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Abstract 

This paper presents a general model for tempo- 
ral reasoning, capable of handling both qualita 
tive and quantitative information. This model al- 
lows the representation and processing of all types 
of constraints considered in the literature so far, - 
including metric constraints (restricting the dis- 
tance between time points), and qualitative, dis- 
junctive, constraints (specifying the relative posi- 
tion between temporal objects). Reasoning tasks 
in this unified framework are formulated as con- 
straint satisfaction problems, and are solved by tra- 
ditional constraint satisfaction techniques, such as 
backtracking and path consistency. A new class of 
tractable problems is characterized, involving qual- 
itative networks augmented by quantitative do- 
main constraints, some of which can be solved in 
polynomial time using arc and path consistency. 

1 Introduction 
In recent years, several constraint-based formalisms 
have been proposed for temporal reasoning, most no- 
tably, Allen’s interval algebra (IA) [l], Vilain and 
Kautz’s point algebra (PA) [14], Dean and McDer- 
mott’s time map [2], and metric networks (Dechter, 
Meiri and Pearl [4]). In these formalisms, temporal 
reasoning tasks are formulated as constraint satisfac- 
tion problems, where the variables are temporal objects 
such as points and intervals, and temporal statements 
are viewed as constraints on the location of these ob- 
jects along the time line. Unfortunately, none of the 
existing formalisms can conveniently handle all forms 
of temporal knowledge. Qualitative approaches such as 
Allen’s interval algebra and Vilain and Kautz’s point 
algebra face difficulties in representing and reasoning 
about metric, numerical information, while the quanti- 
tative approaches exhibit limited expressiveness when 
it comes to qualitative information [4]. 

*This work was supported in part by the Air Force Office 
of Scientific Research, AFOSR 900136. 
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In this paper we offer a general, network-based com- 
putational model for temporal reasoning, capable of 
handling both qualitative and quantitative information. 
In this model, variables represent both points and inter- 
vals (as opposed to existing formalisms, where one has 
to commit to a single type of objects), and constraints 
may be either metric, between points, or qualitative dis- 
junctive relations between objects. The unique feature 
of this framework is that it allows the representation 
and processing of all types of constraints considered in 
the literature so far. 

The main contribution of this paper lies in provid- 
ing a formal unifying framework for temporal reasoning, 
generalizing the interval algebra, the point algebra, and 
metric networks. In this framework, we are able to uti- 
lize constraint satisfaction techniques in solving several 
reasoning tasks. Specifically: 

General networks can be solved by decomposition 
into singleton labelings, each solvable in polynomial 
time. This decomposition scheme can be improved 
by traditional constraint satisfaction techniques such 
as variants of backtrack search. 

The input can be effectively encoded in a minimal 
network representation, which provides answers to 
many queries. 

Path consistency algorithms can be used in prepro- 
cessing the input network to improve search effi- 
ciency, or to compute an approximation to the mini- 
mal network. 

We were able to identify two classes of tractable prob- 
lems, solvable in polynomial time. The first consists 
of augmented qualitative networks, composed of qual- 
itative constraints between points and quantitative 
domain constraints, which can be solved using arc 
and path consistency. The second class consists of 
networks for which path consistency algorithms are 
exact. 

We also show that our model compares favorably 
with an alternative approach for combining quantita- 
tive and qualitative constraints, proposed by Kautz and 
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Ladkin [6], f rom both conceptual and computational 
points of view. 

The paper is organized as follows. Section 2 formally 
defines the constraint types under consideration. The 
definitions of the new model are given in Section 3. 
Section 4 reviews and extends the hierarchy of quali- 
tative networks. Section 5 discusses augmented qual- 
itative networks-qualitative networks augmented by 
domain constraints. Section 6 presents two methods 
for solving general networks: a decomposition scheme 
and path consistency, and identifies a class of networks 
for which path consistency is exact. Section 7 provides 
summary and concluding remarks, including a compar- 
ison to Kautz and Ladkin’s model. Proofs of theorems 
can be found in the extended version of this paper [IO]. 

2 The Representation Language 
Consider a typical temporal reasoning problem. We are 
given the following information. 

Example 1. John and Fred work for a company in LA. 
They usually work at the local office, in which case it 
takes John less than 20 minutes and Fred between 15- 
20 minutes to get to work. Twice a week John works at 
the main office, in which case he commutes at least 60 
minutes to work. Today John left home between ‘7:05- 
7:10, and Fred arrived at work between 7:50-‘7:55. We 
also know that Fred and John met at a traffic light on 
their way to work. 

We wish to represent and reason about such knowledge. 
We wish to answer queries such as: “is the information 
in this story consistent., 7 ” “who was the first to arrive 
at work?,” “what are the possible times at which John 
arrived at work?,” and so on. 

We consider two types of temporal objects: points 
and intervals. Intervals correspond to time periods dur- 
ing which events occur or propositions hold, and points 
represent beginning and ending points of some events, 
as well as neutral points of time. For example, in our 
story, we have two meaningful events: “John was go- 
ing to work” and “Fred was going to work.” These 
events are associated with intervals J = [PI, &I, and 
F = [Ps, Pd], respectively. The extreme points of these 
intervals, PI, . . . , P4, represent the times in which Fred 
and John left home and arrived at work. We also intro- 
duce a neutral point, PO, to represent the “beginning of 
the world” in our story. One possible choice for PO is 
7:00 a.m. Temporal statements in the story are treated 
as constraints on the location of objects (such as in- 
tervals J and F, and points PO, . . . , P4) along the time 
line. There are two types of constraints: qualitative 
and quantitative. Qualitative constraints specify the 
relative position of pairs of objects. For instance, the 
fact that John and Fred met at a traffic light, forces 
intervals .7 and F to overlap. Quantitative constraints 
place absolute bounds or restrict the temporal distance 
between points. For example, the information on Fred’s 

Relation Symbol Inverse Relations 
on Endpoints 

p before I b bi p < I- 
p starts I 
p during I i ii: 

p = I- 
I- < p < I+ 

p finishes I f fi p = I+ 
p cbfter I a ai p > I+ i 

Table 1: The basic relations between a point p and an 
Interval I = [I-, I+]. 

commuting time constrains the length of interval F, i.e., 
the distance between P3 and P4. In the rest of this 
section we formally define qualitative and quantitative 
constraints, and the relationships between them. 

ualitative Constraints 
A qualitative constraint between two objects Oi and 
Oj, each may be a point or an interval, is a disjunction 
of the form 

(Oi Yl Oj) v l s-V (Oi rk Oj), (1) 
where each one of the ra’s is a basic relation that may 
exist between the two objects. There are three types of 
basic relations. 
e Basic Interval-Interval (II) relations that can hold 

between a pair of intervals [l], before, meets, starts, 
during, finishes, overlaps, their inverses, and the 
equality relation, a total of 13 relations, denoted by 
the set (b, m, s, d, f, o, bi, mi, si, di, fi, oi, =). 

e Basic Point-Point (PP) relations that can hold be- 
tween a pair of points [14], denoted by the set 
{< 9 =9 >I* 

m Basic Point-Interval (PI) relations that can hold be- 
tween a point and an interval, and basic Interval- 
Point (IP) relations that can hold between an inter- 
val and a point. These relations are defined in Table 1 
(see also [7]). 

A subset of basic relations (of the same type) corre- 
sponds to an ambiguous, disjunctive, relationship be- 
tween objects. For example, Equation (1) may also 
be written as Oi { r1, . . . , rk} oj; alternatively, we say 
that the constraint between Oa and Oj is the relation 
set {rl, . . . , Tk}. One qualitative constraint given in Ex- 
ample 1 reflects the fact that John and Fred met at a 
traffic light. It is expressed by an II relation specifying 
that intervals J and F are not disjoint: 

J (s, si, d, di, f, fi, o, oi, =) F. 

To facilitate the processing of qualitative constraints, 
we define a qualitative aZgebru(QA), whose elements are 
all legal constraints (all subsets of basic relations of the 
same type)-2 l3 II Relations, 23 PP’ relations, 25 PI 
relations, and 25 IP relations. Two binary operations 
are defined on these elements: intersection and compo- 
sition. The intersection of two qualitative constraints, 
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Table 2: A full transitivity table. 

R’ and R”, denoted by R’ @ R”, is the set-theoretic in- 
tersection R’ n R”. The composition of two constraints, 
R’ between objects Oi and Oj, and R” between objects 
Oj and Ok, is a new relation between objects Oi and 
Ok, induced by R’ and R”. Formally, the composition 
of R’ and R”, denoted by R’ 8 R”, is the composition 
of the constituent basic relations, namely 

R’ @ R” = (P’ @ r”[r’ E R’, r” E R”). 

Composition of two basic relations r’ and P”, is defined 
by a transitivity table shown in Table 2. Six transitivity 
tables, Tr, . . . , T4, TPA, TIA, are required; each defining 
a composition of basic relations of a certain type. For 
example, composition of a basic PP relation and a basic 
PI relation is defined in table Tr. Two important sub- 
sets of QA are Allen’s Interval Algebra (IA), the restric- 
tion of &A to II relations, and Vilain and Kautz’s Point 
Algebra (PA), its restriction to PP relations. The cor- 
responding transitivity tables are given in [l] and [14], 
and appear in Table 2 as TIA and TPA, respectively. 
The rest of the tables, Tl, . . . , T4, are given in the ex- 
tended version of this paper [lo]. Illegal combinations 
in Table 2 are denoted by 0. 

Quantitative Constraints 
Quantitative constraints refer to absolute location or 
the distance between points [4]. There are two types of 
quantitative constraints: 
o A unary constraint, on point Pi, restricts the location 

of Pi to a given set of intervals 

(4 E Il)V ‘**V (Pi E Ik). 

o A binary constraint, between points Pi and Pj, con- 
strains the permissible values for the distance Pj -Pi: 

(Pj - Pi E II) V l ” V (Pj - Pi E Ik). 

In both cases the constraint is represented by a set of in- 
tervals(I~,...,&}; each interval may be open or closed 
in either sidel. For example, one binary constraint 
given in our story specifies the duration of interval J 
(the event “John was going to work)“: 

-f'2 - PI E ((WO),(6O,c+ 

c ‘The set (II,... , Ik} represents the set of rea,l num- 
bers 11 U - - . U Ik. Throughout the paper we shall use the 
convention whereby a real number v is in {II,. . . , Ik} iff 
2, E 11 u*‘-ul;e. 

The fact that John left home between 7:05-7:lO is trans- 
lated into a unary constraint on PI, PI E ((5, lo)}, or 
5 < PI < 10 (note that all times are relative to PO, i.e. 
7:00 a.m.). Sometimes it is easier to treat a unary con- 
straint on Pi as a binary constraint between PO and Pi, 
having the same interval representation. For exa.mple, 
the above unary constraint is equivalent to the binary 
constraint, PI - PO E ((5,lO)). 

The intersection and composition operations for 
quantitative constraints assume the following form. Let 
C’ and C” be quantitative constraints, represented by 
interval sets I’ and I”, respectively. Then, the intersec- 
tion of C’ and C” is defined as 

c’ $ c” = {XIX E I’, dc E I”). 

The composition of C’ and C” is defined as 
c’ @I c” = (%)3X E I’, 3y E I”, 2 + y = z). 

Relationships between Qualitative and 
Quantitative Constraints 
The existence of a constraint of one type someGmes 
implies the existence of an implicit constraint of the 
other type. This can only occur when the constraint 
involves two points. Consider a pair of points Pi and 
Pj. If a quantitative constraint, C, between Pi and P’ is 
given (by an interval set (II, a . . , Ik )), then the implied 
qualitative constraint, QUAL(C), is defined as follows 
(see also [6]). 
o If 0 E (11,. . . , Ik}, then “=” E QUAL(C). 
e If there exists a value 2, > 0 such that v E 

{Il,..., 1k), then “<” E QUAL(C). 
e If there exists a value v < 0 such that v E 

{L-., Ik}, then “>” E QUAL(C). 
Similarly, If a qualitative constraint, C, between Pi and 
c’ is given (by a relation set R), then the implied quan- 
titative constraint, QUAN(C), is defined as follows. 
e If “<” E R, then (0,oo) E QUAN(C). 
0 If %99 E R, then [0] E QUAN(C). 
e If “>” E R, then (-oo,O) E QUAN(C). 

The intersection and composition operations can be 
extended to cases where the operands are constraints 
of different types. If C’ is a quantitative constraint 
and C” is qualitative, then intersection is defined as 
quantitative intersection: 

c’ $ c” = C’ @ QUAN(C”). (2) 
Composition, on the other hand, depends on the t’ype 
of C”. 
e If C” is a PP relation, then composition (and conse- 

quently the resulting constraint) is quantitative 
c’ @I c” = C’ @I QUAN(C”). 

o If C” is a PI relation, then composition is qualitat#ive 
c’ @I c” = QUAL(C’) 8 C”. 
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3 General Temparral Constraint 
Networks 

We now present a network-based model which facili- 
tates the processing of all constraints described in the 
previous section. The definitions of the new model fol- 
low closely those developed for discrete constraint net- 
works [ll], and for metric networks [4]. 

A general temporal constraint network involves a set 
of variables (Xl,. . . , Xra}, each representing a tempo- 
ral object (a point or an interval), and a set of unary 
and binary constraints. When a variable represents a 
time point its domain is the set of real numbers R; 
when a variable represents a temporal interval, its do- 
main is the set of ordered pairs of real numbers, i.e. 
{(a, b)jcl, b E %,a < b}. Constraints may be quan- 
titative or qualitative. Each qualitative constraint is 
represented by a relation set R. Each quantitative con- 
straint is represented by an interval set I. Constraints 
between variables representing points are always main- 
tained in their quantitative form. We also assume 
that unary quantitative constraints are represented by 
equivalent binary constraints, as shown in the previous 
section. A set of internal constraints relates each in- 
terval I = [I-, 1+] to its endpoints, I- {starts) I, and 
I+ (finishes) I. 

A constraint network is associated with a directed 
constraint graph, where nodes represent variables, and 
an arc i ---) j indicates that a constraint Cij, between 
variables Xi and Xj, is specified. The arc is labeled 
by an interval set (when the constraint is quantitative) 
or by a QA element (when it is qualitative). The con- 
straint graph of Example 1 is shown in Figure 1. 

A tuple X = (xl,. . . , xra) is called a solution if the 
assignment {Xi = 21,. . . , Xn = x~} satisfies all the 
constraints (note that the value assigned to a variable 
which represents an interval is a pair of real numbers). 
The network is consistent if at least one solution exists. 
A value v is a feasible value for variable Xi, if there 
exists a solution in which Xi = v. The set of all feasible 
values of a variable is called its minimal domain. 

We define a partial order, C, among binary con- 
straints of the same type. A constraint C’ is tighter 
than constraint C”, denoted by C’ E C”, if every pair 
of values allowed by C’ is also allowed by C”. If C’ and 
C” are qualitative, represented by relation sets R’ and 
R”, respectively, then C’ C C” if and only if R’ E R”. 
If C’ and C” are quantitative, represented by interval 
sets I’ and I”, respectively, then C’ E C” if and only if 
for every value v E I’, we have also v E I”. This partial 
order can be extended to networks in the usual way. A 
network N’ is tighter than network NJ’, if the partial 
order C is satisfied for all the corresponding constraints. 
Two networks are equivalent if they possess the same 
solution set. A network may have many equivalent rep- 
resentations; in particular, there is a unique equivalent 
network, M, which is minimal with respect to E, called 
the minimal network (the minimal network is unique 

because equivalent networks are closed under intersec- 
tion). The arc constraints specified by M are called the 
minimal constraints. 

The minimal network is an effective, more explicit, 
encoding of the given knowledge. Consider for exam- 
ple the minimal network of Example 1. The minimal 
constraint between J and F is {di}, and the minimal 
constraint between PI and P2 is ((60,oo)). From this 
minimal network representation, we can infer that to- 
day John was working in the main office; he arrived 
at work after 8:OO a.m., and thus Fred was the first to 
arrive at work. 

Given a network N, the first interesting task is to 
determine its consistency. If the network is consistent, 
we are interested in other reasoning tasks, such as find- 
ing a solution to N, computing the minimal domain of 
a given variable Xi, computing the minimal constraint 
between a given pair of variables Xi and Xj, and com- 
puting the full minimal network. The rest of the paper 
is concerned with solving these tasks. 

4 The ierarchy of Qualitative 
Networks 

Before we present solution techniques for general net- 
works, we briefly describe the hierarchy of qualitative 
networks. 

Consider a network having only qualitative con- 
straints. If all constraints are II relations (namely IA 
elements), or PP relations (PA elements), then the net- 
work is called an IA network, or a PA network, re- 
spectively [12]. If all constraints are PI and IP rela- 
tions, then the network is called an IPA network (for 
Interval-Point Algebra2). A special case of a PA net- 
work, where the relations are convex (taken only from 
{<, 5, = , 2, >}, namely excluding # ), is called a convex 
PA network (CPA network). 

It can be easily shown that any qualitative network 
can be represented by an IA network. On the other 
hand, there are some qualitative networks that can- 
not be represented by a PA network. For example (see 
[14]), a network consisting of two intervals, I and J, and 
a single constraint between them, I {before, after} J. 
Formally, the following relationship can be established 
among qualitative networks. 

Proposition 1 Let QN be the set of al/ qualitaiive 
networks. Let net(CPA), net(PA), net(IPA), and 
net(IA) denote the set of qualitative networks which 
can be represented by CPA networks, PA networks, IPA 
networks, and IA networks, respectively. Then, 

net(CPA) C net(PA) C net(IPA) C net(IA) = QN. 

2We use this n ame to comply with the names IA and 
PA, although technically these relations, together with the 
intersection and composition operations, do not constitute 
an algebra, because they are not closed under composition. 
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t(O, 2’9,630, d) 

Figure 1: The constraint graph of Example 1. 

By climbing up in this hierarchy from CPA networks 
towards IA networks we gain expressiveness, but at the 
same time lose tractability. For example, deciding con- 
sistency of a PA network can be done in time O(n’) 
[13], but it becomes NP-complete for IA networks [14], 
or even for IPA networks, as stated in the following 
theorem. 

Theorem 2 Deciding consistency of an IPA network 
is NP- hard. 

Theorem 2 suggests that the border between 
tractable and intractable qualitative networks lies 
somewhere between PA networks and IPA networks. 

5 Augmented Qualitative Networks 
We now return to solving general networks. First, we 
observe that even the simplest task of deciding con- 
sistency of a general network is NP-hard. This fol- 
lows trivially from the fact that deciding consistency 
for either metric networks or IA networks is NP-hard 
[4, 141. Therefore, it is unlikely that there exists a gen- 
eral polynomial algorithm for deciding consistency of a 
network. In this section we take another approach, and 
pursue “islands of tractability”-special classes of net- 
works which admit polynomial solution. In particular, 
we consider the simplest type of network which contains 
both qualitative and quantitative constraints, called an 
augmented qualitative network, a qualitative network 
augmented by unray constraints on its domains. 

We may view qualitative networks as a special case 
of augmented qualitative networks, where the domains 
are unlimited. For example, PA networks can be re- 
garded as augmented qualitative networks with do- 
mains (-oo,oo). It follows that in our quest for 
tractability, we can only augment tractable qualitative 
networks such as CPA and PA networks. 

In this section, we consider CPA and PA networks 
over three domain classes which carry significant im- 
portance in temporal reasoning applications: 

1. Discrete domains, where each variable may assume 
only a finite number of values (for instance, when we 
settle for crude timing of events such as the day or 
year in which they occurred). 

(15JO)I 

2. Single-interval domains, where we have only an up- 
per and/or a lower bound on the timing of events. 

3. Multiple-intervals domains, which subsumes the two 
previous cases3. 

A CPA network over multiple-intervals domains is de- 
picted in Figure 2a, where each variable is labeled by 
its domain intervals. Note that in this example, and 
also throughout the rest of this section, we use a special 
constraint graph representation, where the domain con- 
straints are expressed as unary constraints (in general 
networks they are represented as binary constra.ints). 

We next show that for augmented CPA networks 
and for some augmented PA networks, all interesting 
reasoning tasks can be solved in polynomial time, by 
enforcing arc consistency (AC) and path consistency 
PC>* 

First, let us review the definitions of arc consistency 
and path consistency [8, 111. An arc i + j is arc consis- 
tent if and only if for any value x E Di , there is a value 
y E Dj, such that the constraint Cij is satisfied. A path 
P from i to j, io = i ---) il + a.. + i, = j, is path 
consistent if the direct constraint Cij is tighter than 
the composition of the constraints along P, namely, 
Cij E CiO,il @ . l l @ Cirnel,irn. Note that our defini- 
tion of path consistency is slightly different than the 
original one [8], as it does not consider the domain con- 
straints. A network G is arc (path) consistent if all its 
arcs (paths) are consistent. Figure 2b shows an equiv- 
alent arc- and path-consistent form of the network in 
Figure 2a. 

The following theorems establish the local consis- 
tency levels which are sufficient to determine the con- 
sistency of augmented CPA networks. 
Tlneorem 3 Any nonempty arc-consistent CPA net- 
work over discrete domains is consistent. 

Theorem 4 Any nonempty arc- and path-consistent 
CPA network over multiple-intervals domains is con- 
sistent. 

3Note that a discrete domain { ~1, . . . , vk) is essentially a 
multiple-intervals domain {[VI, VI], . . . , [vk, vk]}. 

4A nonemp t y network is a network in which all domains 
and all constraints are nonempty. 
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Figure 2: (a) A CPA network over multiple-intervals domains. (b) An equivalent arc- and path-consistent form. 

Theorems 3 and 4 provide an effective test for de- 
ciding consistency of an augmented CPA network. We 
simply enforce the required consistency level, and then 
check whether the domains and the constraints are 
empty. The network is consistent if and only if all do- 
mains and all constraints are nonempty. Moreover, by 
enforcing arc and path consistency we also compute the 
minimal domains, as stated in the next theorem. 

Theorem 5 Let G = (V, E) be a nonempty arc- and 
path-consistent CPA network over multiple-intervals 
domains. Then, all domains are minimal. 

When we move up in the hierarchy from CPA net- 
works to PA networks (allowing also the inequality re- 
lation between points), deciding consistency and com- 
puting the minimal domains remain tractable for single- 
interval domains. Unfortunately, deciding consistency 
becomes NP-hard for discrete domains, and conse- 
quently, for multiple-intervals domains. 
Theorem 6 Let G = (V, E) be a nonempty arc- and 
path-consistent PA network over single-interval do- 
mains. Then, G is consistent, and all domains are 
minimal. 

Proposition ‘7 Deciding consistency of a PA network 
over discrete domains is NP-hard. 

One way to convert a network into an equivalent 
arc-consistent form is by applying algorithm AC-3 [8], 
shown in Figure 3. The algorithm repeatedly applies 
the function REVISE((i, j)), which makes arc i + j 
consistent, until a fixed point, where all arcs are con- 
sistent, is reached. The function REVISE( (i, j)) re- 
stricts Di, the domain of variable Xi, using operations 
on quantitative constraints: 

Di + Di @ Dj 8 QUAN(Cji). 

Taking advantage of the special features of PA net- 
works, we are able to bound the running time of AC-3 
ai follows. 
Theorem 8 Let G = (V, E) be an augmented PA net- 
work. Let n and e be the number of nodes and the num- 
ber of edges, respectively. Then, the timing of algorithm 
AC-3 is bounded as follows. 

1. Q t {i - jli - j E E} 
2. while Q # 8 do 
3. select and delete any arc k - m from Q 
4. if REVISE( (Ic, m)) then 
5. Q c Q U {i - kli - k E ,?I?, i # m} 
6. end 

Figure 3: AC-3-an arc consistency algorit,hm. 

If the domains are discrete, then AC-3 takes 
O(eklog k) time, where k is the maximum domain 
sixe5. 

(B If the domains consist of single intervals, then AC-3 
takes O(en) time. 
If the domains consist of multiple intervals, then AC- 
3 takes O(en2K2) time, where K is the maximum 
number of intervals in any domain. 

A network can be converted into an equivalent path- 
consistent form by applying any path consistency algo- 
rithm to the underlying qualitative network [8, 14, 121. 
Path consistency algorithms impose local consistency 
among triplets of variables, (i, k, j), by using a relax- 
ation operation 

cij t cij @ cik @ ckj. (3) 

Relaxation operations are applied until a fixed point 
is reached, or until some constraint becomes empt’y in- 
dicating an inconsistent network. One efficient path 
consistency algorithm is PC-2 [8], shown in Figure 4, 
where the relaxation operation of Equation (3) is per- 
formed by the function REVISE((i, k, j)). Algorithm 
PC-2 runs to completion in O(n3) time [9]. 

Table 3 summarizes the complexity of determining 
consistency in augmented qualitative networks. Note 
that when both arc and path consistency are required, 
we first need to establish path consistency, which re- 
sults in a complete graph, namely e = n2. Algorithms 

5Recently, Deville and Van Hentenryck [5] have devised 
an efficient arc-consistency algorithm which runs in O(eL) 
time for CPA networks over discrete domains, improving the 
O(eX;log k) upper bound of AC-3. 

MEIRI 265 



Discrete Single interval Multiple intervals 
CPA networks AC AC + PC AC + PC 

0( ek log n) w ) O(n* K2) 
PA networks NP-complete AC + PC NP-complete 

O(n’) 
IPA networks NP-complete NP-complete NP-complete 

Table 3: Complexity of deciding consistency in augmented qualitative networks. 

1. Q + ((4 k.i)l(i < j), (k # G.i)} 
2. while Q # 0 do 
3. select and delete any triplet (i, k, j) from Q 
4. if REVISE((i, k, j)) then 
5. Q t Q u RELATED-PATHS( (;, k, j)) 
6. end 

Figure 4: PC-2-a path consistency algorithm. 

for assembling a solution to augmented qualitative net- 
works are given in the extended version of this paper 
[lo]. Their complexity is bounded by the time needed 
to decide consistency. 

6 Solving General Networks 
In this section we focus on solving general networks. 
First, we describe an exponential brute-force algorithm, 
and then we investigate the applicability of path con- 
sistency algorithms. 

Let N be a given network. A basic label of arc i + j, 
is a selection of a single interval from the interval set 
(if Cij is quantitative) or a basic relation from the QA 
element (if Cij is qualitative). A network whose arcs are 
labeled by basic labels of N is called a singleton labeling 
of N. We may solve N by generating all its singleton 
labelings, solve each one of them independently, and 
then combine the results. Specifically, N is consistent 
if and only if there exists a consistent singleton labeling 
of N, and the minimal network can be computed by 
taking the union over the minimal networks of all the 
singleton labelings. 

Each qualitative constraint in a singleton labeling can 
be translated into a set of up to four linear inequalities 
on points. For example, a constraint I {during} J, can 
be translated into linear inequalities on the endpoints of 
I and J, I- > J-, I- < J+, I+ > J-, and I+ < J+. 
Using the QUAN translation, these inequalities can be 
translated into quantitative constraints. It follows, that 
a singleton labeling is equivalent to an SZ’P network-a 
metric network whose constraints are labeled by single 
intervals [4]. An STP network can be solved in O(n3) 
time [4]; thus, the overall complexity of this decomposi- 
tion scheme is O(n3ke), where n is the number of vari- 
ables, e is the number of arcs in the constraint graph, 
and k is the maximum number of basic labels on any 
arc. 

This brute-force enumeration can be pruned signifi- 
cantly by running a backtracking algorithm on a meta- 
CSP whose variables are the network arcs, and their do- 
mains are the possible basic labels. Backtrack assigns 
a basic label to an arc, as long as the corresponding 
STP network is consistent and, if no such assignment1 is 
possible, it backtracks. 

Imposing local consistency among subsets of variables 
may serve as a preprocessing step to improve backtrack. 
This strategy has been proven successful (see [3]), as 
enforcing local consistency can be achieved in polyno- 
mial time, while it may substantially reduce the num- 
ber of dead-ends encountered in the search phase it- 
self. In particular, experimental evaluation shows that 
enforcing a low consistency level, such as arc or path 
consistency, gives the best results [3]. Following this 
rationale, we next show that path consistency, which 
in general networks amounts to the least a-mount of 
preprocessing6, can be enforced in polynomial time. 

To assess the complexity of PC-2 in the context of 
general networks, we introduce the notion of a range of 
a network [4]. The range of a quantitative constraint, C, 
represented by an interval set {II, . . . , Ik}, where the in- 
tervals’ extreme points are integers, is sup(lk) - inf( r,). 
The range of a network is the maximum range over 
all its quantitative constraints. The range of a net- 
work containing rational extreme points is the range of 
the equivalent integral network, obtained from the in- 
put network by multiplying all extreme points by their 
greatest common divisor. The next theorem shows that 
the timing of PC-2 is bounded by O(n3R3), where R is 
the range of the network. 
Theorem 9 Let G = (V, E) be a given network. Algo- 
rithm PC-2 performs no more than O(n3R relaxation 
steps, and its timing is bounded by O(n3R 2 ), where R 
is the range of G. 

Path consistency can also be regarded as an alterna- 
tive approach to exhaustive enumeration, serving as an 
approximation scheme which often yields the minimal 
network. For example, applying path consistency to 
the network of Figure 1 produces the minimal network. 
Although, in general, a path consistent network is not 
necessarily minimal and may not even be consistcent, in 
some cases path consistency is guaranteed to determine 

‘General networks are trivially arc consistent since unary 
constraints are represented as binary constraints. 
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the consistency of a network or to compute the minimal 
network representation. 
Proposition I.0 Let G = (V, E) be a path-consistent 
network. If the qualitative subnetwork of G is in 
net(CPA), and the quantitative subnetwork constitutes 
an STP network, then G is consistent. 

Corollary 11 Any path-consistent singleton labeling is 
minimal. 

Note that for networks satisfying the condition of 
Proposition 10 path consistency is not guaranteed to 
compute the minimal network (a counterexample is pro- 
vided in [lo]); h owever, it can be shown that for these 
networks, the minimal network can be computed using 
O(n2) applications of path consistency (see [lo]). 

We feel that some more temporal problems can be 
solved by path consistency algorithms; further inves- 
tigation may reveal new classes for which these algo- 
rithms are exact. 

7 Conclusions 
We described a general network-based model for tempo- 
ral reasoning capable of handling both qualitative and 
quantitative information. It facilitates the processing 
of quantitative constraints on points, and all qualita- 
tive constraints between temporal objects. We used 
constraints satisfaction techniques in solving reasoning 
tasks in this model. In particular, general networks 
can be solved by a backtracking algorithm, or by path 
consistency, which computes an approximation to the 
minimal network. 

Kautz and Ladkin [6] h ave introduced an alternative 
model for temporal reasoning. It consists of two com- 
ponents: a metric network and an IA network. These 
two networks, however, are not connected via internal 
constraints, rather, they are kept separately, and the 
inter-component relationships are managed by means of 
external control. To solve reasoning tasks in this model, 
Kautz and Ladkin proposed an algorithm which solves 
each component independently, and then circulates in- 
formation between the two parts, using the QUAL and 
QUAN translations, until a fixed point is reached. Our 
model has two advantages over Kautz and Ladkin’s 
model: 

1. 

2. 

It is conceptually clearer, as all information is stored 
in a single network, and constraint propagation takes 
place in the knowledge level itself. 
From computational point of view, we are able to pro- 
vide tighter bounds for various reasoning tasks. For 
example, in order to convert a given network into an 
equivalent path-consistent form, Kautz and Ladkin’s 
algorithm may require O(n2) informations transfer- 
ences, resulting in an overall complexity of O(n5R3), 
compared to O(n3R3) in our model. 
Using our integrated model we were able to identify 

two new classes of tractable networks. The first class 

is obtained by augmenting PA and CPA networks with 
various domain constraints. We showed that some of 
these networks can be solved using arc and path consis- 
tency. The second class consists of networks which can 
be solved by path consistency algorithms, for example, 
singleton labelings. 

Future research should enrich the representation lan- 
guage to facilitate modeling of more involved reasoning 
tasks; in particular, we should incorporate non-binary 
constraints in our model. 
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