
Laboratoire d’Informaticlue, de Robotique et de Micro&ctronique de
860, rue de Saint Priest

34090 Montpellier PRANCE
Email: bessiere@xim.crim.fk

Abstract
Constraint satisfaction problems (CSPs) provide a
model often used in Artificial Intelligence. Since the
problem of the existence of a solution in a CSP is an
NP-complete task, many filtering techniques have been
developed for CSPs. The most used filtering techniques
are those achieving arc-consistency. Nevertheless,
many reasoning problems in AI need to be expressed in
a dynamic environment and almost all the techniques
already developed to solve CSPs deal only with static
CSPs. So, in this paper, we first define what we call a
dynamic CSP, and then, give an algorithm achieving
arc-consistency in a dynamic CSP. The performances of
the algorithm proposed here and of the best algorithm
achieving arc-consistency in static CSPs are compared
on randomly generated dynamic CSPs. The results show
there is an advantage to use our specific algorithm for
dynamic CSPs in almost all the cases tested.

Constraint satisfaction problems (CSPs) provide a simple
and good framework to encode systems of constraints and
are widely used for expressing static problems.
Nevertheless, many problems in Artificial Intelligence
involve reasoning in dynamic environments. To give only
one example, in a design process, the designer may add
constraints to specify further the problem, or relax
constraints when there are no more solutions (see the
system to design peptide synthesis plans: SYNTHIA
[Janssen et al 19891). In those cases we need to check if
there still exist solutions in the CSP every time a
constraint has been added or removed.

Proving the ‘stence of solutions or finding a solution
in a CSP are -complete tasks. So a filtering step is
often applied to CSPs before searching solutions. The
most used filtering algorithms are those achieving arc-
consistency. All arc-consistency algorithms are written for
static CSPs. So, if we add or retract constraints in a CSP
and achieve arc-consistency after each modification with
one of these algorithms, we will probably do many times
almost the same work.

So, in this paper we define a Dynamic CSP (DCSP)
([Dechter & Dechter I988], [Janssen et al 19891) as a
sequence of static CSPs each resulting from the addition or
retraction of a constraint in the preceding one. We propose
an algorithm to maintain arc-consistency in DCSPs which
outperforms those written for static CSPs.

The paper is organized as follows. Section 2 presents
e CSP model (2.1) and defines what we call a Dynamic

CSP (2.2). filtering method is introduced
andthebe ving it (AC-4 in [Mohr &
Henderson (2.3). Why this algorithm is

n 2.4. Section 3

randomly generated DCSPs is given. Section 5 contains a
summary and some fmal remarks.

ic constraint satis
involves a set of

elements of dam, and a set of co~s~ra~~ts C. Each
constraint Cp in C involves a subset (il,...
is labeled by a relation R* of R, subset of

dom(il) x...x dom(i& that specifies which values
ariables are compatible with each other. A binary

constraint satisfaction problem is one in which all the
constraints are bin i.e., involve two variables. A binary
CSP can be associa& with a constraint-graph in which

Pigure 1: An example of CSP

nodes represent variables and edges connect those pairs of
variables for which constraints are given. In that case, the

BESSIERE 221

From: AAAI-91 Proceedings. Copyright ©1991, AAAI (www.aaai.org). All rights reserved.

constraint between the variables it connects (non-oriented
edges are equality constraints and oriented ones are a strict
lexicographic order along the arrows).

A solution of a CSP is an assignment of values to all
the variables such that all the constraints are satisfied. The
task, in a CSP, is to find one, or all the solutions.

We now only consider binary CSPs for clarity, but the
results presented here can easily be applied to general CSPs
~essiere 19911.

2.2. Dynamic Constraint Satis
A dynamic constraint satisfaction
a sequence of static CSPs Q),...,
resulting from a change in the preceding one i
“the outside world”. This change can be a res
new constraint is imposed on a pair of variables) or a
relaxation (a constraint that was present in the CSP is
removed because it is no longer interesting or because the
current CSP has no solution).

So, if we have P(,)=(X, dom, T;(o), R), we will have

P(cr+l)=W, dam c(a+l)v RI where C(,+1)=t+,) +, C,
C being a constraint. ;P(o) =(X, dom, 0, R).

2.3. Arc-consistency
The task of finding solutions in a CSP has been treated by
several authors, and since the problem is NP-complete,
some of them have suggested that a preprocessing or
filtering step be applied before the search (or backtracking)
procedures. Then, consistency algorithms were proposed
([Montanari 19741, [Mackworth 19771, [Freuder 19781,
[Dechter & Pearl 19881). These algorithms do not solve a
CSP completely but they eliminate once and for all local
inconsistencies that cannot participate in any solutions.
These inconsistencies would otherwise have been
repeatedly discovered by most backtracking procedures.

3

4

Figure 2: The CSP of fig.1 after application of an
arc-consistency algorithm

A k-consistency algorithm removes all inconsistencies
involving all subsets of size k of the n variables [Freuder
19781. In fact, the most widely used consistency
algorithms are those achieving 2-consistency (or arc-
consistency). Arc-consistency checks the consistency of
values for each couple of nodes linked by a constraint and
removes the values that cannot satisfy this local condition
(see figure 2). It is very simple to implement and has a
good efficiency. The upper bound time complexity of the

best algorithm achieving arc-consistency (AC-4 in [Mohr
& Wenderson 19861) is O(ed2) with e the number of
constraints and d the maximal number of values in the
domain of a variable .

Arc-consistency can be seen as based on the notion of
support. A value Q for the variable i is viable if there exists
at least one value that “supports” it at each variable j. The

and Henderson’s algorithm, AC-4, makes this
evident by assigning a counter to each arc-value

pair. Such pairs are denoted [(i,j), a] and indicate the arc
from i to j with value a at node i. The edge (i, j) between i
and j may be replaced by the two directed arcs (i, j) and
0, i) as they are treated separately by the algorithm (but
we still have RQ = Rji-’). The counters are designed by
counter[(i, J), a] and indicate the number of j values that
support the value a for i in the constraint {i, j). In
addition, for each value b at node j, the set sjb is
COlX&MCtd where Sjb =((i, a) / b at node j supports a at
node i), that is, if b is eliminated at node j, then counters
at [(i,j), a] must be decremented for each (i, a) supported
by (j, b). This algorithm uses too, a table, M, to keep
track of which values have been deleted from which nodes,
and a list, List, to control the propagation of deletions
along the constraints. List is initialized with all values
(i, a) having at least one counter equal to zero. These
values are removed from M. During the propagation phase,
the algorithm takes values (j, b) in List, removes one at
C%C~ COMI&X counter[(i, Jl, al for all (i, a) in Sjbv and when
a counter[(i,j), a] becomes equal to zero, it deletes (i, a)
from M and puts it in List. The algorithm stops when List
is empty. That means all values in M have non empty
supports on all the c s. So, the CSP is arc-
consistent. And it is the arc-consistent domain.

2.4. Arc-consistent CSPS
Mohr’s and Henderson’s algorithm, AC-4, can be used in
DCSPs. It keeps all its goods properties when we do a
restriction, starting filtering from the current arc-consistent
domain and pruning a new value when one of its counters
has become zero (i.e. the value has no support on a
constraint) after addition of constraints. But, when we
remove a constraint (making a relaxation), AC-4 cannot
find which value must be put back and which one must
not: as it has “forgotten” the reason why a value has been
removed, it cannot make the opposite propagation it has
done during restrictions. So, we have to start filtering from
the initial domain.

3. A ne

As we have seen above, AC-4 does not have good
properties (incrementality) for processing relaxations. So,
in this section, we propose DnAC-4, a new arc-consistency
algorithm for DCSPs. In DnAC-4 we extend AC-4 by
recording some informations during restrictions while
keeping its good properties. Then, DnAC-4 remains
incremental for relaxations.

222 CONSTRAINT-BASED REASONING

More precisely, during a restriction, for every value
deleted, we keep track of the constraint origin of the
deletion as e “‘justification” of the value dele .The
justification is the first constraint on which the value is
without support. During a relaxation, with the help of
justifications we can incrementaly add to the current
domain values that belong to the new maximal arc-
consistent domain. But we need to be careful because after
the relaxation, the system must be in the same state as if
the algorithm had s with the initial CSP

restrictions with all the new set of
new domain must be the maximal arc-
n and the set of justifications of removed

values must remain we~l=~~M~~e~. Well-founded means
that every value removed is justified by a non-cyclic chain
of justifications (see figure 2: (2, c) deletion justified by
the constraint {2,6), (6, c) by {6,5) and (5, c) by { 5,2)
would not be a well-founded set of justifications).

This process of storing a justification for every value
deleted is based on the same idea as the system of
justifications of deductions in truth maintenance systems
(TMSs) [Doyle 19791, [McAllester 19801.

3.2. The algosit
The algori works with nearly the same data
structures h arc-value pair [(i,J’),
counter of the number o
counter[(i,J’), a]. A table D of
which values are in the current domain or not. The first
difference is that a set of supported values Sjib is
constructed for each arc-value pair [u, 0, b]: S’& ={ a / b at
node j supports a at node i) (we have sjb (of AC-4) qual
I.0 USjib for u, i} E c). SO, when a COnStdnt (i, j) iS

retracted, we delete Sqa and Sjib for all arc-value pairs
[(i, j), a] and [(j, 0, b] instead of removing values (i, a) in
Sjb and values u, b) in Sk. In the data structure we added a
table justifto record the justifications of the values deleti
justif(i, a)=j iff (i, a) has been removed from D because
counter[(i, ~3, a] was equal to zero (i.e. (i, j} is the origin
of (i, a) deletion). Then, for all (i, a) in D, justifli, a)=nil.
The lists SL and RL respectively control the propagation
of deletions and additions of values along the constraints.

When the algorithm starts with (01, the tables are
initialize&

for each (i, a) E dam
begin D(i, a) c lru

Adding a constraint {i, j} is done by calling:
~r~~~,~~ Add ((i, j));

Put {i, j} in the set of constraints C;
SLe %;
Beg-Add ((i, j), SL); Beg-Add ((i, i), SL);
Propag-Suppress (SL);

nd;

0 the procedure Beg-Add (see fig.3) builds
COUPzfer~(i, 51, Q], COUntePf~, i), b19 Sija, Sjib, for each

in the suppression list SL
on (i, j) (i.e. with counter

ppend(SL, [(i, j), a I);

Figure 3

a in the procedure Propag-Suppress (see fig.4), values

Propag-Suppress (w

SL and remowe it f
un?er((i, m), a l-0

munte~(j i), b] f i), b] - 1;
if countefi(j, i), b]=O th

&wnd(SL, [(it i), b]) ;
. 9

Figure 4

Removing a constraint (k, pn) is done by calling:

Init-Propag-Relax ((k, m }, SL);
ropag-Suppress (SL);
. 9

The well-foundness property must be kept after the
relaxation of a constraint. So, there are two parts in the

BESSIERE 223

relaxation process:
0 partl: the procedure Init-Propag-Relax (see fig.5) in

step 1 puts in the relaxation list RL values (k, a) and
(m, b) for which removing was directly due to (k, m} (i.e.
justifik, a)=m or justiflm, b)=k), and deletes counters and
sets of supported values for all arc-value pairs [(k, m), a]
and [(m, k), b]. In step 2 it adds in D values in RL and
these adding of values are recursively propagated to each
value that has a support restored on the constraint marked
as its justification. Init-Propag-Relax finishes when every
value with a support on the constraint marked as its
justification of deletion is added to D. During this phase of
putting back values, when an added value (i, a) is still
without support on a constraint (i, j) (i.e.
counter[(i, J), a]=O), Init-Propag-Relax puts in SL the arc-
value pair [(i, j), a].

Brocedure Init-Propag-Relax ((k, m); var SL);
begin
{ Step 1: values whose justification was (k, m } are

putinRL}
I RLc0;

2 for each a E dam(k) do
if justiflk, a)=m then

begin
Append(RL, (k, a)); justif(k, a) f nil ;
end;

3 for each b E dom(m) do
if justif(m, b)=k then

begin
Appmd(RL, (m, b)); justi@, b) c nil ;
end;

0 Delete {k, m} from the set of constraints t and remove
its counters and sets of supported values;

(Step 2: values in RL are added to D and
consequences are propagated }

5 while RLz 0 do
begin

3 choose (i, a) from RL and remove it from RL;
7 D(i, a)+ true ;
B for each jl{i, j}E C do

begin
0 for each 6 E Sua do

begin
10 coun?efi(i, i), 61 c Counte~O; i), b] + 1;
11 if justif(j, 6)=ithen

begin
zded(RL, (j, 6)); justi@, b) c nil ;

. ,
end;

12 If counterf(i, j), a l-0 then
AppenWL, Ki jh al);

end;
end;

end;

Figure 5

0 part2: Propag-Suppress retracts again values in SL,
marking as the new justification the constraint on which

224 CONSTRAINT-BASED REASONING

the value is still without support (or one of the constraints
if there are more than one). These suppressions are
propagatedz the classic arc-consistency process restarts.

We develop here DnAC-4 on the DCSP of figures 1,2
and 6, to show the mechanism of justifications:

Changes: . .
Add (1.21 deletion of (2, a)
odd 12,3) deletion of (2, b) justification(2, b)={2, 3)

deletion of (2, c) justification(2, c)=(2, 3)
odd {2,41
odd (2.5) deletion of (5, b) justification(5, b)= { 2, 5)

deletion of (5, c) justification(5, c)=(2, 5)
Add {5,61 deletion of (6, b) justification(6, b)=(5, 6)

deletion of (6, c) justification(6, c)=(5, 6)
Add Vi 2)
Relax (2, 3): 0 stepl: (2, b) and (2, c) are added because
justification(2, b)= (2, 3) and justification(2, c)={2, 3). So,
(5, b) and (5, c) are added and so (6, b) and (6, c) too.

. step2 (2, b) has no support on { 2, 4) so
(2, b) is deleted and justification(2, b)=(2, 4). So, (5, b) and
(6, b) are removed too by propagation and their justifications
are recorded: justification(5, b)={ 2, 5) or (5, 6) and
justification(6, b)={ 5, 6) or { 6, 2) (it depends of the order of
the propagation of suppressions).

Remarks: - (2, a) is not added in step 1 of the relaxation
process because its empty support on { 1, 2) (its justification)
is not affected by the (2, 3) retraction.

- when step 1 starts, (2, c) has no support on (6, 2},
but since its justification is not (6, 2), it is added and the
propagation shows that (2, c) deleted cannot be supported by a
well-founded set of justifications. (2, c) is in the new arc-
consistent domain.

- at the end of step 1 (2, b) is still without support on
the constraint {2,4), so the classic arc-consistency process
restarts, deleting (2, b) and propagating.

Figure 6: The CSP of fig.2 after the relaxation of the
constraint (2, 3)

3.3. Correctness of nAC-4
We outline here the key steps for a complete proof given
in @essiere 19911.
Notations;
AC&imn)=the maximal arc-consistent domain of the CSP

%M*
dom = ((i, a) / i E X, a E dam(i))
(i, a) E D m D(i, a)=true

TN3 = (I(i,j$ al / co~~d(i,jh 4
(* Tws : true withut s

dam : p(E) = 3 (i, a) E E, justifli, a)=j

=ClWS=0.Wecan
looking lines g-9 of
Suppress and lines 7 an
Corollarv 1; D is an arc-consistent domain at the end of

w that Bl is true after
0 at the end of Prop

(pl)* V(i, a) ~5 D, Vj /(i, j} 4-5 iE : counter[(i, j), a] > 0
(*I=3 V(i, a) E D, Vj /{i, j} E C : (i, a) has a support

(j, b) on {i, j) in D
* D is arc-consistent CJ

At the end of Add, D is arc-consistent.
lax, D is arc-consistent.

(AC&iom) c;I; D) is not affected

Proof: Suppose (A&(dom) G D) is true when Pr~pag-
Suppress starts. A value is removed from D if one of its
counters i zero. So, it has no
D on one
before its deletion, the value

remains true after the
deletion of the v

M) G D) is true at the end of Init-

Proof: AC&O~)W # 0 implies (from (5)) that:
3 (i, a) E AC&om

Now justifli, a)=j

so: Siia (I AC&rdom) = 0. It is a contradiction because
(i, a) E A~~~~o~~ e

AC&om)=D.
cl

of 2ed counters (with e the
maximal number of values in

for DnAC-4 is

during a restriction, DnAC-4 builds Sjib and
countea[(i,j), a] even after the deletion of the value (i, a)

, because it needs these informations for an
tic future relaxati -4 stops this work, as

scm as (i, a) is out of D. d, during a
relaxation, DnAC-4 only ch to verify the

property of justifications. AC-4 handles all
the new CSP.

DnAC-4 is efficient w en the phase of adding values is
short.

This is case when the constraint graph is not
connectd. n, the propagation stay in one connected-

first constraint for
means that when a

algorithm probably

many justifications, and
the propagation larger.

, we counted the total
number of consistency checks done in AC-4 and in
DnAC-4 to achieve arc-consistency when we add

BESSIERE 225

number of consistency checks done in AC-4 and in
DnAC-4 to achieve again arc-consistency in the CSP. We
summed for each algorithm the number of consistency
checks done during restrictions and relaxation. The
comparison of the results indicates if DnAC-4 is better
than AC-4 after only one relaxation (i.e. the number of
consistency checks avoided during relaxation is more
important than the number done in excess during
restrictions).

We tested the algorithms on random DCSPs with 8,12
and 16 variables, having respectively 16, 12 and 8 values.
We tried three values for (PC, pu): (35,65), (50, 50) and
(6535). For each of the nine classes of CSPs defined, we
made the test on 10 different instances of DCSPs to have a
result representative of the class.

The results reported in the table below are the averages
of the ten tests for each class.

daxahM-4
rdaxaknDAc4
btal AC4
btdDAc-4

DAc-m

Figure 7: Results of comparison tests between
AC-4 and DnAC-4

We can see that on all the classes of problems tested,
after one relaxation of constraint DnAC-4 has recovered the
time losed during restrictions. We found only three
instances, in class 3, where AC-4 remains better than
DnAC-4 after one relaxation. But in that class, CSPs are
too restricted and much more than one relaxation is needed
before the CSP accepts solutions. So, we can say that
DnAC-4 can easily recover its extra-time-consuming.

Thev results after one relaxation in classes 1,
4,7and t really significant because CSPs in that
classes are underconstrained, and doing a relaxation in that
case is unlikely.

The last remark we can add is that randomly generated
CSPs are not the best way to test efficiency of an
algori . Constraints that are created are meaningless and
propagations during relaxations always found very short in
our tests could be larger in real applications, and so the
algorithm DnAC-4 be less advantageous. But the gain
during a relaxation is so important here in all DCSPs
tested that we can hope DnAC-4 remains good on real
applications.

DnAC-4 is currently under implementation on the
SYNTHIA system [Janssen et al 19891.

5. Conclusion
We have defined what we call Dynamic CSPs and have
provided an efficient algorithm (DnAC-4) achieving arc-

consistency in DCSPs. We have compared the
and AC-4 (the fastest arc-

tatic CSPs) on many different
If DnAC-4 uses a little more
arc-consistent domain after a
nt for a relaxation because it

has learned informations about the reasons of the deletions
of values.

DnAC-4 can be useful for many systems that work in a
dynamic environ nt. It can easily be extended to non-
binary CSPs (see s&-e 199 11).

The data structure crea for the algorithm DnAC-4 can
to answer requests of the system (or the

l “why this value has been deleted ?I’. The
given is then the set of constraints currently

justifying the deletion of the value. It is a TMS-like use.

I would like to e-Catherine Vilarem
who gives me advice and invaluable help in preparing this
paper, and also Philippe Janssen and Philippe Jegou for
their useful comments.

Bessiere, C. 1991. ’ g CSPs to encode TMSs.
Technical Report, LIR , Montpellier II, France
Dechter, R., and Dechter, A. 1988. Belief Maintenance in
Dynamic Constraint Networks. in Proceedings AAAI-88,
St Paul MN, 37-42
Dechter, R., and Pearl, J. 1988. Network-Based Heuristics
for Constraint-Satisfaction Problems. Artificial
Intelligence 34,1-38
Doyle, J. 1979. A Truth Maintenance System. Artificial
Intelligence 12,23 l-272

Freuder, E.C. 1978. Syn ing Constraint Expressions.
Communications of the Vol.21 No. 11,958-966
Janssen, P.; JCgou, P.; Nouguier, B .; and Vilarem, MC.
1989. Problt?mes de Conception : une Approche bas&e sur
la Satisfaction de Contraintes. 9emes Journees
Internationales d’Avignon: Les Systemes Experts et leurs
Applications, 7 l-84
Mackwort 1977. Consistency in Networks of
Relations. Intelligence 8,99- 118
McAllester, D.A. 1980. An Outlook on Truth
Mainte e. Technical Report AI Memo No.551, MIT,
Boston
Mclhr, .) and Henderson, T.C. 1986. Arc and Path
Consistency Revisited. Artificial Intelligence 28,225-233

ontanari, U. 1974. Networks of Constraints:
Fundamental Properties and Applications to Picture
Processing. Information Science 7,95- 132

226 CONSTRAINT-BASED REASONING

