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1 Introduction 

There is an essential correspondence between the ar- 
chitecture of a distributed problem-solving system, the 
structure of the problems it solves, and the environ- 
mental conditions under which it solves them. In a dy- 
namic world, such as one populated by multiple agents 
in a changing environment, this correspondence must 
be maintained by dynamic adaptation. There are four 
ways to disrupt or to maintain this correspondence: al- 
ter the structure of problems, the environmental con- 
ditions, the problem-solving architecture, or the goal- 
knowledge-action relationships (e.g., task and skill al- 
locations or types of knowledge). 

A well-known AI approach to adaptive problem-solving 
systems has been to use a fixed problem-solving archi- 
tecture which responds to environmental change by re- 
structuring problems (e.g. by relaxing problem con- 
straints, abstracting search spaces, or changing decision 
criteria dynamically, as in several resource-bounded 
problem-solving AI systems [Lesser 88, Schwuttke 911) 
or by long term adaptation of problem-solving knowl- 
edge (learning). Distributed AI researchers, in con- 
trast, have begun to investigate problem-solving sys- 
tems that restructure their own macroarchitecture, to 
add to the repertoire of adaptive responses. In gen- 
eral, these systems have comprised a fixed collection 
of problem-solving agents, each of which has a sta- 
ble microarchitecture. The set of interagent relation- 
ships or organization of agents is changed, yielding 
a dynamically adaptive macroarchitecture. The best- 
known early dynamic macroarchitecture is the Contract 
Net system [Davis 831 in which manager-worker rela- 
tionships evolved opportunistically based on the struc- 
ture of the given problem decomposition, the availabil- 
ity of free agents with required capabilities, and the 
outcomes of mutual selection processes governed by a 
bidding-contracting protocol. Later, researchers using 
the DVMT system [Corkill 82, Durfee 87a,b] proposed 
mechanisms such as metalevel control, partial global 
planning, and organization self-design (OSD) as means 
for dynamically structuring the macroarchitectural re- 
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lationships of a problem-solving system. 

In earlier OSD research, we introduced organixational 
knowledge, used it as a basis for 2 reorganization prim- 
itives (composition and decomposition), and demon- 
strated their value as adaptive mechanisms for prob- 
lems with time constraints [Ishida 9Oa]. Our reorgani- 
zation primitives dynamically vary a system macroar- 
chitecture by adjusting inter-agent relationships, the 
knowledge agents have about one another, the size of 
the agent population, and the resources allocated to 
each agent. In our prior work, reorganization was 
triggered by reorganization request messages from an 
outside observer, not by the organization itself. We 
now give agents the knowledge they need to reor- 
ganize themselves. We introduce additional organi- 
zational knowledge called agent-organization relation- 
ships, and a new agent microarchitecture, the se&- 
organizable, distributed production-system-based agent 
(SDPSA). With these new concepts, we can exam- 
ine some novel ideas about the nature and represen- 
tation of organization. We also report our study of 
the relationships between organizational knowledge and 
communication-coordination overheads. As before, our 
formal problem-solving model and OSD approach are 
based on production systems, but our OSD approach 
is, in general, not limited to production-rule systems. 
We use production rules as a general model of indi- 
vidual problem-solving actions, because they have been 
shown to be useful as abstractions of organizational 
and problem-solving processes of many kinds (cf. [Zis- 
man SO]). For this reason, we use the terms “production 
rule” and “problem-solving action” interchangeably be- 
low. 

2 Organization Self-Design (OSD) 

We are interested in OSD for problem-solving organi- 
zations (PSOs), embedded in an environment. The 
products of a PSO are solutions to individual problem- 
solving requests issued from the environment. Changes 
in the relationship between a PSO and its environment 
can create pressure for reorganization in the PSO. Pos- 
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sible pressures include 1) demands for change in the or- 
ganizational performance level (e.g., manifested in new 
quality levels or shorter/longer response time require- 
ments), 2) change in the level of demand per solution 
type (e.g., manifested in more or fewer problem-solving 
requests per unit time, or changes the mix of problem 
types), 3) changes in the level of demand for resources 
that the organization shares with others in its environ- 
ment . 

In our model, problem-solving requests issued from the 
environment arrive at the organization continuously, 
at variable rates. To respond, the organization must 
supply meaningful results within quality and perfor- 
mance standards, which are also set by the environ- 
ment and which also may vary. These variations pro- 
vide the changing conditions to which the organization 
must adapt, using organizational knowledge and OSD 
primitives. 

2.1 Architecture and Reorganization Operations 

Figure 1 shows the basic agent microarchitecture for 
SDPSAs. Each agent repeatedly executes a modified 
match-select-act problem-solving cycle, in which pro- 
duction rules model domain problem-solving actions. 
Reorganization decisions are made using organizational 
knowledge, detailed below. Each reorganization deci- 
sion invokes one of two reorganization primitives, which 
work by changing the relationships between knowl- 
edge (rules and working memory elements) and action 
(match-select-act processes) in the organization (i.e. by 
changing the definitions of agents). Figure 2 illustrates 
the process of OSD. 

Decomposition breaks the correspondence between a 
collection of problem-solving rules and their interpreter, 
by creating a second interpreter (agent) for some rules, 
inserting communication actions among agents, and 
enforcing synchronization among dependent problem- 
solving actions using a specialized deadlock-free pro- 
tocol (see [Ishida gOa]). The extra resources increase 
intra-problem parallelism and may improve perfor- 
mance, but coordination overhead is also increased. De- 
composition can also increase organizational through- 
put when multiple problem requests can be processed 
in a pipeline (increasing inter-problem parallelism). 

Composition combines two interdependent neighbors 
(agents with action interdependencies) into one, creat- 
ing a “closer” relationship among groups of problem- 
solving knowledge by removing agents and interagent 
messages and freeing both computation and commu- 
nication resources. Maximum decomposition does not 
necessarily yield the best response time or through- 
put, due to coordination and communication overheads. 
Thus composition may also actually improve perfor- 
mance where coordination overhead is high. 

Since the aims of composition and decomposition 
are independent, both kinds of reorganization can 
be performed simultaneously in different parts of the 
organization- both problem-solving and organization 
self-design are treated as decentralized processes. Dur- 
ing the reorganization process, deadlock never occurs, 
because reorganization does not block other agents’ do- 
main problem solving or reorganization (see [Ishida 90b] 
for details). 

2.3 Organizational Knowledge 

We have established two types of organizational knowl- 
edge. Agent-agent relationships represent the dynamic 
state of dependencies and interferences among knowl- 
edge in agents throughout the organization, and have 
been detailed elsewhere [Ishida 90a, Ishida gob]. Agent- 
organization relationships comprise local statistics, or- 
ganizational statistics and reorganization rules, which 
we now define. 

First, we restrict ourselves to problem spaces in which 
there is a monotonically decreasing relationship be- 
tween the solution quality of the goals and the probabil- 
ity of finding a goal using a random search (i.e., higher- 
quality goals always imply lower probability). Thus 
raising the required solution quality for a problem space 
always increases the average amount of search-i.e., 
the number of problem-solving actions (rule firings)- 
needed to find a goal in any problem instancel. Let the 
goal density D of a problem space be the prior proba- 
bility of reaching a goal with a fixed level of effort in 
a random search of the problem space. Thus, problem 
spaces with lower D require greater search effort on the 
average. 

Let Tdeadm be a time constraint placed on the 
problem-solving process for any problem instance (mea- 
sured in problem-solving cycles). Let: 

Of two problem solvers in the same space, one with bet- 
ter control heuristics will expend less search effort for a 
given D. k accounts for the size of the problem space, 
and for the heuristic performance of the ruleset in fo- 
cusing search, and allows us to normalize performance. 
A particular level of required performance is a function 
of desired quality and time constraints. By our defi- 
nition, a lower value of PERFreq,,~red is more di#Gxlt 
to achieve. “Better” needed performance (i.e. a lower 
value for PERFrequired) can be specified by raising the 
solution quality (reducing the goal density D) or by in- 
creasing the time pressure (by lowering Tdecrdline). In 

lThere are other ways of manipulating the goal density 
and thus the required search effort, e.g., by changing the 
abstraction level of the problem space, as in the approximate 
processing approach of [Lesser 881. 
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general, by our definitions, greater concurrency allows 
higher solution quality given a particular Tdecrdline, be- 
cause the problem-solvers can do more search. Thus our 
reorganization approach of composition and decompo- 
sition can adapt both the quality and timeliness of the 
organization’s response. 

Finally, let: 

F. a+1 - - tprobiem-instance i+l - tproblenz-kstoncei 

be the arrival interval of problem request i + 1 (where 
tproblem-dnst*ncei is the arrival time of the ith prob- 
lem instance. Clearly, higher values of F place lower 
demands on the organization. Changes in environ- 
mental performance demands are stated as changes in 
PER&equired or as changes in F, so we can character- 
ize overall environmental demand E as: 

E = F . PERF,.eq,,a’red 

Higher values of E are easier to achieve, while lower 
values are harder to achieve. 

To adapt to changes in E, agents in the organization 
invoke composition and decomposition operators. To 
reason about when and how to reorganize, we define 
two types of organizational knowledge, as follows. 

Local Statistics: We introduce an activity ratio R 
that represents how busy each agent is. Let S be a pre- 
defined period (normalized by problem-solving cycles) 
for measuring statistics, and N be a number of problem- 
solving actions (e.g., rule firings) during S. Then the R 
can be defined by N/S. When R = 1.0 (i.e., there are 
no idle problem-solving cycles over the measurement in- 
terval S), an agent is called busy, while when R < 1.0, 
an agent has excess capacity. 

Organizational Statistics: We assume each agent 
can know (by periodic reports) whether the organiza- 
tion as a whole is currently meeting the performance 
criterion PER&., Uired. 

r 
(This can be done without a 

global clock-see Ishida gob].) Let: 

be the most recently measured performance, where 
T response is the actual measured organizational re- 
sponse time (also in problem-solving cycles). When 
PERFactual > PERFrepuared, the performance of 
the organization should be improved2. When 
PERFaCtUal < PERFreqaired, the organization can af- 
ford to release extra resources. 

Reorganization Rules: The following rules use local 
and organizational statistics to select appropriate reor- 

2The reader is again cautioned that, in the discussions 
below, lower PERF values are more difficult to achieve; this 
is somewhat counterintuitive. 

ganization primitives as necessary. 

RI: Decompose if PERFrequired < PERFactual and 
R = 1.0 

X2: Compose if PERFrequired > PERFactual and 
2R c PERFrequiredlPERFaetu41 

R3: Compose if R < 0.5 

RI initiates decomposition of busy agents when the 
organization cannot meet performance requirements. 

2 initiates composition when the organization beats 
performance requirements, to release excess resources. 
Composition is performed even if agents are fully 
busy, when PERFrequiyed is sufficiently greater than 
PERFaetua~, again to release resources. R3 is intro- 
duced to account for communication overhead. Sup- 
pose environmental demand is initially high, and later 
decreases. Initially, Rl is repeatedly applied, maxi- 
mizing pipeline parallelism to improve organizational 
response. Later, even though the frequency of requests 
decreases, R2 may not have been applied because the 
communication overhead may not allow agents to meet 
performance requirements. Thus, R3 is necessary to 
merge lightly-loaded agents even when PERFactUal ex- 
ceeds PERFrequired. This merging can lower commu- 
nication and coordination cost in the overall problem 
pipeline, improving performance. 

Reorganization decisions are made during the SDPSA 
reasoning cycle, in the same way as domain-level 
problem-solving decisions (both are modeled as produc- 
tion rules). In this way, OSD and domain problem- 
solving actions are arbitrarily interleaved. In our im- 
plementation we assume higher priority is given to the 
reorganization decisions during the Select phase of the 
SDPSA problem-solving cycle. This mechanism is anal- 
ogous to the integration of control and domain knowl- 
edge source activations in systems such as BBl [Hayes- 
Roth 851, or to integrated metalevel reasoning in the 
DVMT [Durfee 87a]. 

3 Experiment al Evaluation 

We have evaluated the effectiveness of our approach, 
using a simulation solving the Waltz labeling program: 
36 rules solve the problem that appears in Figure 3- 
17 in [Winston 771 with 80 rule firings (for details see 
[Ishida gob].) 0 ur experiments begin with one agent 
containing all problem-solving knowledge. Organiza- 
tional knowledge (e.g., dependencies and interferences 
among problem-solving actions) for the initial agent is 
prepared by analyzing its domain knowledge before ex- 
ecution. Some of its initial organizational knowledge is 
trivial-with no interdependent neighbors, all qualifi- 
cations by agent are references to itself. All dynamic 
organizational knowledge in the organization is devel- 
oped by the organization itself over time. 
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Figures 3 and 4 show our simulation results, with com- 
munication and reorganization costs ignored. The line 
chart indicates response times normalized by problem- 
solving cycles. The step chart shows changes in the 
number of agents in the organization. PERFrequired 
is set at 20 and (S) is set at 10 problem-solving cy- 
cles. In Figure 3, requests arrive at constant inter- 
vals, while in Figure 4, F changes with time. Over- 
all, in these cases, our autonomous reorganization has 
achieved approximately, though not exactly, the same 
performance as the non-autonomous reorganization re- 
ported in [Ishida 9Oa]. As in our previous work, in 
these figures the organization demonstrates three prop- 
erties (cf. [Ishida gOa]). First, it is still adaptive over 
time, with stabilization of the number of agents and 
R almost equalized across agents in Figure 3, and with 
long-term temporal decrease in the number of agents at 
the busiest peaks (28, 24, and 22 agents) in Figure 4. 
Second, using Figure 4, it again shows real-time respon- 
siveness, by comparison to a permanent-agent system 
with the same average number of agents (9). Third, it 
still exhibits efficient resource utilization, using 9 agents 
on average, compared to the conventional statically- 
decomposed approach which requires 17 processors to 
meet performance requirements under dynamic condi- 
tions. 

Figures 5 and 6 describe the same situation as Figure 
3, but include communication and reorganization over- 
heads (0, and 0,, respectively, measured in problem- 
solving cycles). We have simulated cases where 0, is 
equivalent to 1, 3 or 5 cycles. 0, is generally not critical 
on message passing machines because it approximates 
one problem-solving cycle [Ishida gob]. But it may not 
be possible to ignore 0, even in fast message passing 
machines, depending on how much knowledge must be 
transferred during reorganization. 0, never exceeds 10 
in our example, but we simulated cases with 0, of 10, 
30 or 50 cycles to observe its general influences. The 
major results are as follows. 

Communication overhead: Figure 5 shows 0, 
only. When 0, = 1, the organization can meet 
PERFrequiped. When 0, = 3 or more, the organi- 
zation fails to meet PERFrequired, because communi- 
cation overhead causes a delay that affects the stable 
state of the organization. The organization can fluctu- 
ate in two ways. When agents decompose themselves 
rapidly so that PERFaCtual becomes much less than 
PERK-equired, R2 is triggered, and agents start com- 
position. The organization can also fluctuate even if 
PERFaCtual exceeds PERFrepiyed, if communication 
delays significantly lower agents’ activity ratios. In this 
case, R3 becomes satisfied, causing re-composition. 

Reorganization overhead: Figure 6 shows 0, only. 
0, is temporary and we would not expect it to affect the 
organization’s stability. When 0, = 10, the organiza- 

tion does quickly reach stability. But when 0, becomes 
larger (e.g., 30 or more), the organization oscillates, for 
the following reason. Since reorganizing agents can- 
not fire rules during the decomposition process, their 
R values decrease. R values of neighboring agents also 
decrease because no new data are transferred from the 
reorganizing agents. Neighbors fire R3 and compose, 
causing oscillation. A damping constant would inhibit 
R3, preventing early composition, but would also im- 
pede responsiveness to an increase in F. The reorga- 
nization sensitivity could also be decreased by enlarg- 
ing S. This area merits further study (see [Hogg 90, 
Ishida gob]). 

4 Conclusions 

We have presented a general, conceptually simple, and 
formally analyzable distributed problem-solving model 
which can reorganize its macroarchitecture to flexi- 
bly adapt to changing performance requirements. We 
have also presented the organizational knowledge nec- 
essary to allow the system to make certain types of 
autonomous reorganization decision, and have studied 
the relationships between organizational knowledge and 
communication-coordination overheads. Used as an or- 
ganization control structure, this approach has promise 
for a range of distributed problem-solving structures. 
For example, our model can be used as a simulation 
tool to derive good (if not ideal) static configurations 
for particular problems and environmental performance 
demand configurations. 

There are several useful extensions to this work. First, 
we would like to incorporate the cost and expected ben- 
efit of composition and decomposition decisions in the 
reorganization rules. Second, we would like to make 
the architecture more general, reorganizing by redis- 
tributing knowledge and goals, as well as by creating 
and removing agents, and creating metaknowledge with 
which to choose among these options. For example, 
extra resources can come from underused capacity of 
existing agents and from resources wasted in poorly or- 
ganized communication and interaction structures, as 
well as from new agents. Similarly, underutilized re- 
sources can be returned to the organization itself via 
improved structure, rather than to the environment by 
removing agents. These 2 new forms can be imple- 
mented using location knowledge [Ishida 9Oa] tp provide 
the dynamic extension of the static approach organiza- 
tion based on constrained interest areas of an agent used 
in [Corkill 82, Durfee 87a]. 

Finally, there are many conceptual approaches to or- 
ganization in the literature [Bond 88, Gasser 91b, 
Ishida gob]. In most DAI literature, organizations com- 
prise a fixed collection of agents each of which has a 
stable internal architecture, and whose boundaries are 
fixed. Our OSD scheme creates and destroys agents, as 
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well as transferring organizational and problem-solving 
knowledge among agents. In effect, our system can be 
seen as a fabric of knowledge, resources, and action, 
out of which agents actively and flexibly construct and 
reconstruct themselves by adding and subtracting re- 
sources and by changing agent-knowledge boundaries. 
It is the overall collection of problem-solving knowledge 
that is fixed-not the definition of agents. This repre- 
sents a new, “social” approach to nature of both agents 
and organization [Gasser 90, Gasser 91a,b]. It appears 
to offer the promise of a wider degree of organizational 
flexibility. 
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