preferences is the dominant strategy, see [Ephrati and 
Rosenschein, 19911. 

Using the Clarke tax in communities of automated 
agents brings into focus new problems that did not 
arise when the system wa.s first developed. In the fol- 
lowing sections we examine how the Clarke tax might 
be used as an effective “preference revealer” in the do- 
main 
plicit 

of intelligent 
negotiation. 

1 

agents, reducing the need for ex- 

Calculation of States and Preferences 
We now specify our model and show how the Clarke 
tax can be used. 

o Agents are capable of performing actions that trans- 
form the world from one state into another. Each 
action has an associated cost. 

a The symbol s will stand for a set of predicates that 
demarcates a group of fully specified states. For sim- 
plicity, we will refer to s itself as a “state.” 



e Each a.gent 
predicates. 

ai has its own goal gi, which is a set of 

o C(a, s cu g) denotes the minimal cost that it would 
take for agent a, in state s, to bring about a.ny state 
that satisfies g. C(s, u ~1) is the minimal cost 
needed for moving the world from SO into ~1, using 
any combination of agents’ actions. 

o V(a, g) is the value that agent a assigns to goal g. 

Since telling the truth is the dominant strategy when 
the Clarke tax is being used, it is in each a.gent’s inter- 
est to compute the true worth he associates with each 
of the potential alternative states. 

As an example, consider a simple scenario in 
the blocks world as described in Figure 2. There 
are three agents, with the following goals: gl = 
W(G 3), At(W 2)}, g2 = (On(W G), On@, W)}, 
g3 = (On(B, W),At(W, 3)). Assume that each Move 
action costs 1, and that V(aa,gi) = C(ai, so -A gi). 

Thus, V(a.1, gl) = 2, V(a2,ga) = 3, and V(a3,gs) = 4. 
As shown in Figure 2, the agents in state so are faced 
with choosing among six al&native future states (we 
will later discuss how alternatives are to be generated). 

so Bm lYiHilH ---- 
1 2 3 4 

SI IiJ 
Em 
Ellil ---- 1 2 3 4 

s4 El 
iii 

mEI@ ---- 1 2 3 4 

El sz QpJ 
q  il - --- 

1 2 3 4 

I3 
s5 El 

M 
I3 El ---- 

1 2 3 4 

s3 pLJpJ 
milld - --- 

1 2 3 4 

238 iid 
Gl 
Emi --- 

T2 3 4 

Figure 2: A Blocks World Example 

Assessment of Worth 
We suggest three conceptually different approaches for 
an agent to determine the worth of a given sta.te. 

According to the “all-or-nothing” approach, the 
agent assigns the full value of his goal to any state 
that satisfies it, and zero otherwise. In the example 
above, s4 would be chosen, causing a3 to pa,y a tax 
of 3. In the general case, the state that satisfies the 
single most valuable private goal will be chosen, unless 
there is a8 state that fully satisfies more than one goal. 
This approach suffers from the fact that an agent can- 
not assign relative weights to the alternatives, and no 
mutual compromise can be achieved. 

A more flexible approach (“partial satisfaction”) is 
for the a.gent to give each state a worth tha.t represents 
the portion of the agent’s goal that the state satisfies, 
i.e., which predicates in the agent’s composite goal are 
satisfied in the state. Assume that each of the agents’ 
goal predicates contributes equally to the worth associ- 
ated with a state. In the example, s4 is again chosen, 
but a3 pays a tax of only 1.5. This approach is su- 
perior in the sense that compromise can be achieved 

via a state that partially satisfies a group of different 
goals. But in addition to preventing the agent from 
ranking bad alternatives (since there are no negative 
valuations), the method can be misleading. Consider, 
for example, a2. His evaluation of s1 (1.5) is based on 
the fact that s1 satisfies On(R, W), while any attempt 
to achieve his other subgoal, On(W, G), will require 
the violation of this predicate. 

Yet a third approach (“future cost”) is to evaluate 
a state by taking into consideration the cost of the 
agent’s eventually achieving his full goal, given that 
state: W(i, k) = V(aa , gi) - C(ai, sx: + ga). Consider 
a3 calculating the worth of sl. Given SO, he could 
achieve his goal using four Move operations; our as- 
sumption is thus that his goal’s value is 4. Given 
~1, however, he would need five Move operations, 
Move(R, 4), Move(G, R), Move(B, G), Move( W, 3) 
and Move(B, W). He is therefore “worse off” by 1, 
and gives s1 a worth of -1. In the example above this 
yields the following true worths for each agent: 
(2,0,1,0,-2,2),(0,3,2,1,1,0), (-1,2,3,4J,I). 
s3 (which is only one Move operation distant from all 
the agents’ goals) is chosen, and no tax is collected. 

In some sense, this last method guarantees a “fair” 
consensus (where all agents are approximately equally 
distant from their ultimate goals). If it is important 
that some agent’s goal be fully satisfied, a coin can be 
tossed to determine which of the agents will continue to 
fulfill his complete goal. Given a distribution of labor, 
the utility of an agent using this scheme may be greater 
than it would be if we had a lottery to select one agent, 
then let that agent bring about his own goal.3 

The Generation of Alternatives 

The selection of the candidate states (among which 
the agents will vote) plays a crucial role in the vot- 
ing process. Given a group of agents with fixed goals, 
choosing different candidates can result in wildly differ- 
ent outcomes. The question thus arises of how these 
candidate states are to be generated. It is desirable 
that this generation be based upon each of the agents’ 
goals. The generation of candidate states should aspire 
to choosing states maximal with respect to the satis- 
faction of agents’ goals. Let Px = UasEA(gi) be the set 
of all the predicates appearing in all the agents’ goals. 
Usually this does not specify a real-world state, since 
in the general case there are contradicting predicates 
among different agents’ goals (otherwise, this state is 
guaranteed to be chosen). 

We want it to be the case that each Sk in the set of 
candidate states satisfies the following definition: 
Sk = {pip E px and p is consistent with Sk}. 

3See [Zlotkin and Rosenschein, 199Oa] for an example 
of a similar scenario. Two agents agree to cooperate to an 
intermediate state that satisfies neither, then flip a coin to 
see who, alone, continues to his own goal. There, the coop- 
eration is brought about by negotiation instead of voting. 
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Thus, each sk is a maximal feasible subset of Px, a 
fixed point with respect to the predicates’ consistency. 

In order to check consistency, we assume a set of 
axioms over the domain predicates by which inconsis- 
tency can be discovered. In the example above we 
might have 
On(Obj, t) =+ At(Obj, t) 
LWbh, t> A On(Obj2, Objl)] + At(Obj2, t) 
[At(Ob.i, tl) A Af(Obj, t2) A (tl # t2)] =s- False 
to establish the inconsistency of a set such as 
WW 2),On(W, R), At@, 3)): 

Note that this generation has several features. First, 
this procedure guarantees for each i the existence of at 
least one sk such that ga C Sk. Second, each agent is 
motivated to hand the generator his true goal. Declar- 
ing & > gi might prevent the generation of compromise 
states that benefit ai, or cause the generation of states 
preferable to other agents (resulting in the selection 
of a worse alternative than otherwise would have been 
chosen). Declaring {& 1 (& ng;) c gi or (& flga) = 0) 
may prevent the generation of any sk that satisfies ga, 
as well as preventing the generation of other states pre- 
ferred by ai which otherwise could have been chosen. 
In either case, ai cannot hope to improve on his utility. 

Note that the phase of candidate generation is com- 
pletely distinct from the voting phase that follows it. 
An agent could declare goals that are used in gener- 
ating candidates, and then vote in ways tl1a.t contra- 
dict its declared desires. Note also that the technique 
above assumes the collection of information regarding 
agents’ goals in a central location. This, of course, may 
be undesirable in a distributed system because of bot- 
tlenecks and communication overhead. [Ephrati and 
Rosenschein, 19911 develops several techniques for dis- 
tributing the generation of alternatives among agents. 

Additional Criteria 

Candidate state generation can be 
into consideration several additional 

refined by taking 
criteria that avoid 

dominated states. These addition al criteria sometimes 
depend upon the approach agents will be using to eval- 
uate the worth of candidate states. 

First, the generator can exclude states s”l, such that 
h,fb(w(i, i) 2 w(i, k)) A @(SO - Sk) < c(sO - 
&))I. The generator thus excludes a candidate state 
if there is another of equivalent value that is easier to 
reach. In the example, this test causes the elimination 
of the state {At(B, 3), At(G, 2), On(W, G), On(R, W)} 
in favor of s2. 

If the agents are going to evaluate candidate states 
using the “partial satisfaction” criterion, the generator 
can exclude s”l, such that %l,[(s”k f--l p,“) C (Sk fI p,v)]. 
The generator will exclude a candidate that specifies 
states that are a superset of another candidate’s states. 
In the example, this would exclude s3 in favor of ~2. 

If the agents are going to evaluate candidate states 
using the “future cost” criterion, the generator can 
eliminate states s”l, such that %k~i(C(ai, Sk - gi) 5 

C(ai, s”k - Si)) A gi(C(ai, sk - Si) < C(ai, gk - Si))]. 
The generator thus excludes a candidate that, for all 
agents, is “more expensive” than another candidate.4 
In the example, such a test would eliminate the state 
s5 in favor of s4. 

One might suppose that if it is known ahead of time 
how candidate states are going to be evaluated, actu- 
ally voting becomes redundant. By extension of elim- 
ination procedures such as those above, the generator 
could just compute the optimal state. For instance, 
using the “future cost” criterion, it might directly gen- 
erate the sk that minimizes cr C(ai, Sk - gi), and 
using the “partial satisfaction” criterion, it might di- 
rectly choose the sk that is the maximal (with respect 
to number of predicates) consistent subset of Pz. 

However, such extensions to the generation method 
are not always desirable. If the state generator uses 
them, the agents will sometimes be motivated to de- 
clare false goals. For example, if al declares his goal to 
be {At(G, 3), At(W, 2), On(G, B), On(R, W)) (whose 
predicates are a superset of his original goal), s1 be- 
comes dominant over all the other states if the genera- 
tor uses either of the two global extensions considered 
above. Thus si would automatically be chosen, and al 
achieves a higher utility by lying. 

andling the Tax ste 
The Clarke tax itself must be wasted [Clarke, 1971; 
Clarke, 19721; it cannot be used to benefit those whose 
voting resulted in its being assessed. To understand 
why, consider again the vote established by the “fu- 
ture cost” approach to the problem in Figure 2. As 
shown, al’s worth for the chosen state (~3) is 1. How- 
ever, knowing that he’ll get a portion of the collected 
tax (as a compensation to the losers, or as an equally 
distributed share), al would be motivated to under- 
state his relative worth for ss, thus raising the total 
amount of tax-and his share of that tax. For exam- 
ple, his declaring (5,0, -2,O, -2,2) would yield a total 
tax of 4 (sz is chosen causing a2 and a3 to pay 2 each). 

Actually, the fact that the tax must flow away from 
the group prevents the decision from being pareto 
optimal-any taxpayer could improve its own utility 
by the amount of the tax without changing the other 
voters’ utilities. Note, however, that in general the to- 
tal tax will decrease as the number of agents increases. 
When there are more agents, the chance of any single 
one actually changing the decision approaches zero. 

Our solution to this problem of tax waste is to use 
the tax for the benefit of agents outside the voting 
group. For that purpose, in parallel to goal genera- 
tion, the entire society should be partitioned into dis- 
joint voting groups (including one group of indifferent 
agents, Ao). When a voting group A, completes the 
decision process, each taxed agent at E A,, has to dis- 

*Actually, more or equally 
expensive for at least one. 

expensive for all, and more 
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tribute his tax equally among aj E A - A,. For con- 
venience, we might make each at pay to a randomly 
chosen aj E A - A,. 

As an example, consider again the blocks world 
scenario of Figure 2. Assume that SO is the’ same, 
but there are six a.gents operating in the world hav- 
ing the following private goals: gi = {At(B,2)), - 

= {At(G, 3), On@, W)}: g3 = fOn(G, ti)], g4’L 
&CR, 111, g5 = {At(w,J)), g6 = {At(W, 1)). 

The formation of voting-groups can‘be based upon 
the agents’ goals. The basic idea is to group agents 
who share common or conflicting interests in the same 
group. One obvious way to do this is to consider the 
resources over which the agents are competing. In our 
simple model, these resources can be the objects spec- 
ified in the agents’ goals. We can thus build each vot- 
ing group to be the maximal set of agents whose goals 
share objects in common. Denoting the set of objects 
that are referred to in a set of predicates P by O(P), 
we get: A, = (ailO(g;) n O(P,UJ # 0) (a fixed point). 
In the above example, such a grouping mechanism 
yields three groups: Al = {al}, A2 = (a2, as, as}, 
A3 = (a4, as). 

This grouping mechanism can be refined by taking 
into consideration only top level goals that share equiv- 
alent subgoals, or top level goals with conflicting sub- 
goals (this could be done using a set of consistency 
axioms as shown in the previous section) such that 
A, = {ai Igi 8 Pyu # 03, where pl8 pa (where p1 and 
p2 are sets of predicates) stands for (pl n ~2) U{p"lp" E 

p1 and @ is inconsistent with ~2). Using this partition 
we get Al = {al}, A2 = (a2,a3,a5) (since g5 is in- 
consistent with 92, and ga shares On(G, W) with g2), 
A3 = {ad}, and A4 = (a6). 

A further refinement to the above approach is to 
also take into consideration the actual plan needed for 
achieving each goal, such that agents with interfering 
goals share the same voting group. The purpose of such 
a grouping mechanism is to allow agents with conflict- 
ing plans to “argue” about the plan to be carried out. 
Similarly, it allows agents whose plans share segments 
to vote for states that yield possibly cooperative plans. 
If, for exa.mple, we momentarily ignore the schedul- 
ing problem, and take into consideration plans that 
share mutual Move actions, we get two voting groups: 
Al = (al, a2, a3, a4, a5), A2 = (a6ja5 

Along with the added complexity of having to form 
voting groups, this solution to the tax waste problem 
might impose the need for an extensive bookkeeping 
mechanism, where each agents’ debts are recorded. 
This would allow an agent to pay his debts by per- 
forming actions in pursuit of others’ goals later on. 
The commitment to future action can remove the need 

5u1 is in the same group as u5 since Move(W, 4) serves 
their mutual interests, and a4 shares Move(G, 3) with u2 
and ~3. If scheduling is to be considered we would have 
only one group, since Q’S Move(Y, 1) may conflict with 
u4's Move(R, 1). 

for agents to share an explicit common currency. 

rk istribution 
The Clarke tax mechanism assumes that the financ- 
ing of any choice is equally divided among the voting 
agents.6 Since each agent declares its true “willingness 
to pay” for each alternative, one may be tempted to 
conclude that the agents’ contribution to the creation 
of the chosen state should be based upon this will- 
ingness. Unfortunately, this does not maintain truth- 
telling as a dominant strategy. If an agent’s stated 
preference is used to decide how to share the burden of 
a plan, the agents have an incentive to lie. To operate 
correctly, the share of work must be defined a priori. 

There are several ways to determine each agent’s 
share of work. The most convenient is to distribute the 
work equally among all members of the voting group, 
such that each agent has to contribute his share to the 
overall activity. 

Another approach is to let agents vote on the work 
distribution. Instead of each Sk, the state generator 
has to generate a set 5’~ of alternatives. Each mem- 
ber of this set denotes a distinct state and work dis- 
tribution. There are two drawbacks to this kind of 
procedure. First, the set of alternatives explodes com- 
binatorially (instead of M we have, in the general case, 

CL I@( 90’usk) states). Second, if each action costs 
the same to all agents, and they are indifferent with re- 
gard to which specific action they take, then all Sk E Sk 
will get the same score, and one will have to be chosen 
arbitrarily (if c(i, 1E) is the cost ai has to pay as spec- 
ified in Sk, then W(i, K) = V(i, I<) - c(i, k), and the 
score of each Sk is (EN V(i, I<)) - C(s, - Sk)). 

A more desirable a.nd just way to apportion work 
is to set each agent’s share in direct relation to how 
fully the state in question satisfies his goal (as given 
to the candidate generator). One such measure could, 
for example, be gi tl Sk (the actual portion of the goal 
satisfied by the state), or C(ai, SO - gi n sk) (the cost 
needed for ai to accomplish the part of the state that he 
really wanted) or C(aa, SO -ih)-C(%Sk-gi) (how 
much the state improves ad’s position with respect to 
his goal). 

Unfortunately, even though the work distribution 
has been set a priori, the Clarke mechanism fails. Re- 
alizing that his cost share is based upon such consider- 
ations, an agent is given an incentive to declare a false 
goal to the candidate generator. If the agent can ascer- 
tain the other agents’ goals, he can benefit by declaring 
a goal that guarantees his participation in the voting 
group (depending on the grouping method) but very 
different from what he believes will be the group con- 
sensus. Thus, he may hope that the state generator 
will generate some states that he favors, while his pre- 
defined share of the work (based on his declared goal) 

61n classical voting theory the financing question is not 
addressed. 
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would be minimal or nonexistent. 

Conclusions and F’uture Work 
Group voting mechanisms can feasibly allow au- 
tonomous agents to reach consensus. In designing such 
a mechanism, issues that need to be addressed include 
automatic generation of alternatives over which the 
group will vote, assessment by each agent of the worth 
of each alternative, incorporation of an effective “incen- 
tive mechanism” for truth-telling (e.g., the Clarke tax, 
which must be spent outside the voting group and thus 
necessitates having distinct voting groups), and distri- 
bution of the labor once consensus has been reached. 

There remain important issues to be resolved. First, 
the Clarke tax mechanism can be manipulated by coali- 
tions of a.gents; techniques must be devised to deal 
with this. There are also questions related to when 
and how payment of debts might be enforced among 
autonomous agents (e.g., is it possible that an agent 
might continually join voting groups to avoid paying 
his debts), and alternative (iterative) methods of form- 
ing voting groups. These issues, along with implemen- 
tation of this mechanism, remain for future work. 
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