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Abstract 
In the functionally accurate, cooperative (FA/C) dis- 
tributed problem solving paradigm, agents exchange 
tentative and partial results in order to converge on 
correct solutions. The key questions for FA/C prob- 
lem solving are: how should cooperation among agents 
be structured and what capabilities are required in the 
agents to support the desired cooperation. To date, the 
FA/C paradigm has been explored with agents that did 
not have sophisticated evidential reasoning capabilities. 
We have implemented a new framework in which agents 
maintain explicit representations of the reasons why 
their hypotheses are uncertain and explicit represen- 
tations of the state of the actions being taken to meet 
their goals. In this paper, we will show that agents with 
more sophisticated models of their evidence and their 
problem solving states can support the complex, dy- 
namic interactions between agents that are necessary 
to fully implement the FA/C paradigm. Our frame- 
work makes it possible for agents to have directed dia- 
logues among agents for distributed differential diagno- 
sis, make use of a variety of problem solving methods 
in response to changing situations, transmit informa- 
tion at different levels of detail, and drive local and 
global problem solving using the notion of the global 
consistency of local solutions. These capabilities have 
not been part of previous implementations of the FA/C 
paradigm. 

Introduction 
In the functionally accurate, cooperative (FA/C) sys- 
tems paradigm for distributed problem solving [Lesser 
& Corkill 1981, Lesser 19911, agents need not have 
all the information necessary to completely and ac- 
curately solve each of their subproblems. The basic 
intuition behind this approach is that for many ap- 
plications the subproblems that need to be solved by 
the different agents are not independent; there exist 
constraints among the subproblems. These constraints 
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can be exploited to partially resolve the inconsistencies 
and uncertainties that occur in local problem solving 
due to the lack of accurate, complete, and up-to-date 
information. In the FA/C paradigm, each agent’s lo- 
cal problem solving is organized so that partial and 
tentative results can be produced despite incomplete 
and uncertain information. When these partial results 
are exchanged among agents working on interdepen- 
dent subproblems, the agents use them to constrain the 
possible solutions to their subproblems. This allows the 
local problem solving uncertainties which result from 
incomplete, incorrect, and inconsistent information to 
be partially resolved. Resolution can take the form of 
producing more complete partial results, resolving so- 
lution uncertainty due to competing, alternative partial 
solutions, detecting inconsistencies in previously gener- 
ated results (either locally generated or received from 
other agents), and speeding up local problem solving 
because the space of possible solutions that needs to 
be examined is constrained. 

The key question for FA/C problem solving is how 
cooperation among agents should be structured so that 
an acceptable answer can be converged upon within a 
reasonable amount of time, with limited communica- 
tion between the agents. A subsidiary question, but 
one of equal importance, is what reasoning capabilities 
are required in agents in order to support such cooper- 
ation. To date, the exploration of the FA/C paradigm 
has been done with agents that did not have sophisti- 
cated evidential reasoning capabilities (e.g., the agents 
used in the DVMT [Lesser & Corkill 19831). These 
agents had poor representations of the evidential re- 
lationships between competing, alternative hypotheses 
and they could not explicitly consider why existing evi- 
dence for hypotheses was uncertain nor what additional 
evidence they needed. In part, this was because the 
agents used very limited models of negative evidence 
and so could not consider events like ghosting that may 
provide alternative explanations for data. These weak- 
nesses have limited the types of interactions among 
agents that could be supported; certain classes of solu- 
tion errors have not been able to be resolved because 
this would have required exchanging large amounts of 
information. In addition, termination of network prob- 
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lem solving has been based on relatively simple criteria. 

Previous FA/C implementations of distributed inter- 
pretation have either had only implicit representations 
of their goals for resolving solution uncertainty [Lesser 
& Corkill 19831 or else have had explicit representations 
of only very high level goals based on limited charac- 
terieations of uncertainty [Durfee & Lesser 19871 that 
did not provide detailed enough information. As a re- 
sult, these systems cannot dynamically reason about 
the most important goals for generating a global so- 
lution and the best information to satisfy these goals. 
This has lead to the use of somewhat simplistic, static 
problem solving strategies. For example, the Partial 
Global Planning research [Durfee & Lesser 19871 uses 
heuristics like, “avoid redundant work” and “exploit 
predictive information.” However, the appropriateness 
of such heuristics depends on the situation. If there is a 
great deal of uncertainty in overlapping solution areas 
then “redundant” work could be very useful. Likewise, 
whether predictive information should be exploited or 
not depends on the certainty of such information. In 
other words, in FA/C problem solving, strategies must 
be dynamically determined based on the current goals 
and state of problem solving. This requires that sys- 
tems have good models of the state of problem solving 
in both the sending and receiving agents. 

In this paper, we will show that agents with more 
sophisticated models of their evidence and their prob- 
lem solving states can support the complex, dynamic 
interactions between agents that are necessary to fully 
implement the FA/C paradigm. We will do this in the 
context of a new distributed problem solving testbed, 
DRESUN, that simulates a distributed set of RESUN 
interpretation systems [Carver 19901 solving a DVMT- 
like aircraft monitoring problem. RESUN agents main- 
tain explicit representations of the reasons why their 
hypotheses are uncertain and explicit representations 
of the state of their goals and the actions being taken 
to meet those goals. The RESUN architecture can sup- 
port the sophisticated evidential reasoning that is cru- 
cial to the implementation of high level communication 
protocols that implement distributed differential diag- 
nosis, true multi-sensor fusion, selective communica- 
tion of information among nodes at different levels of 
detail, complex network-wide criteria for termination 
of problem solving, etc. 

The key to achieving the necessary complex and dy- 
namic interactions between agents is to make the so- 
lution convergence process explicit. In our approach, 
this has been done by giving each agent an explicit 
representation of the goals that must be satisfied in 
order to meet the criteria for termination of (global) 
problem solving. Termination criteria that are not sat- 
isfied or have not been verified as satisfied, are viewed 
as sources of uncertainty about the global correctness 
of local solutions. Goals representing the need to re- 
solve these uncertainties are posted and drive the over- 
all problem solving process. Communication between 

agents results from the agents taking actions to meet 
these goals. Because the goals are explicit and de- 
tailed, communication between agents can be very di- 
rected. That is, instead of simply exchanging informa- 
tion about partial solutions, agents communicate spe- 
cific evidence that can be used to satisfy goals of resolv- 
ing particular uncertainties. Another way of viewing 
our approach is that we have made explicit the need 
to enforce constraints between possibly interdependent 
subproblems of the agents. We recognize (possibly) in- 
terdependent subproblems and post goals to resolve un- 
certainty about whether the relevant partial solutions 
are consistent. 

In the next section we present an example scenario to 
show the kinds of agent interactions that must occur to 
converge on solutions. The following two sections give a 
brief description of the RESUN framework and the ex- 
tensions that have been necessary for FA/C distributed 
interpretation. In the next section we contrast our ap- 
proach with related approaches in distributed problem 
solving. The next to the last section contains a de- 
tailed trace of the way DRESUN handles the example 
discussed in the earlier section. Finally, the paper con- 
cludes with a summary of the key points. 

Agent Interactions 
in the FA/C Paradigm 

To get an idea of the kinds of interactions that must 
occur between FA/C agents in order to converge on cor- 
rect solutions, we will consider the aircraft monitoring 
scenario in Figure 1. There are two agents whose re- 
gions of interest overlap. Each agent receives data only 
about its region, from its own acoustic sensor. The 
data point symbols in Figure 1 represent the positions 
of groups of acoustic signals detected by the sensors. 
The numbers associated with the data points give the 
times that these signals were generated. Data points 
include the position of the signal source and the fre- 
quency class of the signal. Each type of aircraft pro- 
duces a characteristic spectrum of acoustic frequencies. 
The goal of the system is to identify any aircraft that 
are moving through the regions of interest, determine 
their types, and track them through the regions. 

Solution uncertainty arises from several sources, in- 
cluding improperly sensed signals, ghosting, and envi- 
ronmental noise. As a result of acoustic signal propa- 
gation and limitations in the acoustic sensors, not all 
acoustic signals emanating from an aircraft are prop- 
erly sensed; some or even all of the frequencies in the 
spectrum may be missing and others may be shifted 
into the wrong frequency class. Ghost signals may 
appear as a result of environmental reflections of sig- 
nals. Non-aircraft sources of acoustic signals may also 
be detected-these are referred to as noise. As a re- 
sult of these factors, it is not possible to immediately 
determine whether sensor data results from an actual 
aircraft or whether it is the result of ghosting or envi- 
ronmental noise. 
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Figure 1: Example scenario data and correct interpretations. 

Resolving uncertainty about the correct explanations 
for data requires that the system gather evidence for 
and against the alternatives. This is done with models 
of how the different events should constrain the ob- 
served data. For example, aircraft cannot simply come 
to a stop, so tracks that suddenly disappear are un- 
likely to be from aircraft (though data may be missed 
by sensors). Ghost tracks, on the other hand, must 
have limited length. Ghost tracks must also originate 
from some source aircraft track, will typically be de- 
tected as incomplete frequency spectra, and may not 
be detected by different sensors (at different positions). 
Environmental noise data will not typically correspond 
to valid aircraft frequency spectra and cannot be cor- 
related over time (into a track). Of course, the normal 
variations in the sensing of events means that definitive 
interpretations cannot be produced from small num- 
bers of data points even when all the possible alterna- 
tive explanations can be considered. 

Because each agent has a limited view from its own 
sensor, individual agents cannot verify these kinds of 
constraints without communicating with each other. 
For example, both aircraft tracks and ghost tracks may 
continue from one agent’s region into another; deter- 
mining whether tracks are continuous requires commu- 
nication. Likewise, the source of an agent’s ghost track 
may be outside the agent’s region. In other words, each 
local agent’s subproblems may be interdependent with 
other agents’ subproblems (the subproblems here are 
determining the correctness of interpretation hypothe- 
ses) . 

In the example in Figure 1, the two agents must com- 
municate in order to converge on the correct solution 
and in order to produce reasonable levels of certainty 
in their solutions. Without any communication, agent 
A would incorrectly interpret its input data (for times 
1 through 7) as a ghost track. This would happen be- 
cause agent A’s sensor has failed to detect any signals 
from track T4 at times 4 and 5 (i.e., at T4 points 4 
and 5~ in the final solution of Figure 1). Were this 

data available to agent A, it would suggest the alterna- 
tive (correct) explanation of agent A’s time 1 through 
3 data as being due to an actual aircraft (that produces 
T4). Without any communication, agent A would also 
continue to be very uncertain about its ghost track ex- 
planation for the data; it would not be able to find a 
source for the ghost track and could not be sure that 
the ghost track did not continue beyond its border with 
agent B (since this might suggest that the data was re- 
ally due to an actual aircraft). Likewise, agent B’s 
confidence in its interpretations of its data (track Ta 
and the time 5 through 10 portion of track T4) would 
also be somewhat limited. For instance, while the time 
5 through 10 data of T4 may be quite good in terms 
of its match to likely aircraft frequency spectra, B’s 
confidence would still be limited because of the limited 
time (number of points) over which it is able to track 
the vehicle. 

This example also shows that a complete answer map 
could not easily be created from the agents’ indepen- 
dent solutions; there would have to be major adjust- 
ments of some of the individual interpretations. This 
adjustment process requires back and forth commu- 
nication between the agents rather than simply hav- 
ing one agent’s “better” solutions override the others. 
Here, the portion of track T4 constructed by agent B is 
not so strongly supported that it can be forced into the 
global solution without some corroboration from agent 
A. This requires that agent A use agent B’s portion 
of track T4 as predictive information, allowing agent A 
to make assumptions about its sensor having missed 
signals at times 4 and 5 that could complete track T4. 
Agent A must also be able to produce an acceptable 
interpretation for the remainder of its original ghost 
track (the time 4 through 7 data). Once again, com- 
munication with agent B helps to confirm most of this 
data (times 5 through 7 in the overlapping region) as 
ghost data and can provide a source for that ghost track 
cw 
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RESUN Agents 

In the DRESUN testbed, individual agents are RESUN 
interpretation systems [Carver 1990, Carver & Lesser 
19911. Interpretation hypotheses are maintained on a 
blackboard database, but RESUN extends the conven- 
tional blackboard representation of hypotheses. The 
most important extension involves the use of symbolic 
statements of the sources of uncertainty (SOUs) in the 
evidence for the hypotheses. Symbolic SOUs are at- 
tached to hypotheses as they are created or refined. 
Having the symbolic SOUs makes it possible for the 
system to understand the reasons why hypotheses are 
uncertain. For example, a track hypothesis in an air- 
craft monitoring system may be uncertain because its 
supporting sensor data is incomplete or because this 
data might have alternative explanations (e.g., it is 
ghost data or it is from a different aircraft). 

Control decisions are made by a script-based, incre- 
mental control planner with context-specific focusing. 
The hierarchical goal/plan/subgoal structure created 
by the control planner provides the system with an ex- 
plicit representation of the system’s current goals, the 
relationships between alternative goals, the relation- 
ships between goals and actions, and the status of the 
methods being used to pursue goals. Because of this, 
control decisions can be highly context-specific and can 
explicitly consider the current state of problem solving. 
A major innovation of the control planner is its refocus- 
ing mechanism. Refocusing can be used to handle deci- 
sion nondeterminism and can provide the goal-directed 
planning mechanism with opportunistic control capa- 
bilities. 

In RESUN, interpretation is viewed as an incremen- 
tal process of gathering evidence to resolve particular 
sources of uncertainty in the interpretation hypothe- 
ses. In other words, the problem solving process iter- 
atively considers what the sources of uncertainty are 
that keep the current answer from being sufficiently 
certain for termination and then takes actions appro- 
priate to resolve this uncertainty. This process is re- 
peated until the termination criteria are met. Having 
the symbolic SOUs allows the system to identify and 
use methods that can directly resolve the uncertainties. 
By contrast, most blackboard-based interpretation sys- 
tems are limited to (indirect) incremental hypothesize 
and test methods. In particular, the SOU representa- 
tion permits the use of diflerential diagnosis techniques 
because the possibility of alternative explanations for 
hypotheses and data are explicitly represented. 

The overall interpretation process is driven by a high- 
level model of the state of problem solving, called PS- 
Model. PS-Model includes a statement of current in- 
terpretation “answer” in terms of believed hypotheses 

est, that there is data which has not been examined to 
see if it can support an answer, and that some existing 
potential answer hypothesis is insufficiently supported. 
Termination in interpretation problems requires that 
the system not only consider whether existing hypothe- 
ses are sufficiently proved or discounted, but must also 
consider whether enough of the data has been exam- 
ined to be sufficiently sure that no additional answers 
may be found -without having to examine all of the 
data. 

The RESUN evidential representation system also 
includes a scheme for numerically summarizing the 
symbolic SOUs. This process produces a composite 
characterization of the uncertainty in a hypothesis in 
terms of an overall belief rating and the relative uncer- 
tainty contributions of the different classes of SOUs. 
This summarization is used in evaluating the satisfac- 
tion of termination criteria and when reasoning about 
control decisions; the composite rating allows for more 
detailed reasoning than would be possible with a single 
number rating. The RESUN model of interpretation 
uncertainty includes the following SOU classes (that 
are used in the composite summary): partial evidence, 
possible alternative explanations, possible alternative 
support, alternative extensions (hypothesis versions), 
negative evidence, and uncertain constraints. 

Extending RESUN for 
In order to use RESUN agents for distributed problem 
solving, the (single-agent) RESUN model has had to be 
extended. For example, DRESUN agents have to rep- 
resent: global consistency termination criteria, inter- 
agent communication dialogues, and evidence from 
other agents (“external evidence”). The set of control 
plans of the individual agents also have to be extended 
to be able to respond to these additional features. 

In keeping with the basic RESUN model of control 
being driven by the need to resolve uncertainty, verifi- 
cation of global consistency is driven by adding appro- 
priate SOUs to the PS-Model. These SOUs effectively 
represent the uncertainty over the global consistency of 
an agent’s local solutions. They are created when an 
agent recognizes that his solutions (subproblems) po- 
tentially interact with those of other agents (based on 
the organization of agent areas). There are three types 
of global consistency: solutions involving overlapping 
regions of interest among agents must be consistent, 
“track” hypotheses that can extend into other agents’ 
areas must be consistent, and agents must be able to 
find appropriate external evidence when the hypothe- 
ses require evidence which could be in other agents’ 
areas-e.g., ghost track source (explanation) or attack 
scenario involving multiple aircraft over a large area 

and symbolic statements of the sources of uncertainty Consistency in overlapping areas is handled by 
(SOUs) that keep the current answer from being suffi- adding consistent-overlapping-model SQUs to PS- 
ciently believed for termination of problem solving. For Model. These SOUs keep track of the fact that a partic- 
example, PS-Model SOUs may denote that no evidence ular portion of the overlapping region of the PS-Model 
has been gathered for a portion of the region of inter- has not been checked to verify that it is consistent with 
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the model of an overlapping external agent. Once infor- 
mation is obtained from the other agent, this external 
evidence will be integrated into the agent’s hypotheses 
and any uncertainty due to actual inconsistency will be 
represented at that level. 

Consistency of hypotheses that involve continuous 
“tracks” of supporting evidence is handled as an ex- 
tension of the method that is used for judging the 
completeness of these tracks for single agents. When 
tracks cannot be extended further using an agent’s 
own data and the extension region for the track in- 
volves another agent’s area, then a consistent-global- 
extension SOU will be added to the track’s model in 
PS-Model. Once again, when evidence is exchanged 
to resolve these SOUs, any resulting uncertainty due 
to inconsistency will be represented at the level of the 
corresponding track hypotheses. 

Consistency of hypotheses that may require evidence 
from other agents’ areas is handled in a manner sim- 
ilar to “track” extension consistency. When evidence 
for a hypothesis cannot be found in an agent’s own 
region and it is possible that the evidence could be in 
another agent’s region, negative evidence will be added 
to the hypothesis, but with SOUs denoting the possibil- 
ity that this evidence could be gathered from another 
agent. These external evidence SOUs then trigger the 
creation of consistent-global-evidence SOU in PS-Model 
(associated with the model of the relevant hypothesis). 

As we have stated above, communication between 
DRESUN agents does not simply involve exchanging 
solutions, but is directed toward the exchange of evi- 
dence to resolve particular uncertainties. In order to 
best understand how to integrate evidence from an- 
other agent, it is useful to have a context for the re- 
ceived information. This is provided through the con- 
cept of a dialogue. When a DRESUN agent initiates 
a request for evidence, it is effectively initiating a new 
dialogue. The control plan instance that started the 
communication implicitly understands the purpose of 
the dialogue and all further communications related 
to that dialogue (communications identify the dialogue 
they result from) are handled by that same control plan 
instance -rather than by some general communication 
handling plan. 

In single-agent RESUN systems, when a hypothesis 
is used as evidence, all of its supporting substructure 
( i.e., its evidence) is available. When using evidence 
from another agent this is typically not the case be- 
cause communicating all of this information would be 
too expensive. As a result, hypotheses supported by 
evidence from other agents cannot be constructed as 
normal RESUN hypotheses with only support and ez- 
planation evidential inferences. Instead we must add a 
new evidence category, external evidence, that allows us 
to directly support hypotheses with information from 
another agent (and we add another SOU class to the 
composite summary of SOUs: external-evidence-sous). 

Since most evidence is uncertain when it is sent to 

another agent, another important aspect of dialogues 
is the need to update external evidence as hypotheses 
evolve. For example, while a track hypothesis from an- 
other agent can explain a given agent’s ghost track, the 
other agent may itself be uncertain about the correct- 
ness of the track. As additional evidence is gathered by 
the other agent, it may decide that the track it sent is 
actually incorrect. Conversely, the initiating agent may 
find that its ghost track is not a ghost track after all. 
In either case, the agents will need to initiate a new 
dialogue to resolve the uncertainty over the external 
evidence. Recognizing the need for updating is done 
through the use of external-evidence-uncertainty SOUs 
that are associated with an agent’s external evidence. 

The integration of external evidence shows why com- 
munication of information between agents is not just a 
matter of exchanging information. Sometimes exter- 
nal evidence may be consistent with an agent’s own 
evidence either immediately or through refinement of 
uncertain parameter values. In these cases, integration 
is relatively straightforward. However, there may also 
be cases that require a complex dialogue to handle- 
e.g., overlapping, “partially consistent” vehicle track 
hypotheses. In these cases there are many possible ex- 
planations for the data: the tracks might actually be 
due to different vehicles (they only appear to overlap 
due to limited sensor resolution), one track is right and 
the other is wrong (the non-overlapping data of the 
incorrect track has other explanations), each track is 
wrong (alternative correct tracks can be identified when 
all the data is analyzed), etc. In single-agent RESUN 
systems this uncertainty is represented by SOUs asso- 
ciated with the supporting substructure; all the data is 
available to the agent so it is possible to see that there 
are alternative track explanations for the data. With- 
out direct access to the substructure, inconsistency in 
external evidence must be resolved via an inter-agent 
differential diagnosis process. 

elationship to Other Research 
Resolving global consistency can be viewed as a form 
of %onsensus formation” [Courand 19901. However, in 
the consensus formation framework, agents start dia- 
logues in order to eliminate conflicts they have about 
their joint plans. By contrast, in the DRESUN ap- 
proach, agents communicate not only when conflicts 
emerge, but when there are any sources of global un- 
certainty; conflicts are just viewed as one particular 
reason for uncertainty. There is another distinction 
between DRESUN and most other approaches to co- 
operation that emphasize settling on appropriate plans 
and goals. In DRESUN, it is the current sources of un- 
certainty that drive control by determining what goals 
and plans are currently applicable. 

Because of its concern with solution uncertainty the 
DRESUN approach is closer in some ways to sys- 
tems based on belief revision. Such systems include: 
DTMS [Bridgeland & Huhns 19901, DATMS [Mason 

CARVER, CVETANOVIC, & LESSER 195 



& Johnson 19891, and RDRMS [Doyle & Wellman 
19901. The nonmonotonic DTMS employs an algo- 
rithm that guarantees local consistency for each agent 
and global consistency of shared information. DATMS 
permits inconsistency to exist among different knowl- 
edge bases. RDRMS relates belief revision to revisions 
of large plans, and uses a decision-theoretic model to 
make rational decisions about typical belief mainte- 
nance choices. RDRMS is more flexible in finding the 
supporting arguments or pursuing consequences and 
therefore it is closer to DRESUN than the other belief 
revision systems. Unlike these belief revision systems, 
the agents in DRESUN are driven to resolve the global 
inconsistencies as explicit cases of solution uncertainty. 
As a result, DRESUN agents make use of a variety 
of methods-e.g, differential diagnosis techniques that 
reason about alternative support, explanation, and ex- 
ternal evidence. Furthermore, use of an evidential rea- 
soning system (like that based on the SOUs) allows for 
hypotheses to have degrees of belief instead of just IN 
and OUT belief values as in typical TM%. 

An Example of the D ESUN Approach 
In this section, we will give a brief trace of the kind 
of agent actions that are necessary to deal with the 
scenario that was discussed in an earlier section. We 
will indicate how global uncertainty drives overall prob- 
lem solving and how methods that involve inter-agent 
communication are also used to resolve an agent’s local 
uncertainty. Figure 2 shows a chronological sequence 
of the important decision points: 

Scene Ir The agents receive a batch of data for 
times l-5, Driven by their Pocal goals of resolving un- 
certainty about possible interpretations in their areas, 
they begin identifying possible vehicle tracks and ex- 
tending these tracks. 

Scene 2: At this point, agent A has created a single 
track hypothesis, 7’1. Tl is quite uncertain due to the 
poor quality of its time 4 and 5 data. Agent B has 
created track hypotheses Tz and T3. Tz is fairly certain, 
because there are few inconsistencies in its supporting 
data. T3 is a very preliminary track hypothesis which is 
based on a single position. Because T3 is so uncertain, 
agent B does not communicate with agent A at this 
point to verify the global consistency of the 5~ data 
(agents don’t communicate about each little bit of data 
since it could just be noise). 

At this point, agent A has two major goals: resolv- 
ing its uncertainty over the correctness of Tl (based on 
its local data) and resolving its uncertainty over the 
global consistency of Tl because its time 5 support- 
ing data is in the region that overlaps with agent B. 
These goals are represented by vncertuin-answer and 
consistent-overlapping-model SOUs in PS-Model. Be- 
cause it is waiting for additional data to pursue Tl 
and because the overlapping hypothesis TX is uncer- 
tain, agent A decides to pursue the global consistency 
SOU. It does this by requesting agent B to verify the 

5A data (in Tl). In reply, B informs A that it could 
find no evidence to support 5~. A records negative 
external evidence in Tr, reducing A’s belief in Tr. A 
now returns to its (local) goal of resolving uncertainty 
over the possibility that Tr is an answer hypothesis. 
The uncertainty in Tr as a result of its poor data and 
negative external evidence causes agent A to consider 
pursuing alternative explanations for Tl’s data. Exam- 
ining the symbolic SOUs for Tl’s supporting evidence, 
A finds that the data could be due to a ghost track. 
Since the negative external evidence further supports 
this possibility, A decides to pursue it. 

Scene 3: A has created ghost track Gr to pursue as 
an alternative to track Tl. One source of uncertainty 
for Gr is its lack of an explanation: a track hypothesis 
that is the source of the ghost. In order to resolve its 
uncertainty in Gr, agent A examines its hypotheses for 
a possible source, but finds none. While this generates 
negative explanation evidence for Gr, this evidence is 
weak and uncertain because it is possible for the source 
track to be outside of A’s region of interest-in B’s re- 
gion. This results in the creation of a consistent-globul- 
evidence SOU in PS-Model. While this global consis- 
tency SOU can cause communication, communication 
here actually occurs as a result of A continuing to re- 
solve its uncertainty over 61: agent A requests a source 
for Gr from agent B in order to resolve uncertainty over 
the negative explanation evidence. This shows that 
similar sorts of communications between agents can be 
driven by both local and global goals. B’s track Tz is 
consistent with the criteria for being a source track of 
the ghost Gr. A uses Tz as further evidence for Gr by 
recording T2 as a possible explanation for Gr. Note 
though, that agent A maintains information about the 
uncertainty associated with this evidence. 

Scene 4: At this point, a new batch of data comes in 
for times 6- 10. Driven by their local goals of resolving 
uncertainty, the agents pursue their existing hypothe- 
ses: agent A extends ghost 61, while B extends track 
9’3. 

Scene 5: The characteristics of the 6~ and 7~ data 
conform well to the model of ghosting and contribute 
to increased confidence in Gr as does the fact that 
G1 cannot be continued (the ghosting model is ex- 
plained in an earlier section). The extension of Gr with 
more data in the overlapping region results in a new 
consistent-overlapping-model SOU associated with Gr 
in PS-Model. This once again causes agent A to re- 
quest B to confirm Gr’s support in the overlap region; 
confirmation failure increases confidence in Gr. 

Agent B’s track hypothesis Ts has become quite 
well supported and is found to be complete for B’s 
region of interest. This leads to the posting of a 
consistent-globukextension SOU in PS-Model (as well 
as an increased importance rating of the consistent- 
overlapping-model SOU due to the 58 data). The 
consistent-global-extension SOU causes agent B to re- 
quest agent A to look for extensions of Ts. This request 
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J-l APent B 

Figure 2: A chronological sequence of scenes depicting important problem-solving interactions for the example 
scenario. 
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initiates a dialogue between the agents that eventually 
results in agent A developing new interpretations for 
its data (see Scene 6). 

Scene 6: When A first looks for extensions for T3 
it finds none, but given the level of belief in T3, agent 
A is willing to assume that its sensor has missed the 
time 5 data in the overlapping area. However, this still 
fails to produce an extension and agent A reports this 
to B, telling it that must further resolve its uncertainty 
to convince A to make further assumptions. Agent B 
does this by looking for alternative extensions for T3 
(since the particular version of the track hypothesis, 
T3, is less certain than it is that there is some correct 
hypothesis). B fails to find any alternative extensions of 
Ts and is now able to convince A to make assumptions 
about missing data at both times 4 and 5. This leads to 
the creation of the complete track T4 using agent A’s 
time 1 through 3 data which was less well explained 
by ghost Gr due to the characteristics of its frequency 
spectra. 

This results in ghost G1 becoming disbelieved, which 
forces agent A to pursue it further. Agent A finds 
that Gr has become disbelieved because there is a more 
highly believed explanation for some of its supporting 
data (T4). This causes agent A to look for a new expla- 
nation for the remainder of the data that was support- 
ing Gr. It finds that this data can still be explained 
as ghosting and it creates the new ghost hypothesis 
62. This ghost hypothesis is strongly supported by 
the remaining data of Gr due to the nature of its fre- 
quency spectra and the absence of corroborating data 
from agent B. Pursuing Gs further, agent A finds that 
T4 is a likely source/explanation for this ghost track. 

Here we see the final state of the possible solutions 
that result from the combination of evidence from both 
agents. The solutions with acceptable certainty for ter- 
mination are tracks T2 and T4, and ghost track G2. 

Conclusions and Status 
The example shows that FA/C distributed prob- 
lem solving can require complex interactions between 
agents in order to converge on correct solutions. The 
DRESUN framework makes it possible for agents to 
have directed dialogues for distributed differential di- 
agnosis, make use of a variety of problem solving meth- 
ods in response to changing situations, transmit infor- 

\ mation at different levels of detail as appropriate, and 
drive local and global problem solving using the no- 
tion of the global consistency of local solutions. These 
capabilities have not been part of previous implemen- 
tations of the FA/C paradigm. The implementation of 
the DRESUN framework is currently undergoing test- 
ing and we expect to have detailed performance results 
in the near future. 
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