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Abstract 

Expert systems in complex domains require rich 
knowledge representation formalisms and problem 
solving paradigms. A typical framework may involve 
a blackboard architecture and a Reason Maintenance 
System (RMS) to guarantee the consistency of the 
links between the blackboard nodes. However, in 
order to satisfy computational feasibility and become 
operational, the resulting expert system must often be 
rewritten using less expressive tools. 

We propose an architecture integrating efficiently 
an OPS-like inference engine and an Assumption 
based Truth Maintenance System (AT&IS). These 
paradigms have been separately investigated and 
extended. Roles distribution between an ATMS and an 
inference engine integrated in a single framework is 
one of the major issues to obtain good overall 
performance. 

Two architectures will be studied : loose coupling, 
where the ATMS and the inference engine are clearly 
separated, and tight coupling where the ATMS is 
intimately integrated with the match phase of a RETE- 
based inference engine. The advantages and 
drawbacks of both solutions are described in details. 
Finally, future work is discussed. 

Expert systems in complex domains require rich 
knowledge representation formalisms and problem solving 
paradigms. Commercially available expert system shells 
provide some compromise between expressiveness and 
tractability. 

A forward chaining engine with an OPS-like rule 
language is one of the key components of such shells. Its 
operation involves a match-select-act cycle: 

1. Match : The condition part of each rule is 
compared to the content of the fact base (or working 
memory). If a set of facts conjointly satisfy all the 
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conditions, the rule is said to be instantiated. One or 
many rule instantiations may thus be found, and are 
queued in a list of executable operators, called the 
conflict set or the agenda. 

Select : One or more rule instantiations are selected 
from the agenda for future execution of their action 
part. Selection is done according to some user defined 
conflict resolution strategy. Predefined strategies 
usually include FIFO, LIFO, highest priority, and 
more. 

Act : The right-hand-side actions of the selected 
rule, or rules, are executed. These actions may modify 
the fact base, which will possibly instantiate new 
rules. 

Having the possibility to retract facts from the working 
memory is necessary in many applications. When allowing 
this, one should be aware that the conclusions derived from 
the removed facts are not necessarily valid anymore. And 
when there are contradictions in the fact base, the system 
may not be able to pursue its reasoning process. To avoid 
handling these problems manually, Reason Maintenance 
Systems @MS) have been developed. 

Expert systems using a RMS store justifications : a 
justification is a link between a fact created on the right- 
hand-side of a rule and the facts which instantiated this 
rule. Let us illustrate this through an example in an OPS- 
like syntax : 

Rule base; (Rule birds-fly (Bird ?x) + (assert (fly ?x))) 

Fact base: (Bird Tweety) 

In this example, the justification 
(Bird Tweety) + (Fly Tweefy) will be created. 

When retracting a fact, the system follows the links 
established by the justifications, to retract not only the 
desired fact, but also all the facts it enabled to derive. 

Among the different RMSs, the ATMS (Assumption 
based Truth Maintenance System) became very popular in 
the last few years. ATMSs are a convenient way of 
exploring many choices in parallel when solving a 
problem. 
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With an ATMS, the user does not need to program the 
expansion of the search space, as he would usually have to 
in a framework with control primitives and a backtracking 
mechanism. 

Inference engines and ATMSs have been separately 
investigated and extended. Their integration and 
interfacing in a single framework implies many design 
choices. Roles distribution between the ATMS and the 
inference engine is one of the major issues. 

In this article, we propose an architecture enabling to 
efficiently integrate an OPS-like inference engine with 
blackboard-like control, and a reason maintenance system. 
Different architectures will be studied : loose coupling, 
where the ATMS and the inference engine are clearly 
separated, and tight coupling where the ATMS is 
intimately integrated within the match phase of the 
inference engine. The advantages and drawbacks of both 
solutions are described in details. 

For a better understanding of the remaining of this article, 
basic concepts of an Assumption Based Truth Maintenance 
System are listed. 

ATMSs make the distinction between assumptions and 
other data (or facts). Assumptions are data which are 
presumed to be true, unless there is evidence of the 
contrary. Other data are primitive data always true, or that 
can be derived from other data or assumptions. The ATMS 
records such dependencies through justifications. It is then 
in charge of determining which combinations of choices 

(assumptions) are consistent, and which conclusions they 
enable to draw. 

To achieve this, each datum is stamped with a label 
consisting of the list of environments (i.e. sets of 
assumptions) under which it holds. When a new 
justification for a datum is provided, its label is updated 
with the label of the left-hand-side of the justification (i.e. 
list of environments under which all facts or hypotheses 
supporting the datum through this justification, are 
simultaneously true). 

An environment is inconsistent if it enables to derive a 
special datum representing the contradiction (usually noted 
I). It is then called a nogood. When such an environment 
is discovered, it has to be removed from all the labels. 

The context of a consistent environment is the set of 
facts that can be derived from the assumptions of that 
environment. A problem with many possible solutions will 
thus generate many contexts. The main advantage of an 
ATMS is that all solutions are developed in parallel, and 
maximum work is shared between solutions. 

However, nogoods handling and labels updating are 
costly operations and their efficient implementation is a 
key point in the successful use of ATMSs in real world 
problems. 

The first and simplest way of combining an OPS-like 
inference engine and an ATMS is to modify the select and 
act steps of the inference engine cycle. The match step 
remains unchanged. 

New ATMS node with label 

::::::::::::::::::::::::::::::::::::::::::$:: 
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with ATMS node, instal 
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Figure 1: Loose Coupling of an ATMS and an inference engine. 
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The ATMS is responsible of all the truth maintenance 
computations (updating labels, handling contradictions ..). 
The inference engine transmits facts, assumptions and 
justifications to the ATMS. 

Justifications are created when a rule is fired, 
maintaining the dependency of the fact (or assumption) 
created by the action part over the facts (or assumptions) 
that instantiated the left-hand-side of the rule. This 
overhead occurs in the act step of the inference engine and 
is not CPU intensive, unless the justification is installed on 
an already existing fact, since the ATMS has to update its 
label, which may cause a chain of label modifications of 
other connected facts. 

An important situation occurs when the label of the 
justifications’s left-hand-side is empty. In this case, 
updating labels does not modify the labels of existing 
ATMS node, and creating an ATMS node with an empty 
label is useless, since the associated datum does not hold in 
any context. Such justifications bring no new information, 
and firing a rule whose left-hand-side has been matched by 
a contradictory fact tuple can thus be prevented. 

Thus, in the loose coupling approach, we slightly modify 
the select phase of the inference engine. When a rule 
instantiation is selected from the agenda the ATMS is 
called to compute the label of the facts or hypotheses that 
matched its left-hand-side. If the computed label is empty, 
the selection is invalidated and the selection phase has to 
try another rule instantiation. 

Other justifications of interest are those that support the 
I datum, since they may create new nogoods. Such 
justifications are created using special rules called 
contradiction-rules, the sole implicit action of which is to 
derive 1. 

Firing contradiction-rules will possibly prevent some 
other rule firing, by augmenting the nogoods. 

Moreover, if the contradiction rules are fired too late, 
expensive label updating may occur due to justifications 
introduced by rules that would have been otherwise 
prevented from firing. One of the crucial problems in 
interfacing an OPS-like inference engine and an ATMS is 
thus to discover the contradictions, thereby creating 
nogoods, before firing any rule instantiated by a tuple, the 
label of which contains a superset of such nogoods. 

Contradiction rules are thus given a special priority., and 
the select phase will always pick them first in the agenda. 
This loose coupling approach has some advantages, but 
can quickly become intractable in a combinatorial 
application. 

Let us illustrate this with the well known 4-Queens 
problem : 

(for ?i from 1 to 4 do 
(assume (queen ?i ?j))))) 

(solution ?i ?j ?k ?l))> 

Rule find-solution will be instantiated by the following 
fact tuples: 

(queen 1 1) (queen 2 I) (queen 3 1) (queen 4 1) 
(queen 1 1) (queen 2 1) (queen 3 1) (queen 4 2) 
(queen 1 1) (queen 2 1) (queen 3 1) (queen 4 3) 
(queen 1 1) (queen 2 1) (queen 3 1) (queen 4 4) 
etc... 

One clearly sees that 256 instantiations of the 
find solution rule are queued in the agenda whereas only 2 
will-get fired to find the 2 solutions to the 4-queens 
problem. The match process of the inference engine has 
done useless work, because the overall label of a tuple 
instantiating the find-solution rule is computed only after 
the rule is completely instantiated, and not while the 
inference engine is trying to match its condition part with 
facts in the fact base. 

Another important issue is that the ATMS will 
recompute the label of the fact tuple ((queen 1 1) (queen 2 
1)) 4 times, to compute the label of the tuples which 
created the first 4 instantiations of the find-solution rule, 
listed above. 

The problem with this loose coupling is therefore that a 
lot of work is done either repeatably by the ATMS or 
uselessly by the match step of the inference engine. 

We clearly need to integrate the ATMS label 
computation with the match step of the inference engine, 
and store intermediate label computation in order to share 
label computations between many rule instantiations. The 
RETE algorithm has been chosen for such an approach, 
since it is a state saving and node sharing algorithm and 
one of the most efficient ones for OPS-like inference 
engines. 

involves some modifications to the RETE algorithms. We 
presume some familiarity with production systems and the 
RETE algorithm. We invite the reader to refer to the book 
“Programming in OPS 5” (Brow.nston et al. 1985), to 
articles on the RETE (Forgy 1982) (Scales 86), (Schorr et 
aL.1986) and (Chehire 1990). 

The basic idea is to make the ATMS intervene earlier in 
e inference engine cycle : we will thus modify the match 

step instead of the selection step. This method will enable 
to discover the contradictions much earlier, and thus to 
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shortcut a great amount of computations (join operations) 
in the RETE network. Label computations are stored in the 
RETE memory nodes, and possibly shared among different 
rule instantiations. 

Creating partial justifications 
Let us fire the rules in the following example : 

Rules : (Rule R2 
(employee ?name ?department) 
(location ?department ?floor) 
(test (I ?floor 2)) 

+ (assert (takes-stairs ?name))) 
(Rule R3 

(employee ?name ?department) 
(location ?department ?floor) 
(test (< ?floor 2)) 
(age ?name ?age & > 50) 

+ (assert (warn ?name take-lift))) 
search) (location research 1) 

In the loose coupling approach, justifications provided 
by the inference engine consist in two completely 
instantiated rules : 

Ii”,“““‘-“’ ““’ ““““““’ “““” “” ‘.’ ” 
(employee Betty re 

(location research 

(age Betty 51 

Figure 2 : ATMS nodes and links. 

The label of the fact (takes-stairs Betty) is computed 
from the labels of the (employee Betty research), and 
(location research I) facts. The label of the fact 
(warn Betty take-lift) is then computed from the labels of 
the (employee Betty research), (location research I), and 
(age Betty 51) facts. 

The computation of the first justification could be used 
for the second one. 

To insure the sharing of labels computations and thus 
improve global performance, we introduce artial 
justifications and new ATMS nodes. 

(location research 1) 

Figure 3 : Partial justifications. 

We replace the previous two total justifications by the 
following four partial justifications : 

(Employee Betty research) A (location research 1) + Nl 
Nl A (age Betty 51) + N2 
N2 + (warn Betty take-lift) 
Nl + (takes-stairs Betty) 

The label of Nl corresponds to the label of the tuple 
((employee Betty research) (location research 1)). It will 
be used to compute the label of (takes-stairs Betty), and the 
label of N2, which in turn will be used to compute the label 
of (warn Betty take-lift). Some of the computation is thus 
factorized. 

Furthermore, this structure is very easily matched on the 
RETE architecture : it can be built incrementally while 
propagating the fact tuples in the RETE network. The 
RETE memory nodes now contain not only the tuples 
instantiating the joined patterns, but also the interme 
Ba of this tuple (label of the corresponding partial 
ju cation). 

The only modification to the basic RETE propagation 
algorithm is to compute the label of each created fact tuple, 
and if this label is empty, the tuple is discarded and not 
transmitted to successor nodes in the network. 

Labels recordings in the memory nodes significantly 
reduces labels re-computations for a single rule. Moreover, 
labels recomputations for different rules can be reduced 
when carefully coding the rules, thanks to the node sharing 
algorithm of the RETE network. 
Another important issue for global performance of the 
RETE network, is that the memory nodes can have a 
significantly smaller size when label computations are 
included in the network, since inconsistent fact tuples are 
discarded early in the network. 

Nevertheless, a problem arises when a new nogood is 
discovered. If this environment has already been used in 
some intermediate labels, all memory nodes where it 
appears have to be updated. A similar problem arises when 
a new justification is installed on an existing fact. Label 
updating is a costly operation in an ATMS, and is made 
even worse with tight coupling, since we have added new 
ATMS nodes that are stored in the RETE memory nodes. 
If a fact (or a fact tuple) becomes inconsistent, it has to be 
removed from the RETE memory nodes, together with all 
facts or tuples connected to it. 

In order to optimize label updating, and possible fact or 
nodes, we do more 
operations : 

- each fact records the a-memory nodes where it is 
stored, 

- each fact tuple records the P-memory node where it 
was created, 
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- each environment records all facts and fact tuples, 
in the label of which it appears, 

- each fact and fact tuple records the links through 
partial justifications to other facts and fact tuples. 

When a nogood is discovered, the label of each fact or 
fact tuple recorded in this environment has to be updated, 
propagation of label updating follows the partial 
justifications links. When the label of a fact or a fact tuple 
becomes empty, it has to be removed from the RETE 
memory nodes where it appears. 

The important point is that this retract operation is made 
very efficient. 

- The remove-fact procedure : if a fact has to be 
removed we just add the recorded a-memory nodes 
in a list of modified RETE nodes. We then follow 
the partial justification links to remove the fact 
tuples directly connected to this fact, calling the 
remove-tuple procedure. No updating of the RETE 
nodes has yet taken place. 

- The remove-tunle nrocedure : if a fact tuple has to 
be removed, we just add the recorded P-memory 
node in the list of modified RETE nodes. We then 
follow the partial justification links to remove the 
tuples directly connected to this fact. No updating 
of the RETE nodes is done. 

When the previous two procedures are done, we iterate 
on the list of modified RETE nodes to simply remove the 
marked facts or fact tuples. 

The retract operation is here very different from the add 
operation, which is not the case in the standard RETE 
technique. The memory nodes that really need to be 
updated, and only those, are accessed. Moreover, they are 
accessed only once for a single retract operation. 

However, label updating and nogood handling remain 
costly operations and great attention should be paid not to 
uselessly transmit tuples which will later be discovered 
inconsistent, and will thus have to be removed from the 
memory nodes. 

This problem arises for example when a fact tuple 
instantiates both a contradiction rule and other rules. As 
soon as the contradiction is fired, all such instantiations 
will be removed from the agenda, and intermediate fact 
tuples removed from the RETE memory nodes. 

In order to avoid this, the user needs to tune the 
propagation of fact tuples in the RETE network. The 
classical solution consists in adding control facts. This will 
result in less readable rules, where domain knowledge is 
mixed with control knowledge. 

In the 4-queens problem, facts created by the initialize 
rule are transmitted to the FWIE nodes of thefivzd-solution 
rule before any contradiction rule is fired. All the work 
done to instantiate the rule 256 times and compute all the 
labels will have to be defeased. This problem disappears if 
we split thefind-solution rule : 
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(Rule end-solution priority 10 
(startJimding_solutions) 
(queen 1 ?i) (queen 2 ?j) 
(queen 3 ?k) (queen 4 ?I) 
+ (assert (solution ?i ?j ?k ?I))) 

Combination of tuples in the memory nodes of the 
find-solution rule will be delayed until the 
(startf?nding-solutions) fact is created. This control fact 
will be added by another rule that will be fiied only after 
all contradiction rules are fired. Thus, only consistent 
tuples will be created and transmitted, nogood ones will be 
discarded. This technique results in important performance 
gains. 

The multiple agendas mechanism that is described in 
(Chehire 1990) is a more convenient way of controlling 
fact propagation in the RETE network. However, this 
mechanisms is aimed at providing blackboard like control 
in OPS-like systems. The control over fact propagation is 
only a by-product and optimizes the RETE network by 
focussing it on the most promising nodes with regard to the 
solution under evaluation. If this mechanism is used to 
optimize the ATMS computations , conflicts may arise 
with its use for pure control over rule packets scheduling. 
We thus need to provide another mean of optimizing 
contradiction handling. 

~~ti~izi~~ the 
When a memory een a contradiction 
and other rules, we need to fire the contradiction before 
transmitting the fact tuples to the other rules. Therefore, in 
such a case, all the tests for a contradiction have to be 
executed before the tests for transmitting the fact tuples to 
the successor nodes. The contradiction rules will not be 
queued in the agenda with the other rules, but will have to 
be fired as soon as instantiated. 

In order to stress the important gains of the proposed 
optimization, let US rewrite the find-solution rule of the 
4-Queens problem in the following form : 

The join keyword in this rule transforms the comb shape 
of the RETE in a balanced tree. This optimization 
technique enables to ensure a better sharing of nodes in the 
network. We show the size of the memory nodes in the 
cases of loose coupling, and tight coupling with special 
contradiction handling: 



Loose coupling anproach 
Thefind_solution rule is instantiated 43680 times, and the 
select step of the inference engine will discard all but 48 of 
them. 

It is important to note that the tight coupling approach 
without special contradiction handling directly in the 
RETE is even worse than loose coupling, in this example. 
Indeed, all the work done in the loose coupling approach 
has still to be done, but on top of that, all the fact tuples 
stored in the memory nodes and that become inconsistant 
after the firing of the contradiction rules, have to be 
removed. 

Contra Rule 
Queen-attack 

Figure 4 : Size of memory nodes using the loose coupling 
approach. 

Tipht counling with snecial contradiction handling 
ill2m@a 

Figure 5 : Size of memories using tight coupling approach, and 
handling contradictions in join nodes. 

When a new hypothesis is sent to the RETE network, it 
is combined with previous queen hypotheses. If a pair of 
queens satisfies the contradiction tests, a nogood is created; 
otherwise the pair is stored for further transmission in the 
network. This transmission occurs when all tuples involved 
in the current fact transmission have been tested for 

tion. The 152 contradictions are fired as soon as 
, and only IO4 tuples are stored in the first 

P-memory node, instead of 256. These tuples are then 
combined, and since all contradictions have been first 
discovered, only the 48 valid combinations are stored in 
the final p-memory node. The number of labels 
computations does not exceed 256 in the first AND-node, 
and 104*104=10816 in the second. In fact, only 6192 label 
computations occurred in the match step of the inference 
engine (due to the elimination of tuples containing several 
time the same queen), whereas 43680 were needed in the 
select step of the loose coupling approach. Moreover, label 

tations are much more efficient in the tight coupling 
ch since they involve only two labels at a time. 

g an OPS-like inference engine and an ATMS 
has important consequences on the performances of the 
overall system. 

Determining when loose or tight coupling should be 
used is greatly application-dependant. The bookkeeping 
and memory-nodes updating needed in the tight coupling 
approach are significant overheads. 

However, in a combinatorial application involving many 
contradictions, such as the N-Queens problem, the loose 
coupling approach may become intractable, and 
exponential performance gains can be obtained using tight 
coupling with special handling of contradictions. 

Therefore both possibilities should be offered in a 
generic expert system shell. A careful analysis of the 
problem then enables to choose the most appropriate 
coupling approach for a specific application. 

We are currently investigating extensions of this work to 
the domain of contextual control of the inference engine 
over the ATMS (Dressler & Farquhar 1990). The tight 
coupling approach, associated with the multiple agendas 
mechanism, provide a good framework for implementing 
an efficient focus of attention for the ATMS, allowing to 
guide rule execution and limit label propagation. 

Tight coupling also offers interesting possibilities in the 
domains of non-monotonicity and of default reasoning in 
OPS -like inference engines. 

This work has been implemented in XIA, which is the 
Thomson-CSF environment for developping and delivering 
expert modules that can be embedded in conventional 
applications. XIA results partly from ESPRIT project P96 
and from Thomson Strategic Project on AI. 

The work described in this paper has been partially 
funded by the DRET. 

We would like to thank Pr Michel Cayrol and Dr Pierre 
Tayrac of Paul Sabatier University (Toulouse, France) for 
valuable discussions and comments on ATMSs. 
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