
ra ease

Fei Song and Robin Cohen
Dept. of Computer Science, Univ. of Waterloo

Waterloo, Ontario, Canada N2L 3Gl
{fsong,rcohen}@watdragon.uwaterloo.ca

Abstract
This paper presents a strengthened algorithm for tem-
poral reasoning during plan recognition, which im-
proves on a straightforward application of Allen’s rea-
soning algorithm. This is made possible by viewing
plans as both hierarchical structures and temporal
networks. As a result, we can show how to use as
constraiuts the temporal relations explicitly given in
input to improve the results of plan recognition. We
also discuss how to combine the given constraints with
those prestored in the system’s plan library to make
more specific the temporal constraints indicated in the
plans being recognised.

Introduction
Plan recognition is the process of inferring an agent’s
plan based on the observation of the agent’s actions.
A recognized plan is useful in that it allows us to de-
cide an agent’s goal as well as predict the agent’s next
action. Suppose we observe that John has made the
sauce and he is now boiling the noodles. Then, based
on the plan in figure 1, we can decide that John’s goal
is to make a pasta dish and predict that his next action
is to put noodles and sauce together.

/F,\
Make

Noodles SME
Boil Put
Noodles Together

Figure 1: Hierarchical Structure of a Plan

Plan recognition has found applications in many
research areas such as story understanding ([Schank
and Abelson, 19771, [B ruce, 19811, [Wilensky, 1983]),
psychological modeling [Schmidt et al. 19781, natural
language pragmatics ([Allen, 1983b], [Litman, 19851,
[Carberry, 1986]), and intelligent interfaces ([Huff and
Lesser, 19821, [Goodman and Litman, 19901).

Most plan recognition models assume a library of
typical plans that can occur in a particular domain.

Then, a search and matching mechanism is used to
recognize all the plans that contain the observed ac-
tions, called candidate plans. One problem is that it is
difficult to unambiguously decide the plan of an agent,
since the observation of the agent’s actions is often
incomplete and some actions may appear in many dif-
ferent plans of the system’s plan library. Kautz [1987]
suggests that one way of reducing the set of candidate
plans is to use the temporal relations explicitly given in
the observations as constraints to eliminate the plans
that are inconsistent with the given constraints’. How-
ever, Kautz only provided a simplified procedure for
checking temporal constraints and did not elaborate
on the types of temporal constraints that are neces-
sary to be represented in the system’s plan library.

In this paper, we assume a model for plan recogni-
tion that is similar to Allen’s [1983b], with the focus
being on temporal reasoning, the process of checking
the inconsistencies between the temporal constraints
given in the input and those prestored in the plans of
the system’s plan library. Allen [1983a] proposed an
algorithm that can be used to perform this task. How-
ever, Allen’s algorithm [Allen, 1983a] can give weak
results when applied to plan recognition, specifically
for the case where some actions are defined in terms of
their decomposed subactions. Our contribution is to
provide a closing procedure, which makes specific the
temporal constraints between an action and its decom-
posed subactions and works interactively with Allen’s
algorithm to obtain strengthened results. Moreover,
we discuss briefly that in a natural language setting,
the process of deriving the temporal constraints from
the input through linguistic analysis, called temporal
analysis, can benefit from temporal reasoning as well.

Two iffesent Views 0%
A plan can be viewed as a hierarchical structure, orga-
nized by the decomposition of an action into its subac-
tions. In the cooking plan introduced earlier, MakePas-
taDish is an action that can be decomposed into sub-

‘Other solutions include the use of preference heuris-
tics ([Allen, 1983b], [Litman, 19851, [Carberry, 19861) and
probabilities [Goldman and Charniak, 19881.

SONG & COHEN 247

From: AAAI-91 Proceedings. Copyright ©1991, AAAI (www.aaai.org). All rights reserved.

actions: MakeNoodles, MakeSauce, BoilNoodles, and
PutTogether.

A plan can also be viewed as a temporal network,
indicating the temporal constraints that must hold be-
tween the intervals of all actions and states in the plan.
We can use Allen’s interval algebra [Allen, 1983a] to
represent the temporal constraints between intervals.
Given intervals X and Y, there can be thirteen ba-
sic relations between them, as shown in the following
table. Constraints that are less certain than basic re-

Primitives

X Before Y
X Meets Y
X Overlaps Y

X Starts Y

X During Y

X Finishes Y

X Equal Y

Symbols Inverses
XbY Y bi X
XmY YmiX
XOY Y oi X

XSY

XdY

XIY

X eq Y

Y si X

Y di X

YfiX

Y eq X

Examples
xxx YYY
XXXYYY
xxx

lations are represented as the disjunction of a set of
basic relations. For convenience, we define two high
level constraints as follows: “Precedes” = {b, m, 03
and “Includes” = {si, di, fi,eq).

Roughly, “Includes” describes the decomposition of
an action into its subactions, since the interval of the
action includes all the intervals of the subactions, while
“Precedes” holds when one action “enables” another
action, as the enabling action must be executed prior to
the enabled action ‘. As a result, the temporal network
for the cooking plan can be given in figure 2. Relations
that are more specific than “Precedes” and “Includes”
can be indicated as shown.

InKitchen

- Boil - Put
Together

Figure 2: Temporal Structure of a Plan

‘A definition of enablement can be found in [Pollack,
1986]. For example, fkling a phone number enables the
action of making a phone call.

A hierarchical structure provides a straightforward
view showing all the actions in a plan, but it does not
exhibit the states and temporal relations between ac-
tions. A temporal network, on the other hand, gives
a detailed representation that allows all the actions,
states, and their relationships to be clearly specified.
However, since a temporal network treats all the in-
tervals as the same, the temporal dependency between
an action and its subactions is not explicitly indicated.
We will argue that both views of a plan are important
for doing temporal reasoning during plan recognition.

Algorithms for Temporal Reasoning

Weak Results of Allen9s Algorithm

Allen [1983a] proposed a reasoning algorithm that
propagates a new constraint to others and at the same
time checks for inconsistencies. To reason about con-
straints, two operations of intersection and composi-
tion are defined. Intersection is just set intersection be-
tween two constraints. Composition of two constraints
is the set of pair-wise multiplications between all the
basic relations in the two constraints, i.e.,

Cl o C2 = {a x b] a E Cl and b E 623,

where the result of a x b can be looked up in a prede-
fined table [Allen, 1983a]. For example, given Cl = {b,
m, 0) and C2 = {m, 03, the composition of Cl o C2 is
Cb, m, 03.

However, Allen’s algorithm can provide weak results
when applied to plans that contain decompositions.
Consider an example of one decomposition shown in
figure 3. Here, we use A to denote the interval of the
action, and al and a2, the intervals of the two subac-
tions. Suppose that in the initial specification of the
plan library there is no constraint between al and a2.
Then, all we can decide are: A {si, di, fi, eq) al and A
{si, di, fi, eq) a2.

al - a2

Figure 3: An Example of One Decomposition

Now, assume that from the input we get a new con-
straint of {b) between al and a2. Then, based on
Allen’s algorithm, we are able to propagate it to the
other constraints and obtain the results shown in fig-
ure 4 (a). However, if we know that al and a2 are the
only two subintervals of the interval A and that al {b)
a2, then we should be able to decide A {si) al and
A {fi) a2, i.e., al and a2 together comprise all of A.
These desired results are shown in figure 4 (b).

248 TEMPORAL CONSTRAINTS

al/
\
c a2

Figure 4 (a): Weak Results from Allen’s Algorithm
/ A

Figure 4 (b): Strong Results Desired

These weak results can be carried further when we
consider a network that consists of more than one de-
composition. Suppose that at the beginning we have
the network shown in figure 5, where “inc” stands for
{si, di, fi, eq).

yA1/\
al

Figure 5: An Example of Two Decompositions
When the constraints: al {b) a2 and a2 {b) a3 are
given from the input, we can apply Allen’s algorithm
to obtain the results shown in figure 6 (a). Here, “corn”
stands for the constraint: {o, oi, s, si, d, di, f, fi,
eq). However, using a similar argument a.s made in
the previous example, we should get the stronger re-
sults shown in figure 6 (b).

Figure 6 (a): Weak Results from Allen’s Algorithm

Figure 6 (b): Strong Results Desired
There are also networks that are considered as con-

sistent by Allen’s algorithm but in fact are not when
used to represent decompositions. For instance, if the
constraint between A and a2 in figure 4 (b) is labeled as
{di), Allen’s algorithm would decide this as consistent,
but as we argued above, this is in fact not consistent
with the desired results.

The reason that Allen’s algorithm gives us weak re-
sults when applied in plan recognition is that it treats
all the intervals of actions as independent of each other.
In plans where actions are connected through decom-
positions, the intervals of abstract actions actually de-
pend on the intervals of their decomposed subactions.
To make these dependencies explicit in the reasoning
process, we must acknowledge that decompositions of
abstract actions into their subactions are complete; no
more subactions are needed for or can be added to
the decompositions. This will allow us to compute the
boundary intervals of the abstract actions based on all
the constraints between the subactions. For instance,
if there is a linear ordering between all the subactions,
we will be able to decide that the abstract action is
temporally bounded by the subactions that occur the
earliest and the latest. We say that a decomposition is
closed if the interval of the abstract action is tempo-
rally bounded by the intervals of the subactions.

Closing Procedures for Decsmpositioras
We can classify the 13 basic temporal relations intro-
duced in section 2 into five classes: {b, m, 03, {bi, mi,
oi3, Csi, di, fi3, {s, 4 f), and {eq). Then, we can di-
vide a constraint into five subsets accordingly. Given
the constraint (0, oi, s, si, d, di, f, ii, eq), for example,
the corresponding five subsets are: (03, {oil, {si, di,
Ii), {s, d, f), and {es). Let C be the constraint be-
tween the two subactions of a decomposition. Then,
for each non-empty subset of C, we can provide a sim-
ple solution to close the decomposition, as shown in
figure 7.

w

iIyA\

al +- a2
C2 C (bi,mi,oi}

J I / I
al = ;2 ai * a2

C3 E (si,di,fi} C4 C (s,d,f)

ai
C5 = (eq} b a2

Figure 7: Five Special Cases for Closing a
Decomposition

Case (a) indicates that A is bounded by al and a2
since for any subset of Cl={b, m, 03 the start part of
al is clearly located before the end part of a2. Case (c)
suggests that A is bounded by al since for any subset

SONG & COHEN 249

of C3=(si, di, fi} we can decide that A {eq) al, and
from the composition of A (eq) al and al 63 a2 we
can derive A C3 a2. Cases (b) and (d) are the reverse
cases of (a) and (c), and caSe (e) is trivially justified.

If only one subset of C is not empty, then the cor-
responding c8se above already provides a solution for
closing the decomposition. However, a constraint gen-
erally has more than one non-empty subset. As a re-
sult, the solution of closing a decomposition should be
the disjunction of 8ll the &es that contain these non-
empty-subsets. We can illustrate the closing process
by viewing a decomposition 8s the conjunction of all
its constraints. For example, the formula for a decom-
position of two subactions may be described 8s:

A {si, di, fi, eq) al A A (si, di, fi, eq) 82 A
81 {b, bi) 82

By dividing {b, bi) into two subsets, {b) and {bi), we
can change it into an equivalent formula:

(A (si, di, fi, eq) al A A (si, di, fi, eq) 82 A
81 {b) 82) V

(A {si, di, fi, eq) al A A {si, di, fi, eq) 82 A
al {bi) 82)

Now it becomes clear that each subformula above cor-
responds to a special case in figure 7. So we can close
both subformulas and get the disjunction of two special
cases:

(A {si) al A A {fii) a2 A al {b) 82) V
/* from case (a) */

(A {fi) 81 A A {si) a2 A 81 (bi) 82)
/* from caSe (b) */

Unfortunately, this result is too strong in that we have
to divide the temporal network of a plan into two net-
works, each cont&ing a special case. For a plan that
consists of many decompositions, the total number of
different networks could be much larger. In order to re-
tain just one network while still taking decompositions
into account, we will have to relax our result to some
extent. Here, we merge the two subformulas by taking
the disjunctions of the corresponding constraints: -

A (si, fi) al A A {si, fi) 82 A al (b, bi) a2
This formula is equivalent to the previous result, but it
also contains two redundant, inconsistent cases. This
can be seen from the expansion of the formula:

(A {si) al A A {fi) 82 A al {b) 82) V
(A (fi) al A A (si) 82 A al {bi) a2) V
(A {si) al A A {si) 82 A al {b) 82) V

/* inconsistent */
(A {fi) al A A {fi) 82 A al (bi) a2)

/* inconsistent */
However, even though our result is weakened, it is
still stronger than that from Allen’s algorithm in most
cases. For the example above, the result from Allen’s
algorithm will be:

A {si, di, fi) al A A {si, di, fi) a2 A al {b, bi) a2

In the following, we summarire our discussion and
provide a procedure for closing a decomposition of two
subactions. Here, R(k, n) is a relation given between
two intervals labeled 8s nodes k and n.
fuencion close-two(R(k, n))

create a dummy node labeled temp;
W-v, k) +- (3;
R(temp, n) <- (3;
if R(k, n) n {b, m, 03 is not empty then

R(temp, k) <- R(temp, k) U {si);
R(temp, n) <- R(temp, n) U {fi);

if R(k, n) (7 {bi, mi, oi) is not empty then
R(temp, k) <- R(temp, k) U (II);
R(temp, n) <- R(temp, n) U {si);

C3 <- R(k, n) n {si, di, fi);
if C3 is not empty then

R(temp, k) <- R(temp, k) U {eq);
R(temp, n) <- R(temp, n) U C3;

64 <- R(k, n) n (s, d, f);
if C4 is not empty then

R(temp, k) <- R(temp, k) U -C4;
R(temp, n) <- R(temp, n) U {eq);

if R(k, n) n {eq) is not empty then
R(temp, k) <- R(temp, k) U (eq);
R(temp, n) <- R(temp, n) U {eq);

return temp
end

Having developed the procedure of “close-two”, we
are now in a position to extend the result to close a
decomposition of more than two subactions. Figure 8
(a) shows a decomposition of three subactions. -

Figure 8: Closing a Decomposition of Three
Subactions

In order to close the decomposition, we introduce an
intermediate action aI that takes 8.1 and 82 as subac-
tions, shown in (b). Now, for this new decomposition,
we can call “closeitwo” and get the closed constraints
between a12 and al and between a12 and 82. Then,

250 TEMPORAL CONSTRAINTS

based on these results, we can compute a new con-
str8int between al2 and a3, shown in (c). Now, 812
and a3 form the two subactions of A. Once again, we
can call “close-two” and get the closed constraints be-
tween A and al2 and between A and 83. At this time,
the constraint between A and a3 has been closed. To
get the closed constraints between A and al and be-
tween A and 82, we can perform the compositions of
A to al and a2 via a12. Since all the constraints have
been closed, we can eliminate the intermediate action
812 and all the constraints connected to it. The result
brings us back to the structure in (a), but this time,
all the constraints from A to its subactions have been
closed. The above process can be repeated if there are
more subactions to be closed.

We can now give a general procedure, which closes
a decomposition of any number of subactions by using
our “close-two” procedure. Here, k denotes an abstract
action, and S, a list of the subactions of the abstract
action. Also, given nodes i and j, N(i, j) corresponds
to the existing constraint, and R(i, j), a new or derived
constraint between i and j. Finally, U denotes the dis-
junctive set of all possible primitive interval relations,
i.e., U = {b, bi, m, mi, o, oi, s, si, d, di, f, fi, eq).

procedure close-all(k, S)
begin

get first n from the list S;
g(> “(’ ;- Ga3;

- n;

while S is not empty do begin
get next n from the list S;
R(k, n) <- U;
foreaeh c in C do

R(k, n) <- R(k, n) n N(k, c) o N(c, n);
temp <- close-two(R(k,n));
foreach c in C do

N(k, c) <- R(temp, k) o N(k, c);
;‘: n& ;-{Rjtemp, n);

n
end

end

Our Strengthened Algorithm
Our closing procedure is built on the temporal con-
straints between all the subactions. In order to get
stronger results, we first view plans 8s temporal net-
works and use Allen’s algorithm to make these con-
straints more specific. Then, we view plans as hier-
archical structures and close all the decompositions in
a depth first order. Once all the decompositions are
closed, some of the constraints in the network may be
updated. As a result, we need to call Allen’s algorithm
again to propagate these constraints. In general, we
can design a strengthened algorithm by interactively
calling Allen’s algorithm and our closing procedure a
number of times. Such a process will eventually termi-
nate since every time we update 8 constraint, some of

its basic relations will be eliminated and there are at
most 13 basic relations in a constraint3.

Applications of Tern
There are two possible results that can be obtained
from temporal reasoning: if the given constraints are
inconsistent with the prestored constraints of a candi-
date plan, then the plan will be eliminated; otherwise,
the given constraints will be added to make the pre-
stored constrabints more specific.

Here is an example to show the importance of doing
temporal reasoning during plan recognition. Suppose
that our plan library contains two plans for making
GuoTie and JianJiao, two common ways of making
fried dumplings in Chinese cooking, shown in figure 9.

Make -
Dumplings Dumplings Dumplings

Make Jian Jiao

(b) LITI] I {bh
Make - Boil - Fry

Dumplings Dumplings Dumplings

Figure 9: Two Simplified Plans in a Plan Library
Then, given the observation that BoilDumplings oc-
curs earlier than FryDumplings*, 8 plan recognition
model that does not use temporal constraints from the
input would propose MakeGuoTie and MakeJianJiao
8s the candidate plans, for both of them contain the
two given actions. However, by taking the temporal
relations given in the input as a constraint and check-
ing them with those prestored in candidate plans, we
find that MakeGuoTie is inconsistent with the given
constraint, 8s BoilDumplings occurs later than Fry-
Dumplings in this plan. As a result, our plan recogni-
tion model will only propose MakeJianJiao as the plan
that the agent is performing.

The other result of making prestored constraints
more specific can benefit the process of deriving the
temporal constraints from observation, which we call
“temporal analysis.” In a natural language setting, the
need for automating temporal analysis becomes im-
portant, 8s the observations are described in terms of

“Due to the sp ace limitation, the algorithm is not given
here, but the readers should be able to construct it easily
based on the discussion of this section.

‘In a natural language setting, for example, such a tem-
poral constraint may be obtained by linguistically analyz-
ing the input: “I have boiled the dumplings and am now
frying them.”

SONG & COHEN 251

utterances and the temporal constraints suggested by
linguistic expressions such as tense, aspect, temporal
adverbials and connectives. However, as pointed out
in ([Webber, 19881, [Allen, 19881, [Song, lQQO]), these
expressions are sometimes not strong enough to help
derive specific temporal relations between the actions
mentioned in the input; other discourse indicators such
as cue-phrases and world knowledge are also needed for
doing temporal analysis. Temporal reasoning is useful
in that it provides a way of combining the given con-
straints and the prestored constraints in a candidate
plan. In cases where the constraints indicated in the
input are specific, we can use them to reduce the set
of candidate plans, but in cases where the given con-
straints are vague, the prestored constraints in a can-
didate plan can be used to fill in the details about the
temporal relations between actions. Readers are re-
ferred to Song [lQQO] for more discussion on temporal
analysis.

Conclusion
In this paper, we present a strengthened algorithm for
temporal reasoning during plan recognition. We view
plans as both hierarchical structures and temporal net-
works. This allows us to design a closing procedure
which makes specific the temporal constraints between
an action and its decomposed subactions and works in-
teractively with Allen’s algorithm to obtain strength-
ened results. Two main applications of temporal rea-
soning are to reduce the number of candidate plans
during plan recognition and to help derive the tem-
poral constraints from natural language input through
linguistic analysis.

Note that the strengthened algorithm is not quite
efficient in that it has to call our closing procedure
and Allen’s algorithm interactively. Some results on
localizing the propagation in Allen’s algorithm have
been reported in [Koomen, 19891. Future work should
be directed to find efficient ways for combining the two
processes during temporal reasoning.

Acknowledgements
We would like to thank Peter van Beek and the anony-
mous referees for their useful comments. This work was
partially supported by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC), Insti-
tute of Computer Research (ICR), and the University
of Waterloo.

References
Allen, James F. 19838. Maintaining knowledge about
temporal intervals. Communications of the ACM
26(11):832-843.
Allen, James F. I983b. Recognizing intentions from
natural language utterances. In Brady, M. and
Berwick, R., editors 1983b, Computational Models of
Discourse. The MIT Press. 107-166.

Allen, James F. 1988. Natural Language Understand-
ing. The Benjamin/Cummings Publishing Company.
Bruce, B. 1981. Plans and social actions. In Spiro,
R.; Bruce, B.; and Brewer, W., editors 1981, The-
oretical Issues in Reading Comprehension. Lawrence
Erlbsum, Hillsdale.
Carberry, Sandra 1986. Pragmatic Modeling in Infor-
mation System Interfaces. Ph.D. Dissertation, Uni-
versity of Deleware.
Goldman, Robert and Charniak, Eugene 1988. A
probabilistic ATMS for plan recognition. In AAAI-88
Workshop on Plan Recognition.
Goodman, Bradley A. and Litman, Diane J. 1990.
Plan recognition for intelligent interfaces. In IEEE
Conference on ArtificiaZ Intelligence Applications.

Huff, Karen and Lesser, Victor 1982. Knowledge-
based command understanding: An example for the
software development environment. Technical Report
TR 82-6, Computer and Information Science, Univer-
sity of Massachusetts, Amherst.
Kautz, Henry A. 1987. A Formal Theory of
Plan Recognition. Ph.D. Dissertation, University of
Rochester.
Koomen, Johannes A. 1989. Localizing temporal con-
straint propagation. In Proceedings of the 1st Interna-
tional Conference on Principles of Knowledge Repre-
sentation and Reasoning, Toronto, Canada. 198-202.
Litman, Diane 1985. Plan Recognition and Dis-
course Analysis: An Integrated Approach for Under-
standing Dialogues. Ph.D. Dissertation, University of
Rochester.
Pollack, Martha E. 1986. Inferring Domain Plans in
Question-Answering. Ph.D. Dissertation, University
of Pennsylvania.
Schank, Roger C. and Abelson, Robert P. 1977.
Scripts, Plans, Goals, and Understanding. L. Erl-
baum Associates, Hillsdale, New Jersey.
Schmidt, C. F.; Sridharan, N. S.; and Goodson, J. L.
1978. The plan recognition problem: An intersection
of psychology and artificial intelligence. Artificial In-
telligence 11:45-83.
Song, Fei 1990. A Processing Model for Tempo-
ral Analysis and its Application to Plan Recognition.
Ph.D. Dissertation, University of Waterloo.
Webber, Bonnie Lynn 1988. Tense as discourse
anaphor. computational Linguistics 14(2):61-73.
Wilensky, Robert 1983. Planning and Understand-
ing: A Computational Approach to Human Reason-
ing. Addison-Wesley Publishing Company.

252 TEMPORAL CONSTRAINTS

