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Abstract 
Research in Artificial Intelligence on constraint-based 
representations for temporal reasoning has largely con- 
centrated on two kinds of formalisms: systems of simple 
linear inequalities to encode metric relations between 
time points, and systems of binary constraints in Allen’s 
temporal calculus to encode qualitative relations be- 
tween time intervals. Each formalism has certain ad- 
vantages. Linear inequalities can represent dates, du- 
rations, and other quantitive information; Allen’s qual- 
itative calculus can express relations between time in- 
tervals, such as disjointedness, that are useful for con- 
straint-based approaches to planning. 

In this paper we demonstrate how metric and Allen- 
style constraint networks can be integrated in a con- 
straint-based reasoning system. The highlights of the 
work include a simple but powerful logical language 
for expressing both quantitative and qualitative infor- 
mation; translation algorithms between the metric and 
Allen sublanguages that entail minimal loss of informa- 
tion; and a constraint-propagation procedure for prob- 
lems expressed in a combination of metric and Allen 
constraints. 

Introduction 
Research in Artificial Intelligence on constraint-bas- 
ed representations for temporal reasoning has largely 
concentrated on two kinds of formalisms: systems of 
simple linear inequalities [Malik and Binford, 1983, 
Valdes-Perez, 1986, Dechter et al., 19891 to encode met- 
ric relations between time points, and systems of binary 
constraints in Allen’s temporal calculus [Allen, 1983, 
Vilain et al., 1989, Ladkin and Maddux, 1987, van Reek 
and Cohen, 19891 to encode qualitative relations be- 
tween time intervals. Each formalism has certain ad- 
vantages. Linear inequalities can represent dates, du- 
rations, and other quantitive information that appears 
in real-world planning and scheduling problems. Allen’s 
qualitative calculus can express certain crucial relations 
between time intervals, such as disjointedness, that can- 
not be expressed by any collection of simple linear in- 
equalities (without specifying which interval is before 
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the other). Such disjointedness constraints form the ba- 
sis for constraint-based approaches to planning [Allen, 
19911. 

In this paper we demonstrate how metric and qualita- 
tive knowledge can be integrated in a constraint-based 
reasoning system. One approach to this problem (as 
used, for example, in the “time map” system of Dean 
and McDermott [87]) is to directly attach rules that 
enforce disjointedness constraints to a network of linear 
inequalities. One limitation of such an approach is that 
some natural qualitative inferences are not performed: 
for example, the facts that interval i is during j and j 
is disjoint from Ic are not combined to reach the con- 
clusion that i is disjoint from k. Another disadvantage 
is that it is often more convenient for the user to enter 
assertions in a qualitative language, even if they can be 
represented numerically. 

Instead of try to augment a single reasoning system, 
we will take an approach briefly suggested by Dechter, 
Meiri, and Pearl [89] (henceforth “DMP”), and com- 
bine a metric reasoning system with a full Allen-style 
constraint network. The contributions of our research 
include the following: 
1. A simple but powerful logical language C for ex- 

pressing both quantitative and qualitative informa- 
tion. The language subsumes both networks of two- 
variable difference inequalities (called LM) and net- 
works of binary Allen constraints (called LA), but 
is much more powerful than either. The axioms of 
Allen’s temporal calculus are theorems of L. 

2. An extension of DMP’s algorithms for networks of 
non-strict inequalities to handle both the strict and 
the non-strict inequalities that appear in CM. (Note: 
a forthcoming paper by Dechter, Meiri, and Pearl 
[1991] also provides such an extension.) 

3. Optimal translations between CM and LA. As we 
noted, the two formalisms have orthogonal expressive 
power, so an exact translation is impossible; we say 
that a tral,slation is optimal when it entails a minimal 
loss of information. Formally, f : J!Z~ ---) 1s~ is optimal 
iffforanycrE~1andpE&,thencr~pifff(cr)~ 
p, where + is the entailment relation over the union 
of the two languages. 
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4 . A constraint-propagation procedure for the combined 
constraint language -CM U -CA, which is based on the 
translation algorithms. The user of the system is 
able to enter information in terms of point differ- 
ence inequalities or qualitative interval constraints, 
whichever is necessary or most convenient. 
The system we describe in this paper is fully imple- 

mented in Common Lisp, and is available from the first 
author. 

A Universal Temporal Language 
Consider the following model of time: time is linear, 
and time points can be identified with the rationals un- 
der the usual ordering <. The difference of any two 
time points is likewise a rational number. An interval 
is a pair of points (n, na), where n < m. Two inter- 
vals stand in a particular qualitative relationship such 
as “overlaps” just when their endpoints stand in a par- 
ticular configuration - in this case, when the starting 
point of the first falls before the starting point of the 
second, and the final point of the first falls between the 
two points of the second. 

The following language L lets us say everything we’d 
like to about this model. It is typed predicate calculus 
with equality and the following types and symbols: 
types are Rational, Interval, and Infinite. 

X,Y,*** are Rational variables, and 
i, j, . . . are Interval variables. 

functions are 
L, R : Interval 3 Rational 

Intuitively, in is the starting (left) endpoint 
of i, and iR is the final (right) endpoint. 

- (subtraction): Rational x Rational + Rational 
Functions to construct rational numerals. 
00 : constant of type Infinite. 

predicates are 
<, < : Rational x (Rational U Infinite) 
Allen Predicates : Interval x Interval 

P(recedes), M(eets), O(verlaps), S(tarts), 
D(uring), F(inishes), =, and the inverses 
P-, M-, 0-, S-, D-, F-. 

The language does not include constants to name spe- 
cific intervals; instead, we use unbound variables to 
name intervals, with the understanding that any partic- 
ular model provides an interpretation for free variables. 

It is useful to distinguish two special syntactic forms. 
Formulas of the form 

i(rl)j V -. - V i(rn)j 
where the i and j are intervals and the pi are Allen 
predicates are called simple AIlen constraints, and are 
abbreviated as 

+I + - - - + rn)j 
The sublanguage of such formulas is called LA. 

A conjunction of two diflerence inequalities of the fol- 
lowing form: 

(iF - jG 5 n) A (jG - iF 5 m) 
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where F,G E {L, R), m and n are numerals or (-)oo, 
and either or both of the inequality relations may be re- 
placed by strict inequality (<), is called a simple metric 
constraint. Such a constraint bounds a difference from 
above and below, and thus may be abbreviated 

-m 5 (iF -jG)<n 

The sublanguage of simple metric constraints is called 
CM. 

Note that C is much richer than the union of .CM and 
LA. For example, the formulas in Table 1 are part of 
L, but appear in neither LA nor LM. 

The following axioms capture the intended model of 
time. 
e Arithmetic axioms for - (subtraction), <, 5, and 

numerals. These include Vx . x < 00. 

e vi . iL < iR 

o Meaning postulates for each Allen predicate. The ax- 
ioms for the non-inverted predicates appear in Table 
1. 

We write Ck,D to mean that D holds in all of models 
of C that satisfy these axioms. 

The original presentation of the Allen calculus de- 
scribed the predicates by a set of transitivity axioms 
such as 

Vi, j, k . i(M)j A j(D)k > i(D + S + O)k 

All of these formulas are theorems of E, rather than 
axioms [Kautz and Ladkin, 19911. 

Since c is just first-order logic, we could solve prob- 
lems that involve both metric and Allen assertions by 
employing a complete and general inference method, 
such as resolution. This is almost certain to be imprac- 
tically slow. On the other hand, it appears that we do 
not need the full power of fZ to express many interesting 
temporal reasoning problems. The sublanguage LM can 
express constraints on the duration of an interval (e.g., 
2 5 (iR - iL) < 5); on the elapsed time between inter- 
vals (e.g., 4 < (iR - jL) < 6); and between an interval 
and an absolute date, which we handle by introducing a 
“dummy” interval which is taken to begin at time num- 
ber 0 (e.g., 14 2 (iL - dayOL) 5 14). But XM by itself is 
not adequate for many problems. For example, in the 
sublanguage LA one can assert that intervals i and j 
are disjoint by the formula i(P + M + M’ + P’) j, but 
there is no equivalent formula in LM. Such a disjoint- 
edness constraint is useful in planning; for example, if 
i is a time during which a robot holds a block, and j 
is a time during which the robot’s hand is empty, a 
planning system might want to make the assertion that 
i(P + M + M’ + P’) j. Another useful expression in 
CA is i(S + F)j, which means that interval i starts or 
finishes j; for example, in scheduling a conference, you 
might want to assert that a certain talk begins or ends 
the conference. 

So LM U E,J appears to be a good candidate for a 
practical temporal language. In order to develop an 



Definition: Minimal Network Representation 
Suppose G is a consistent network of binary constraints 
in some language. Then a binary constraint network G’ 
in that language is a minimal network representation of 
G iff the following all hold: 
1. 
2. 

3. 

G’ is logically equivalent to G. 
For every pair of variables in G there is a constraint 
containing those variables in G’. 
For any model M of a single constraint in G’, there 
is a model M’ for all of G’ which agrees with M on 
the interpretation of the variables that appear in that 
constraint. 

vi,j- i=j E iL-jL<o A jL-iL<o A iR-jR<O jR-iR<O - 
Vi,j. i(P)j G iR - jL < 0 
Vi,j. i(h!f)j G iR -jL<O A jl--iRsO 
Vi,j. i(O)j E iL -jL<O A jL-iR<O A iR-jR<O 
Vi,j. i(S)j E iL -jLsO A jL-iL<O A iR-jR<O 
Vi,j. i(D) j e jL - iL < 0 A iR - jR < 0 
Vi,j. i(F) j G jL - iL < 0 A iR - jR < 0 A jR - iR 5 0 

Table 1: Meaning postulates for Allen predicates. 

inference procedure for this language, let us examine 
the inference procedures that are known for LM and 
EA individually. 

Constraint Networks 
LM and LA can each express certain binary constraint 
satisfaction problems (CSP) [Montanari, 741. A binary 
CSP is simply a set (also called a network) of quantifier- 
free assertions in some language, each containing two 
variables. One possible task is to find a particular as- 
signment of values to the variables that simultaneously 
satisfies all the constraints in the network: that is, to 
find a model of the network. (Henceforth in this paper 
we will always talk in terms of models rather than vari- 
able assignments.) Another important task is to com- 
pute the minimal network representation of the prob- 
lem, which is defined as follows: 

Hence from the minimal network representation one can 
“read off” the possible values that can be assigned to 
any variable. 

LM is very similar to what DMP called simple tem- 
poral constraint satisfaction problems (STCSP). They 
considered sets (or networks) of formulas of the form 

m5(x-Y)<n 
where x and y are variables and n and m are numer- 
als. Their representation differs from Ln/r in that (1) 
They use simple variables like x for time points, where 
LM uses terms like iL and iR. This difference is not 
significant, because the interpretation of an interval i is 
simply the pair consisting of the interpretations of iL 
and iR. So we can treat iL and iR as “variables” in the 
CSP formulation. (2) Formulas in LM include strict 
(<) as well as non-strict (5) inequalities. 

DMP proved that an all-pairs shortest-path algo- 
rithm [Aho et al., 1976, page 1981 can compute the 
minimal network representation of a STCSP. One can 
modify the algorithm to handle the two kinds of in- 
equalities as follows. We represent a formula M from 
LM by a graph, where the nodes are the terms that ap- 
pear in M (that is, iL and iR for each interval variable 
i), and the directed arc from iF to jG is labeled with 
the pair (n, 1) if 

iF-jG 5 n 
is one conjunct of a constraint in M, and labeled (n, 0) 
if 

iF - jG < n 
is one conjunct of a constraint in M. Next we add 
the constraints from L that state that the left point 
of an interval is before its right point; that is, we add 
an arc iL(9, 9)iR for each i. Finally we compute the 
shortest distance between all nodes in the graph using 
the following definitions for comparison and addition: 

(m,x)<(n,y)~m<nV(m=nAx<y) 

b-4 x> + (n, Y) = (m + n, n-+x, Y)) 

In the resulting graph D an arc appears between every 
pair of nodes in the graph, and the inequalities corre- 
sponding to the arcs are the strongest such inequalities 
implied by M. Thus the minimal network representa- 
tion of M is the set of formulas 

{-m < iF -jG < n I jG(m,O)iF, iF(n,O)jG E D}U 
{-m 5 iF -jG <n IjG(m,l)iF, iF(n$)jG E D}U 

{-m < iF -jG 2 n jjG(m,O)iF, iF(n,l)jG E D}U 
l---m LiF-jG <n IjG(m,l)iF, iF(%l)jG ED) 

This procedure takes O(n3) time. 
Binary CSP’s based on the qualitative language LA 

have been studied extensively [Allen, 1983, Ladkin and 
Maddux, 1987, Vilain et al., 1989, van Beek and Co- 
hen, 19891. Computing the minimal network represen- 
tation of a set of such constraints is NP-Hard. In prac- 
tice, however, one can approximate the minimal net- 
work by a weaker notion, called n-consistency. While 
we do not have space here to discuss the details of n- 
consistency, we note that the original presentation of 
LA by Allen [83] included an algorithm that computes 
“3-consistency” in O(n3) time, and VanBeek [89] stud- 
ied the improvements to the approximation likely to be 
found by computing higher degrees of consistency. For 
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combined-metric-Allen(M, A) = 
input: simple metric network M and simple Allen 

network A 
output: networks M’, A’ implied by M U A 

repeat 
A’ := metric-to-Allen(M) U A 
M’ := Allen-to-metric(A’) U M 
M := M’; A := A’ 

until A = A’ and M = M’ 
return M’, A’ 

end combined-metric-Allen 

Figure 1: Inference procedure for CM U CA. 

any fixed n, n-consistency can be computed in polyno- 
mial time. 

Thus we have an efficient and complete algorithm 
for inference in LM, and a number of efficient approx- 
imation algorithms for CA. Figure 1 presents a con- 
straint satisfaction algorithm for the union of the two 
languages. The method is to separately compute the 
minimal network representation of the metric and Allen 
constraints; derive new Allen constraints from the met- 
ric network and add these to the Allen network; derive 
new metric constraints from the Allen network and add 
these to the metric network; and repeat this process 
until no new statements can be derived. The system 
answers any query in l&f U LA by examining the ap- 
propriate network. The procedure is clearly correct; 
but now we must see how to translate LM to CA and 
vice-versa. 

Translating and Combining Metric and 
Allen Constraints 

This section presents the optimal translations between 
the metric and Allen constraint languages, and a com- 
plexity analysis of the combined inference algorithm. 
we begin with the translation from LM to CA. At first 
impression, one might think that it is sufficient to con- 
vert each metric constraint to the Allen constraint it 
implies. For example, from the meaning postulates one 
can deduce that 

iL-jL<O>i(P+M+O+F’+D”)j 

So, if the metric network M contains -9 < (iL - jL) < 
-3 (which implies the antecedent of the formula), the 
translation mcludes i(P+M+O+F’+D”)j. This ap- 
proach is correct, but fails to capture all implications in 
CM. For example, suppose M is the following network: 

3 < (iR - iL) < 00 
-oo< (jR-jL) < 2 

The minimal network representation of M has only 
trivial constraints between i and j (such as --oo < 
(iL - jR) < oo), so the approach just outlined fails 
to infer that i cannot be during j, because i has longer 
duration than j. 

metric-to-Allen(M) = 
input: a simple metric constraint network M. 
output: the strongest set of simple Allen constraints 

implied by M. 

let M’ be the minimal network representation of M 
if M’ is inconsistent then 

return any inconsistent Allen network 
AM:=~ 
for each pair of intervals i, j do 

let S be the {iL, iR, jL, jR} subnet of M’ 
R 8 .- 
foreach primitive Allen relation r do 

S’ := s u 
{ m I m is a difference inequality in 
the meaning postulate for i(r) j } 

if S’ is consistent then R := R U {r) 
end do 
AM := AM U {i(R)j} 

end do 
return AM 

end metric-to-Allen 

Figure 2: Converting simple metric constraints to sim- 
ple Allen constraints. 

Therefore an optimal translation must consider sev- 
eral metric constraints at a time; but how many? One 
might imagine that the problem required an exponen- 
tial procedure that checked consistency of every possi- 
ble Allen constraint between two intervals with all of 
M. Fortunately, this is not necessary: we can compute 
the strongest set of implied Allen constraints by consid- 
ering constraints between just four points (that is, two 
intervals) at a time. The algorithm metric-to-Allen 
appears in Figure 2, and the following theorem formally 
states that it is optimal. 

Theorem 1 The algorithm metric-to-Allen is sound 
and entails minimal loss of information: For any 
M E LM and A E LA, it’s the case that Mb,A 
iff metric-to-Allen(M)bLA. The algorithm runs in 
O(n3) time, where n is the number of intervals. 

Proof: By theorem 2 of [Dechter et al., 19891, any consis- 
tent and minimal simple metric network is decomposable. 
This means that any assignment of values to a set of terms 
that satisfies the subnet containing those terms can be ex- 
tended to a satisfying assignment for the entire net. Another 
way of saying this is that if such a subnet has a model, then 
the net has a model that agrees with the subnet’s model on 
the interpretation of the terms in the subnet. 

Note that if two models agree on the interpretations of the 
terms in, iR,j~, jR then they assign the same truth value to 
the expression i(r)j where T is any primitive Allen relation. 
From the construction of S’ it is therefore the case that S’ 
is consistent iff S’ has a model iff S has a model in which 
i(r) j holds iff M’ has a model in which i(r) j holds. Since 
M and M’ are logically equivalent, we see that for any pair 
of intervals i and j, i(R) j E metric-to-Allen(M) iff for 
all r E R and no T $! R, M has some model in which i(r)j 
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holds. 
To show that the algorithm is sound, suppose that 

i(R)j E metric-to-Allen(M). If this clause were not im- 
plied by M, then there would be some model of M in which 
i and j stand in an Allen relation not in R. But that is im- 
possible, as stated above. So M+,metric-to-Allen(M), 
and metric-to-Allen(M)~=cA implies M+=,A. 

To show that the algorithm entails minimal loss of infor- 
mation, suppose that Mk,A. Because A is a conjunction 
of statements of the form i(R)j, we can assume without 
loss of generality that it is a single such statement. From 
the operation of the algorithm we see that there is some R’ 
such that i(R’)j E metric-to-Allen(M). We claim that 
R’ C R. Suppose not; then there would be an T E R’ such 
that T f$ R. But the former means that there is a model of 
M in which ;(r)j holds, and the latter means that there is 
no such model, since in any particular model only a single 
AlIen relation holds between a pair of intervals. So since 
R’ C R means that i(R’)j implies ;( R)j, it follows that 
metric-to-Allen(M) bLi( R)j. 

Computing the minimal metric network takes O(n3) time, 
and the outer loop iterates O(n2) with constant time for all 
operations in the loop. Therefore the overall complexity is 
O(n3). q  

Next we consider the translation from LA to CM. It 
is not sufficient to simply replace each Allen predicate 
with its definition according to the meaning postulates, 
because the resulting formula is not necessarily in CM. 
Indeed, we can show that the problem is inherently in- 
tractable: 
Theorem 2 Computing the strongest set of simple 
metric constraints equivalent to a set of simple Allen 
constraints is NP- Hard. 

roof: Checking the consistency of a set of formulas in CA 
NP-Complete, but checking consistency of formulas in 

LM is polynomial. Since the best translation must pres 
consistency, the translation itself must be NP-Hard. 

Suppose, however, we wish to compute the minimal 
network representation of a set of simple Allen con- 
straints for other reasons. We can then quickly compute 
the strongest set of simple metric constraints implied by 
that network, by computing the metric constraints one 
Allen constraint at a time. Figure 3 presents the algo- 
rithm Allen-to-metric that performs this calculation; 
the following theorem states that this algorithm is op- 
timal. 

Theorem 3 The algorithm Allen-to-metric is sound 
and entails minimal loss of information: For any 
A E LA, M E L&f, it’s the case that A/=,M ifl 
AIIen-to-metric(A)~LM. The algorithm runs in 
O(e + n”) time, where e is the time needed to compute 
the minimal network representation of the input, and n 
is the number of intervals. 
Proof: At the end of the inner loop, it is clear that m E S 
iff m is a difference inequality implied by each ;(r)j for each 
r E R; that is, m E S iff m is implied by i(R)j. Since 
4=,A’&Wj f or each such i(R)j that appears in M, it 
follows that Ab.LAllen-to-metric(A). Therefore the algo- 
rithm is sound: if Allen-to-metric(A)+,M, then A+=,M. 

Allen-to-metric(A) = 
input: a simple Allen constraint network A 
output: the strongest set of simple metric constraints 

implied by A. 

let A’ be the minimal network representation of A 
if A’ is inconsistent then return any inconsistent 

metric network 
kfA := 8 
for each pair of intervals i, j do 

let R be the (complex) Allen relation such 
that i(R)j appears in A’ 

S := { m 1 m is of the form x - y < 0 or 
3~ - Y < 0 and X,Y E (iL,iR,jLdR] ) 

for each prim:tive Allen relation r in R do 
S := S n { m 1 m is a difference 

inequality implied by i(r)j } 
end do 
MA :=kfAus 

end do 
return{-ocI < (iF - jG) < nl iF - jG < n E MA}u 

{-w < (iF - jG) 5 nl iF - jG 5 n E MA) 
end Allen- to-metric 

Figure 3: Converting simple Allen constraints to simple 
metric constraints. 

To show that the algorithm entails minimal loss of infor- 
mation, suppose that AkLM. Because M is conjunction of 
simple metric constraints, without loss of generality we can 
assume it is a single such constraint. Furthermore, because 
each constraint is a conjunction of two difference inequali- 
ties, without loss of generality we can take M to be a sin- 
gle difference inequality: z - y < n or x - y < 7t, where 
x, y E (hk,jL, jR). If n = 00, then the inequality triv- 
ially holds. Otherwise, because A is equivalent (using the 
meaning postulates) to a boolean combination of difference 
inequalities containing only the number 0, it is plain that n 
cannot be negative; and furthermore, if n is positive, A must 
also imply the inequality x - y 5 0. So without loss of gen- 
erality we can -also assume that M is of the form 2 - y < 0 
or x -yLO. 

At the start of the loop in which the algorithm selects 
the pair of intervals (i, j) the variable S contains M, and we 
claim that S must still contain M at the conclusion of the 
inner loop. Suppose not; then there is some r E R such that 
;(r)j has a model M in which M does not hold. But because 
i( R)j E A’ and A’ is the minimal network representation of 
A, it must be the case the A has a model that agrees with M 
on the interpretations of a’ and j. Therefore A has a model 
that falsifies M, so A cannot imply M after all. Since S 
implies M and S C M A, it is clear that the set of simple 
metric constraints constructed from MA in the last step of 
the algorithm also implies M. 

The complexity O(e + n2) follows immediately from the 
iteration of the outer loop; everything inside takes constant 
time. 

In order to simplify the presentation of the 
Allen-to-metric algorithm, we have described it so 
that while it returns the strongest metric network im- 
plied by the Alien network, it does not actually re- 
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turn the minimal network representation of that met- 
ric network. It is easy to modify the algorithm (with- 
out additional computational overhead) so that it does 
return the minimal network representation; see Kautz 
and Ladkin El9911 for details. 

Finally we turn to an analysis of the algorithm 
combined-metric-Allen. What is its computational 
complexity? The answer depends on how many times 
the algorithm iterates between the two networks. Be- 
cause each iteration must strengthen at least one sim- 
ple Allen constraint (which can only be done 13 times 
per constraint), in the worst case the number is linear 
in the maximum size of the Allen network (or O(n2) 
in the number of intervals). In fact, this is its lower 
bound, as well: we have discovered a class of tempo- 
ral reasoning problems that shows that the maximum 
number of iterations does indeed grow with the size of 
the constraint set [Kautz and Ladkin, 19911. 

Theorem 4 The algorithm combined-metric-Allen 
is sound: 
M U Akrcombined-metric-Allen(M, A). The alqo- 
rithm terminates in O(n2(e + n3)) time, where n is the 
number of intervals that appear in M U A, and e is the 
time required to compute the minimum network repre- 
sentation of A. 

So far in our experience with the implemented sys- 
tem the algorithm tends to converge quickly. In fact, 
if the Allen network is pointisable [Ladkin and Mad- 
dux, 19881, we can prove that the algorithm interates 
no more than two times [Kautz and Ladkin, 19911. 

The question of whether combined-metric-Allen 
is a complete inference procedure for the language 
EM u CA remains open. we are CUrreUtly investigating 

whether the algorithm detects all inconsistent networks, 
and whether it always computes the minimal network 
representation in -CM u CA. 

Conclusions 
The framework presented in this paper unifies the great 
body of research in AI on metric and qualitative tem- 
poral reasoning. We demonstrated that both Dechter, 
Meiri, and Pearl’s simple temporal constraint satisfac- 
tion problems and Allen’s temporal calculus can be 
viewed as sublanguages of a simple yet powerful tem- 
poral logic. We provided algorithms that translate 
between the languages with a minimal loss of infor- 
mation. Along the way we generalized known tech- 
niques for dealing with non-strict linear inequalities to 
handle strict inequalities as well. Finally, we showed 
how the translations can be used to combine two well- 
understood constraint-satisfaction procedures into one 
for the union of the two languages. 
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