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Abstract 
This paper presents a strengthened algorithm for tem- 
poral reasoning during plan recognition, which im- 
proves on a straightforward application of Allen’s rea- 
soning algorithm. This is made possible by viewing 
plans as both hierarchical structures and temporal 
networks. As a result, we can show how to use as 
constraiuts the temporal relations explicitly given in 
input to improve the results of plan recognition. We 
also discuss how to combine the given constraints with 
those prestored in the system’s plan library to make 
more specific the temporal constraints indicated in the 
plans being recognised. 

Introduction 
Plan recognition is the process of inferring an agent’s 
plan based on the observation of the agent’s actions. 
A recognized plan is useful in that it allows us to de- 
cide an agent’s goal as well as predict the agent’s next 
action. Suppose we observe that John has made the 
sauce and he is now boiling the noodles. Then, based 
on the plan in figure 1, we can decide that John’s goal 
is to make a pasta dish and predict that his next action 
is to put noodles and sauce together. 

/F,\ 
Make 

Noodles SME 
Boil Put 
Noodles Together 

Figure 1: Hierarchical Structure of a Plan 

Plan recognition has found applications in many 
research areas such as story understanding ([Schank 
and Abelson, 19771, [B ruce, 19811, [Wilensky, 1983]), 
psychological modeling [Schmidt et al. 19781, natural 
language pragmatics ([Allen, 1983b], [Litman, 19851, 
[Carberry, 1986]), and intelligent interfaces ([Huff and 
Lesser, 19821, [Goodman and Litman, 19901). 

Most plan recognition models assume a library of 
typical plans that can occur in a particular domain. 

Then, a search and matching mechanism is used to 
recognize all the plans that contain the observed ac- 
tions, called candidate plans. One problem is that it is 
difficult to unambiguously decide the plan of an agent, 
since the observation of the agent’s actions is often 
incomplete and some actions may appear in many dif- 
ferent plans of the system’s plan library. Kautz [1987] 
suggests that one way of reducing the set of candidate 
plans is to use the temporal relations explicitly given in 
the observations as constraints to eliminate the plans 
that are inconsistent with the given constraints’. How- 
ever, Kautz only provided a simplified procedure for 
checking temporal constraints and did not elaborate 
on the types of temporal constraints that are neces- 
sary to be represented in the system’s plan library. 

In this paper, we assume a model for plan recogni- 
tion that is similar to Allen’s [1983b], with the focus 
being on temporal reasoning, the process of checking 
the inconsistencies between the temporal constraints 
given in the input and those prestored in the plans of 
the system’s plan library. Allen [1983a] proposed an 
algorithm that can be used to perform this task. How- 
ever, Allen’s algorithm [Allen, 1983a] can give weak 
results when applied to plan recognition, specifically 
for the case where some actions are defined in terms of 
their decomposed subactions. Our contribution is to 
provide a closing procedure, which makes specific the 
temporal constraints between an action and its decom- 
posed subactions and works interactively with Allen’s 
algorithm to obtain strengthened results. Moreover, 
we discuss briefly that in a natural language setting, 
the process of deriving the temporal constraints from 
the input through linguistic analysis, called temporal 
analysis, can benefit from temporal reasoning as well. 

Two iffesent Views 0% 
A plan can be viewed as a hierarchical structure, orga- 
nized by the decomposition of an action into its subac- 
tions. In the cooking plan introduced earlier, MakePas- 
taDish is an action that can be decomposed into sub- 

‘Other solutions include the use of preference heuris- 
tics ([Allen, 1983b], [Litman, 19851, [Carberry, 19861) and 
probabilities [Goldman and Charniak, 19881. 
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actions: MakeNoodles, MakeSauce, BoilNoodles, and 
PutTogether. 

A plan can also be viewed as a temporal network, 
indicating the temporal constraints that must hold be- 
tween the intervals of all actions and states in the plan. 
We can use Allen’s interval algebra [Allen, 1983a] to 
represent the temporal constraints between intervals. 
Given intervals X and Y, there can be thirteen ba- 
sic relations between them, as shown in the following 
table. Constraints that are less certain than basic re- 

Primitives 

X Before Y 
X Meets Y 
X Overlaps Y 

X Starts Y 

X During Y 

X Finishes Y 

X Equal Y 

Symbols Inverses 
XbY Y bi X 
XmY YmiX 
XOY Y oi X 

XSY 

XdY 

XIY 

X eq Y 

Y si X 

Y di X 

YfiX 

Y eq X 

Examples 
xxx YYY 
XXXYYY 
xxx 

lations are represented as the disjunction of a set of 
basic relations. For convenience, we define two high 
level constraints as follows: “Precedes” = {b, m, 03 
and “Includes” = {si, di, fi,eq). 

Roughly, “Includes” describes the decomposition of 
an action into its subactions, since the interval of the 
action includes all the intervals of the subactions, while 
“Precedes” holds when one action “enables” another 
action, as the enabling action must be executed prior to 
the enabled action ‘. As a result, the temporal network 
for the cooking plan can be given in figure 2. Relations 
that are more specific than “Precedes” and “Includes” 
can be indicated as shown. 

InKitchen 

- Boil - Put 
Together 

Figure 2: Temporal Structure of a Plan 

‘A definition of enablement can be found in [Pollack, 
1986]. For example, fkling a phone number enables the 
action of making a phone call. 

A hierarchical structure provides a straightforward 
view showing all the actions in a plan, but it does not 
exhibit the states and temporal relations between ac- 
tions. A temporal network, on the other hand, gives 
a detailed representation that allows all the actions, 
states, and their relationships to be clearly specified. 
However, since a temporal network treats all the in- 
tervals as the same, the temporal dependency between 
an action and its subactions is not explicitly indicated. 
We will argue that both views of a plan are important 
for doing temporal reasoning during plan recognition. 

Algorithms for Temporal Reasoning 

Weak Results of Allen9s Algorithm 

Allen [1983a] proposed a reasoning algorithm that 
propagates a new constraint to others and at the same 
time checks for inconsistencies. To reason about con- 
straints, two operations of intersection and composi- 
tion are defined. Intersection is just set intersection be- 
tween two constraints. Composition of two constraints 
is the set of pair-wise multiplications between all the 
basic relations in the two constraints, i.e., 

Cl o C2 = {a x b ] a E Cl and b E 623, 

where the result of a x b can be looked up in a prede- 
fined table [Allen, 1983a]. For example, given Cl = {b, 
m, 0) and C2 = {m, 03, the composition of Cl o C2 is 
Cb, m, 03. 

However, Allen’s algorithm can provide weak results 
when applied to plans that contain decompositions. 
Consider an example of one decomposition shown in 
figure 3. Here, we use A to denote the interval of the 
action, and al and a2, the intervals of the two subac- 
tions. Suppose that in the initial specification of the 
plan library there is no constraint between al and a2. 
Then, all we can decide are: A {si, di, fi, eq) al and A 
{si, di, fi, eq) a2. 

al - a2 

Figure 3: An Example of One Decomposition 

Now, assume that from the input we get a new con- 
straint of {b) between al and a2. Then, based on 
Allen’s algorithm, we are able to propagate it to the 
other constraints and obtain the results shown in fig- 
ure 4 (a). However, if we know that al and a2 are the 
only two subintervals of the interval A and that al {b) 
a2, then we should be able to decide A {si) al and 
A {fi) a2, i.e., al and a2 together comprise all of A. 
These desired results are shown in figure 4 (b). 
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al/ 
\ 
c a2 

Figure 4 (a): Weak Results from Allen’s Algorithm 
/ A 

Figure 4 (b): Strong Results Desired 

These weak results can be carried further when we 
consider a network that consists of more than one de- 
composition. Suppose that at the beginning we have 
the network shown in figure 5, where “inc” stands for 
{si, di, fi, eq). 

yA1/\ 
al 

Figure 5: An Example of Two Decompositions 
When the constraints: al {b) a2 and a2 {b) a3 are 
given from the input, we can apply Allen’s algorithm 
to obtain the results shown in figure 6 (a). Here, “corn” 
stands for the constraint: {o, oi, s, si, d, di, f, fi, 
eq). However, using a similar argument a.s made in 
the previous example, we should get the stronger re- 
sults shown in figure 6 (b). 

Figure 6 (a): Weak Results from Allen’s Algorithm 

Figure 6 (b): Strong Results Desired 
There are also networks that are considered as con- 

sistent by Allen’s algorithm but in fact are not when 
used to represent decompositions. For instance, if the 
constraint between A and a2 in figure 4 (b) is labeled as 
{di), Allen’s algorithm would decide this as consistent, 
but as we argued above, this is in fact not consistent 
with the desired results. 

The reason that Allen’s algorithm gives us weak re- 
sults when applied in plan recognition is that it treats 
all the intervals of actions as independent of each other. 
In plans where actions are connected through decom- 
positions, the intervals of abstract actions actually de- 
pend on the intervals of their decomposed subactions. 
To make these dependencies explicit in the reasoning 
process, we must acknowledge that decompositions of 
abstract actions into their subactions are complete; no 
more subactions are needed for or can be added to 
the decompositions. This will allow us to compute the 
boundary intervals of the abstract actions based on all 
the constraints between the subactions. For instance, 
if there is a linear ordering between all the subactions, 
we will be able to decide that the abstract action is 
temporally bounded by the subactions that occur the 
earliest and the latest. We say that a decomposition is 
closed if the interval of the abstract action is tempo- 
rally bounded by the intervals of the subactions. 

Closing Procedures for Decsmpositioras 
We can classify the 13 basic temporal relations intro- 
duced in section 2 into five classes: {b, m, 03, {bi, mi, 
oi3, Csi, di, fi3, {s, 4 f), and {eq). Then, we can di- 
vide a constraint into five subsets accordingly. Given 
the constraint (0, oi, s, si, d, di, f, ii, eq), for example, 
the corresponding five subsets are: (03, {oil, {si, di, 
Ii), {s, d, f), and {es). Let C be the constraint be- 
tween the two subactions of a decomposition. Then, 
for each non-empty subset of C, we can provide a sim- 
ple solution to close the decomposition, as shown in 
figure 7. 

w 

iIyA\ 

al +- a2 
C2 C (bi,mi,oi} 

J I / I 
al = ;2 ai * a2 

C3 E (si,di,fi} C4 C (s,d,f) 

ai 
C5 = (eq} b a2 

Figure 7: Five Special Cases for Closing a 
Decomposition 

Case (a) indicates that A is bounded by al and a2 
since for any subset of Cl={b, m, 03 the start part of 
al is clearly located before the end part of a2. Case (c) 
suggests that A is bounded by al since for any subset 
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of C3=(si, di, fi} we can decide that A {eq) al, and 
from the composition of A (eq) al and al 63 a2 we 
can derive A C3 a2. Cases (b) and (d) are the reverse 
cases of (a) and (c), and caSe (e) is trivially justified. 

If only one subset of C is not empty, then the cor- 
responding c8se above already provides a solution for 
closing the decomposition. However, a constraint gen- 
erally has more than one non-empty subset. As a re- 
sult, the solution of closing a decomposition should be 
the disjunction of 8ll the &es that contain these non- 
empty-subsets. We can illustrate the closing process 
by viewing a decomposition 8s the conjunction of all 
its constraints. For example, the formula for a decom- 
position of two subactions may be described 8s: 

A {si, di, fi, eq) al A A (si, di, fi, eq) 82 A 
81 {b, bi) 82 

By dividing {b, bi) into two subsets, {b) and {bi), we 
can change it into an equivalent formula: 

(A (si, di, fi, eq) al A A (si, di, fi, eq) 82 A 
81 {b) 82) V 

(A {si, di, fi, eq) al A A {si, di, fi, eq) 82 A 
al {bi) 82) 

Now it becomes clear that each subformula above cor- 
responds to a special case in figure 7. So we can close 
both subformulas and get the disjunction of two special 
cases: 

(A {si) al A A {fii) a2 A al {b) 82) V 
/* from case (a) */ 

(A {fi) 81 A A {si) a2 A 81 (bi) 82) 
/* from caSe (b) */ 

Unfortunately, this result is too strong in that we have 
to divide the temporal network of a plan into two net- 
works, each cont&ing a special case. For a plan that 
consists of many decompositions, the total number of 
different networks could be much larger. In order to re- 
tain just one network while still taking decompositions 
into account, we will have to relax our result to some 
extent. Here, we merge the two subformulas by taking 
the disjunctions of the corresponding constraints: - 

A (si, fi) al A A {si, fi) 82 A al (b, bi) a2 
This formula is equivalent to the previous result, but it 
also contains two redundant, inconsistent cases. This 
can be seen from the expansion of the formula: 

(A {si) al A A {fi) 82 A al {b) 82) V 
(A (fi) al A A (si) 82 A al {bi) a2) V 
(A {si) al A A {si) 82 A al {b) 82) V 

/* inconsistent */ 
(A {fi) al A A {fi) 82 A al (bi) a2) 

/* inconsistent */ 
However, even though our result is weakened, it is 
still stronger than that from Allen’s algorithm in most 
cases. For the example above, the result from Allen’s 
algorithm will be: 

A {si, di, fi) al A A {si, di, fi) a2 A al {b, bi) a2 

In the following, we summarire our discussion and 
provide a procedure for closing a decomposition of two 
subactions. Here, R(k, n) is a relation given between 
two intervals labeled 8s nodes k and n. 
fuencion close-two( R(k, n)) 

create a dummy node labeled temp; 
W-v, k) +- ( 3; 
R(temp, n) <- ( 3; 
if R(k, n) n {b, m, 03 is not empty then 

R(temp, k) <- R(temp, k) U {si); 
R(temp, n) <- R(temp, n) U {fi); 

if R(k, n) (7 {bi, mi, oi) is not empty then 
R(temp, k) <- R(temp, k) U (II); 
R(temp, n) <- R(temp, n) U {si); 

C3 <- R(k, n) n {si, di, fi); 
if C3 is not empty then 

R(temp, k) <- R(temp, k) U {eq); 
R(temp, n) <- R(temp, n) U C3; 

64 <- R(k, n) n (s, d, f); 
if C4 is not empty then 

R(temp, k) <- R(temp, k) U -C4; 
R(temp, n) <- R(temp, n) U {eq); 

if R(k, n) n {eq) is not empty then 
R(temp, k) <- R(temp, k) U (eq); 
R(temp, n) <- R(temp, n) U {eq); 

return temp 
end 

Having developed the procedure of “close-two”, we 
are now in a position to extend the result to close a 
decomposition of more than two subactions. Figure 8 
(a) shows a decomposition of three subactions. - 

Figure 8: Closing a Decomposition of Three 
Subactions 

In order to close the decomposition, we introduce an 
intermediate action aI that takes 8.1 and 82 as subac- 
tions, shown in (b). Now, for this new decomposition, 
we can call “closeitwo” and get the closed constraints 
between a12 and al and between a12 and 82. Then, 
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based on these results, we can compute a new con- 
str8int between al2 and a3, shown in (c). Now, 812 
and a3 form the two subactions of A. Once again, we 
can call “close-two” and get the closed constraints be- 
tween A and al2 and between A and 83. At this time, 
the constraint between A and a3 has been closed. To 
get the closed constraints between A and al and be- 
tween A and 82, we can perform the compositions of 
A to al and a2 via a12. Since all the constraints have 
been closed, we can eliminate the intermediate action 
812 and all the constraints connected to it. The result 
brings us back to the structure in (a), but this time, 
all the constraints from A to its subactions have been 
closed. The above process can be repeated if there are 
more subactions to be closed. 

We can now give a general procedure, which closes 
a decomposition of any number of subactions by using 
our “close-two” procedure. Here, k denotes an abstract 
action, and S, a list of the subactions of the abstract 
action. Also, given nodes i and j, N(i, j) corresponds 
to the existing constraint, and R(i, j), a new or derived 
constraint between i and j. Finally, U denotes the dis- 
junctive set of all possible primitive interval relations, 
i.e., U = {b, bi, m, mi, o, oi, s, si, d, di, f, fi, eq). 

procedure close-all(k, S) 
begin 

get first n from the list S; 
g(> “(’ ;- Ga3; 

- n; 

while S is not empty do begin 
get next n from the list S; 
R(k, n) <- U; 
foreaeh c in C do 

R(k, n) <- R(k, n) n N(k, c) o N(c, n); 
temp <- close-two(R(k,n)); 
foreach c in C do 

N(k, c) <- R(temp, k) o N(k, c); 
;‘: n& ;-{Rjtemp, n); 

n 
end 

end 

Our Strengthened Algorithm 
Our closing procedure is built on the temporal con- 
straints between all the subactions. In order to get 
stronger results, we first view plans 8s temporal net- 
works and use Allen’s algorithm to make these con- 
straints more specific. Then, we view plans as hier- 
archical structures and close all the decompositions in 
a depth first order. Once all the decompositions are 
closed, some of the constraints in the network may be 
updated. As a result, we need to call Allen’s algorithm 
again to propagate these constraints. In general, we 
can design a strengthened algorithm by interactively 
calling Allen’s algorithm and our closing procedure a 
number of times. Such a process will eventually termi- 
nate since every time we update 8 constraint, some of 

its basic relations will be eliminated and there are at 
most 13 basic relations in a constraint3. 

Applications of Tern 
There are two possible results that can be obtained 
from temporal reasoning: if the given constraints are 
inconsistent with the prestored constraints of a candi- 
date plan, then the plan will be eliminated; otherwise, 
the given constraints will be added to make the pre- 
stored constrabints more specific. 

Here is an example to show the importance of doing 
temporal reasoning during plan recognition. Suppose 
that our plan library contains two plans for making 
GuoTie and JianJiao, two common ways of making 
fried dumplings in Chinese cooking, shown in figure 9. 

Make - 
Dumplings Dumplings Dumplings 

Make Jian Jiao 

(b) LITI] I {bh 
Make - Boil - Fry 

Dumplings Dumplings Dumplings 

Figure 9: Two Simplified Plans in a Plan Library 
Then, given the observation that BoilDumplings oc- 
curs earlier than FryDumplings*, 8 plan recognition 
model that does not use temporal constraints from the 
input would propose MakeGuoTie and MakeJianJiao 
8s the candidate plans, for both of them contain the 
two given actions. However, by taking the temporal 
relations given in the input as a constraint and check- 
ing them with those prestored in candidate plans, we 
find that MakeGuoTie is inconsistent with the given 
constraint, 8s BoilDumplings occurs later than Fry- 
Dumplings in this plan. As a result, our plan recogni- 
tion model will only propose MakeJianJiao as the plan 
that the agent is performing. 

The other result of making prestored constraints 
more specific can benefit the process of deriving the 
temporal constraints from observation, which we call 
“temporal analysis.” In a natural language setting, the 
need for automating temporal analysis becomes im- 
portant, 8s the observations are described in terms of 

“Due to the sp ace limitation, the algorithm is not given 
here, but the readers should be able to construct it easily 
based on the discussion of this section. 

‘In a natural language setting, for example, such a tem- 
poral constraint may be obtained by linguistically analyz- 
ing the input: “I have boiled the dumplings and am now 
frying them.” 
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utterances and the temporal constraints suggested by 
linguistic expressions such as tense, aspect, temporal 
adverbials and connectives. However, as pointed out 
in ([Webber, 19881, [Allen, 19881, [Song, lQQO]), these 
expressions are sometimes not strong enough to help 
derive specific temporal relations between the actions 
mentioned in the input; other discourse indicators such 
as cue-phrases and world knowledge are also needed for 
doing temporal analysis. Temporal reasoning is useful 
in that it provides a way of combining the given con- 
straints and the prestored constraints in a candidate 
plan. In cases where the constraints indicated in the 
input are specific, we can use them to reduce the set 
of candidate plans, but in cases where the given con- 
straints are vague, the prestored constraints in a can- 
didate plan can be used to fill in the details about the 
temporal relations between actions. Readers are re- 
ferred to Song [lQQO] for more discussion on temporal 
analysis. 

Conclusion 
In this paper, we present a strengthened algorithm for 
temporal reasoning during plan recognition. We view 
plans as both hierarchical structures and temporal net- 
works. This allows us to design a closing procedure 
which makes specific the temporal constraints between 
an action and its decomposed subactions and works in- 
teractively with Allen’s algorithm to obtain strength- 
ened results. Two main applications of temporal rea- 
soning are to reduce the number of candidate plans 
during plan recognition and to help derive the tem- 
poral constraints from natural language input through 
linguistic analysis. 

Note that the strengthened algorithm is not quite 
efficient in that it has to call our closing procedure 
and Allen’s algorithm interactively. Some results on 
localizing the propagation in Allen’s algorithm have 
been reported in [Koomen, 19891. Future work should 
be directed to find efficient ways for combining the two 
processes during temporal reasoning. 
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