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Abstract 
Constraint satisfaction problems (CSPs) provide a 
model often used in Artificial Intelligence. Since the 
problem of the existence of a solution in a CSP is an 
NP-complete task, many filtering techniques have been 
developed for CSPs. The most used filtering techniques 
are those achieving arc-consistency. Nevertheless, 
many reasoning problems in AI need to be expressed in 
a dynamic environment and almost all the techniques 
already developed to solve CSPs deal only with static 
CSPs. So, in this paper, we first define what we call a 
dynamic CSP, and then, give an algorithm achieving 
arc-consistency in a dynamic CSP. The performances of 
the algorithm proposed here and of the best algorithm 
achieving arc-consistency in static CSPs are compared 
on randomly generated dynamic CSPs. The results show 
there is an advantage to use our specific algorithm for 
dynamic CSPs in almost all the cases tested. 

Constraint satisfaction problems (CSPs) provide a simple 
and good framework to encode systems of constraints and 
are widely used for expressing static problems. 
Nevertheless, many problems in Artificial Intelligence 
involve reasoning in dynamic environments. To give only 
one example, in a design process, the designer may add 
constraints to specify further the problem, or relax 
constraints when there are no more solutions (see the 
system to design peptide synthesis plans: SYNTHIA 
[Janssen et al 19891). In those cases we need to check if 
there still exist solutions in the CSP every time a 
constraint has been added or removed. 

Proving the ‘stence of solutions or finding a solution 
in a CSP are -complete tasks. So a filtering step is 
often applied to CSPs before searching solutions. The 
most used filtering algorithms are those achieving arc- 
consistency. All arc-consistency algorithms are written for 
static CSPs. So, if we add or retract constraints in a CSP 
and achieve arc-consistency after each modification with 
one of these algorithms, we will probably do many times 
almost the same work. 

So, in this paper we define a Dynamic CSP (DCSP) 
([Dechter & Dechter I988], [Janssen et al 19891) as a 
sequence of static CSPs each resulting from the addition or 
retraction of a constraint in the preceding one. We propose 
an algorithm to maintain arc-consistency in DCSPs which 
outperforms those written for static CSPs. 

The paper is organized as follows. Section 2 presents 
e CSP model (2.1) and defines what we call a Dynamic 

CSP (2.2). filtering method is introduced 
andthebe ving it (AC-4 in [Mohr & 
Henderson (2.3). Why this algorithm is 

n 2.4. Section 3 

randomly generated DCSPs is given. Section 5 contains a 
summary and some fmal remarks. 

ic constraint satis 
involves a set of 

elements of dam, and a set of co~s~ra~~ts C. Each 
constraint Cp in C involves a subset (il,... 
is labeled by a relation R* of R, subset of 

dom(il) x...x dom(i& that specifies which values 
ariables are compatible with each other. A binary 

constraint satisfaction problem is one in which all the 
constraints are bin i.e., involve two variables. A binary 
CSP can be associa& with a constraint-graph in which 

Pigure 1: An example of CSP 

nodes represent variables and edges connect those pairs of 
variables for which constraints are given. In that case, the 
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constraint between the variables it connects (non-oriented 
edges are equality constraints and oriented ones are a strict 
lexicographic order along the arrows). 

A solution of a CSP is an assignment of values to all 
the variables such that all the constraints are satisfied. The 
task, in a CSP, is to find one, or all the solutions. 

We now only consider binary CSPs for clarity, but the 
results presented here can easily be applied to general CSPs 
~essiere 19911. 

2.2. Dynamic Constraint Satis 
A dynamic constraint satisfaction 
a sequence of static CSPs Q),..., 
resulting from a change in the preceding one i 
“the outside world”. This change can be a res 
new constraint is imposed on a pair of variables) or a 
relaxation (a constraint that was present in the CSP is 
removed because it is no longer interesting or because the 
current CSP has no solution). 

So, if we have P(,)=(X, dom, T;(o), R), we will have 

P(cr+l)=W, dam c(a+l)v RI where C(,+1)=t+,) +, C, 
C being a constraint. ;P(o) =(X, dom, 0, R). 

2.3. Arc-consistency 
The task of finding solutions in a CSP has been treated by 
several authors, and since the problem is NP-complete, 
some of them have suggested that a preprocessing or 
filtering step be applied before the search (or backtracking) 
procedures. Then, consistency algorithms were proposed 
([Montanari 19741, [Mackworth 19771, [Freuder 19781, 
[Dechter & Pearl 19881). These algorithms do not solve a 
CSP completely but they eliminate once and for all local 
inconsistencies that cannot participate in any solutions. 
These inconsistencies would otherwise have been 
repeatedly discovered by most backtracking procedures. 

3 

4 

Figure 2: The CSP of fig.1 after application of an 
arc-consistency algorithm 

A k-consistency algorithm removes all inconsistencies 
involving all subsets of size k of the n variables [Freuder 
19781. In fact, the most widely used consistency 
algorithms are those achieving 2-consistency (or arc- 
consistency). Arc-consistency checks the consistency of 
values for each couple of nodes linked by a constraint and 
removes the values that cannot satisfy this local condition 
(see figure 2). It is very simple to implement and has a 
good efficiency. The upper bound time complexity of the 

best algorithm achieving arc-consistency (AC-4 in [Mohr 
& Wenderson 19861) is O(ed2) with e the number of 
constraints and d the maximal number of values in the 
domain of a variable . 

Arc-consistency can be seen as based on the notion of 
support. A value Q for the variable i is viable if there exists 
at least one value that “supports” it at each variable j. The 

and Henderson’s algorithm, AC-4, makes this 
evident by assigning a counter to each arc-value 

pair. Such pairs are denoted [(i,j), a] and indicate the arc 
from i to j with value a at node i. The edge (i, j) between i 
and j may be replaced by the two directed arcs (i, j) and 
0, i) as they are treated separately by the algorithm (but 
we still have RQ = Rji-’ ). The counters are designed by 
counter[(i, J), a] and indicate the number of j values that 
support the value a for i in the constraint {i, j). In 
addition, for each value b at node j, the set sjb is 
COlX&MCtd where Sjb =( (i, a) / b at node j supports a at 
node i), that is, if b is eliminated at node j, then counters 
at [(i,j), a] must be decremented for each (i, a) supported 
by (j, b). This algorithm uses too, a table, M, to keep 
track of which values have been deleted from which nodes, 
and a list, List, to control the propagation of deletions 
along the constraints. List is initialized with all values 
(i, a) having at least one counter equal to zero. These 
values are removed from M. During the propagation phase, 
the algorithm takes values (j, b) in List, removes one at 
C%C~ COMI&X counter[(i, Jl, al for all (i, a) in Sjbv and when 
a counter[(i,j), a] becomes equal to zero, it deletes (i, a) 
from M and puts it in List. The algorithm stops when List 
is empty. That means all values in M have non empty 
supports on all the c s. So, the CSP is arc- 
consistent. And it is the arc-consistent domain. 

2.4. Arc-consistent CSPS 
Mohr’s and Henderson’s algorithm, AC-4, can be used in 
DCSPs. It keeps all its goods properties when we do a 
restriction, starting filtering from the current arc-consistent 
domain and pruning a new value when one of its counters 
has become zero (i.e. the value has no support on a 
constraint) after addition of constraints. But, when we 
remove a constraint (making a relaxation), AC-4 cannot 
find which value must be put back and which one must 
not: as it has “forgotten” the reason why a value has been 
removed, it cannot make the opposite propagation it has 
done during restrictions. So, we have to start filtering from 
the initial domain. 

3. A ne 

As we have seen above, AC-4 does not have good 
properties (incrementality) for processing relaxations. So, 
in this section, we propose DnAC-4, a new arc-consistency 
algorithm for DCSPs. In DnAC-4 we extend AC-4 by 
recording some informations during restrictions while 
keeping its good properties. Then, DnAC-4 remains 
incremental for relaxations. 
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More precisely, during a restriction, for every value 
deleted, we keep track of the constraint origin of the 
deletion as e “‘justification” of the value dele .The 
justification is the first constraint on which the value is 
without support. During a relaxation, with the help of 
justifications we can incrementaly add to the current 
domain values that belong to the new maximal arc- 
consistent domain. But we need to be careful because after 
the relaxation, the system must be in the same state as if 
the algorithm had s with the initial CSP 

restrictions with all the new set of 
new domain must be the maximal arc- 
n and the set of justifications of removed 

values must remain we~l=~~M~~e~. Well-founded means 
that every value removed is justified by a non-cyclic chain 
of justifications (see figure 2: (2, c) deletion justified by 
the constraint {2,6), (6, c) by {6,5) and (5, c) by { 5,2) 
would not be a well-founded set of justifications). 

This process of storing a justification for every value 
deleted is based on the same idea as the system of 
justifications of deductions in truth maintenance systems 
(TMSs) [Doyle 19791, [McAllester 19801. 

3.2. The algosit 
The algori works with nearly the same data 
structures h arc-value pair [(i,J’), 
counter of the number o 
counter[(i,J’), a]. A table D of 
which values are in the current domain or not. The first 
difference is that a set of supported values Sjib is 
constructed for each arc-value pair [u, 0, b]: S’& ={ a / b at 
node j supports a at node i) (we have sjb (of AC-4) qual 
I.0 USjib for u, i} E c). SO, when a COnStdnt (i, j) iS 

retracted, we delete Sqa and Sjib for all arc-value pairs 
[(i, j), a] and [(j, 0, b] instead of removing values (i, a) in 
Sjb and values u, b) in Sk. In the data structure we added a 
table justifto record the justifications of the values deleti 
justif(i, a)=j iff (i, a) has been removed from D because 
counter[(i, ~3, a] was equal to zero (i.e. (i, j} is the origin 
of (i, a) deletion). Then, for all (i, a) in D, justifli, a)=nil. 
The lists SL and RL respectively control the propagation 
of deletions and additions of values along the constraints. 

When the algorithm starts with (01, the tables are 
initialize& 

for each (i, a ) E dam 
begin D(i, a ) c lru 

Adding a constraint {i, j} is done by calling: 
~r~~~,~~ Add ((i, j) ); 

Put {i, j} in the set of constraints C; 
SLe %; 
Beg-Add ((i, j), SL ); Beg-Add ((i, i), SL ); 
Propag-Suppress (SL ); 

nd; 

0 the procedure Beg-Add (see fig.3) builds 
COUPzfer~(i, 51, Q], COUntePf~, i), b19 Sija, Sjib, for each 

in the suppression list SL 
on (i, j) (i.e. with counter 

ppend(SL, [(i, j ), a I); 

Figure 3 

a in the procedure Propag-Suppress (see fig.4), values 

Propag-Suppress (w 

SL and remowe it f 
un?er((i, m ), a l-0 

munte~(j i ), b ] f i), b ] - 1; 
if countefi(j, i ), b ]=O th 

&wnd(SL, [(it i), b] ) ; 
. 9 

Figure 4 

Removing a constraint (k, pn) is done by calling: 

Init-Propag-Relax ((k, m }, SL ); 
ropag-Suppress (SL ); 
. 9 

The well-foundness property must be kept after the 
relaxation of a constraint. So, there are two parts in the 

BESSIERE 223 



relaxation process: 
0 partl: the procedure Init-Propag-Relax (see fig.5) in 

step 1 puts in the relaxation list RL values (k, a) and 
(m, b) for which removing was directly due to (k, m} (i.e. 
justifik, a)=m or justiflm, b)=k ), and deletes counters and 
sets of supported values for all arc-value pairs [(k, m), a] 
and [(m, k), b]. In step 2 it adds in D values in RL and 
these adding of values are recursively propagated to each 
value that has a support restored on the constraint marked 
as its justification. Init-Propag-Relax finishes when every 
value with a support on the constraint marked as its 
justification of deletion is added to D. During this phase of 
putting back values, when an added value (i, a) is still 
without support on a constraint (i, j) (i.e. 
counter[(i, J), a]=O), Init-Propag-Relax puts in SL the arc- 
value pair [(i, j), a]. 

Brocedure Init-Propag-Relax ((k, m ); var SL ); 
begin 
{ Step 1: values whose justification was (k, m } are 

putinRL} 
I RLc0; 

2 for each a E dam(k) do 
if justiflk, a )=m then 

begin 
Append(RL, (k, a )); justif(k, a ) f nil ; 
end; 

3 for each b E dom(m ) do 
if justif(m, b )=k then 

begin 
Appmd(RL, (m, b )); justi@, b ) c nil ; 
end; 

0 Delete {k, m} from the set of constraints t and remove 
its counters and sets of supported values; 

( Step 2: values in RL are added to D and 
consequences are propagated } 

5 while RLz 0 do 
begin 

3 choose (i, a ) from RL and remove it from RL; 
7 D(i, a)+ true ; 
B for each jl{i, j}E C do 

begin 
0 for each 6 E Sua do 

begin 
10 coun?efi(i, i), 61 c Counte~O; i), b ] + 1; 
11 if justif(j, 6 )=ithen 

begin 
zded( RL, (j, 6 )); justi@, b ) c nil ; 

. , 
end; 

12 If counterf(i, j ), a l-0 then 
AppenWL, Ki jh al ); 

end; 
end; 

end; 

Figure 5 

0 part2: Propag-Suppress retracts again values in SL, 
marking as the new justification the constraint on which 
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the value is still without support (or one of the constraints 
if there are more than one). These suppressions are 
propagatedz the classic arc-consistency process restarts. 

We develop here DnAC-4 on the DCSP of figures 1,2 
and 6, to show the mechanism of justifications: 

Changes: . . 
Add (1.21 deletion of (2, a) 
odd 12,3) deletion of (2, b) justification(2, b)={2, 3) 

deletion of (2, c) justification(2, c)=(2, 3) 
odd {2,41 
odd (2.5) deletion of (5, b) justification(5, b)= { 2, 5) 

deletion of (5, c) justification(5, c)=( 2, 5) 
Add {5,61 deletion of (6, b) justification(6, b)=(5, 6) 

deletion of (6, c) justification(6, c)=( 5, 6) 
Add Vi 2) 
Relax (2, 3): 0 stepl: (2, b) and (2, c) are added because 
justification(2, b)= (2, 3 ) and justification(2, c)={2, 3). So, 
(5, b) and (5, c) are added and so (6, b) and (6, c) too. 

. step2 (2, b) has no support on { 2, 4) so 
(2, b) is deleted and justification(2, b)=(2, 4). So, (5, b) and 
(6, b) are removed too by propagation and their justifications 
are recorded: justification(5, b)={ 2, 5) or (5, 6) and 
justification(6, b)={ 5, 6) or { 6, 2) (it depends of the order of 
the propagation of suppressions). 

Remarks: - (2, a) is not added in step 1 of the relaxation 
process because its empty support on { 1, 2) (its justification) 
is not affected by the (2, 3) retraction. 

- when step 1 starts, (2, c) has no support on (6, 2}, 
but since its justification is not (6, 2), it is added and the 
propagation shows that (2, c) deleted cannot be supported by a 
well-founded set of justifications. (2, c) is in the new arc- 
consistent domain. 

- at the end of step 1 (2, b) is still without support on 
the constraint {2,4), so the classic arc-consistency process 
restarts, deleting (2, b) and propagating. 

Figure 6: The CSP of fig.2 after the relaxation of the 
constraint (2, 3 ) 

3.3. Correctness of nAC-4 
We outline here the key steps for a complete proof given 
in @essiere 19911. 
Notations; 
AC&imn)=the maximal arc-consistent domain of the CSP 

%M* 
dom = ((i, a) / i E X, a E dam(i)) 
(i, a) E D m D(i, a)=true 



TN3 = (I(i,j$ al / co~~d(i,jh 4 
(* Tws : true withut s 

dam : p(E) = 3 (i, a) E E, justifli, a)=j 

=ClWS=0.Wecan 
looking lines g-9 of 
Suppress and lines 7 an 
Corollarv 1; D is an arc-consistent domain at the end of 

w that Bl is true after 
0 at the end of Prop 

(pl)* V(i, a) ~5 D, Vj /(i, j} 4-5 iE : counter[(i, j), a] > 0 
(*I=3 V(i, a) E D, Vj /{i, j} E C : (i, a) has a support 

(j, b) on {i, j) in D 
* D is arc-consistent CJ 

At the end of Add, D is arc-consistent. 
lax, D is arc-consistent. 

( AC&iom) c;I; D ) is not affected 

Proof: Suppose ( A&(dom) G D ) is true when Pr~pag- 
Suppress starts. A value is removed from D if one of its 
counters i zero. So, it has no 
D on one 
before its deletion, the value 

remains true after the 
deletion of the v 

M) G D ) is true at the end of Init- 

Proof: AC&O~)W # 0 implies (from (5)) that: 
3 (i, a) E AC&om 

Now justifli, a)=j 

so: Siia (I AC&rdom) = 0. It is a contradiction because 
(i, a) E A~~~~o~~ e 

AC&om)=D. 
cl 

of 2ed counters (with e the 
maximal number of values in 

for DnAC-4 is 

during a restriction, DnAC-4 builds Sjib and 
countea[(i,j), a] even after the deletion of the value (i, a) 

, because it needs these informations for an 
tic future relaxati -4 stops this work, as 

scm as (i, a) is out of D. d, during a 
relaxation, DnAC-4 only ch to verify the 

property of justifications. AC-4 handles all 
the new CSP. 

DnAC-4 is efficient w en the phase of adding values is 
short. 

This is case when the constraint graph is not 
connectd. n, the propagation stay in one connected- 

first constraint for 
means that when a 

algorithm probably 

many justifications, and 
the propagation larger. 

, we counted the total 
number of consistency checks done in AC-4 and in 
DnAC-4 to achieve arc-consistency when we add 
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number of consistency checks done in AC-4 and in 
DnAC-4 to achieve again arc-consistency in the CSP. We 
summed for each algorithm the number of consistency 
checks done during restrictions and relaxation. The 
comparison of the results indicates if DnAC-4 is better 
than AC-4 after only one relaxation (i.e. the number of 
consistency checks avoided during relaxation is more 
important than the number done in excess during 
restrictions). 

We tested the algorithms on random DCSPs with 8,12 
and 16 variables, having respectively 16, 12 and 8 values. 
We tried three values for (PC, pu ): (35,65), (50, 50) and 
(6535). For each of the nine classes of CSPs defined, we 
made the test on 10 different instances of DCSPs to have a 
result representative of the class. 

The results reported in the table below are the averages 
of the ten tests for each class. 

daxahM-4 
rdaxaknDAc4 
btal AC4 
btdDAc-4 

DAc-m 

Figure 7: Results of comparison tests between 
AC-4 and DnAC-4 

We can see that on all the classes of problems tested, 
after one relaxation of constraint DnAC-4 has recovered the 
time losed during restrictions. We found only three 
instances, in class 3, where AC-4 remains better than 
DnAC-4 after one relaxation. But in that class, CSPs are 
too restricted and much more than one relaxation is needed 
before the CSP accepts solutions. So, we can say that 
DnAC-4 can easily recover its extra-time-consuming. 

Thev results after one relaxation in classes 1, 
4,7and t really significant because CSPs in that 
classes are underconstrained, and doing a relaxation in that 
case is unlikely. 

The last remark we can add is that randomly generated 
CSPs are not the best way to test efficiency of an 
algori . Constraints that are created are meaningless and 
propagations during relaxations always found very short in 
our tests could be larger in real applications, and so the 
algorithm DnAC-4 be less advantageous. But the gain 
during a relaxation is so important here in all DCSPs 
tested that we can hope DnAC-4 remains good on real 
applications. 

DnAC-4 is currently under implementation on the 
SYNTHIA system [Janssen et al 19891. 

5. Conclusion 
We have defined what we call Dynamic CSPs and have 
provided an efficient algorithm (DnAC-4) achieving arc- 

consistency in DCSPs. We have compared the 
and AC-4 (the fastest arc- 

tatic CSPs) on many different 
If DnAC-4 uses a little more 
arc-consistent domain after a 
nt for a relaxation because it 

has learned informations about the reasons of the deletions 
of values. 

DnAC-4 can be useful for many systems that work in a 
dynamic environ nt. It can easily be extended to non- 
binary CSPs (see s&-e 199 11). 

The data structure crea for the algorithm DnAC-4 can 
to answer requests of the system (or the 

l “why this value has been deleted ?I’. The 
given is then the set of constraints currently 

justifying the deletion of the value. It is a TMS-like use. 

I would like to e-Catherine Vilarem 
who gives me advice and invaluable help in preparing this 
paper, and also Philippe Janssen and Philippe Jegou for 
their useful comments. 
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