
ciency 0 duction Systems
based uth Maintenance

Geneviiive Morgue and Thomas Chehire

Thomson-CSF/RCC
160 Boulevard de Valmy, BP 82
92704 Colombes Cedex, France

gmorgue@eurokom.ie

Abstract

Expert systems in complex domains require rich
knowledge representation formalisms and problem
solving paradigms. A typical framework may involve
a blackboard architecture and a Reason Maintenance
System (RMS) to guarantee the consistency of the
links between the blackboard nodes. However, in
order to satisfy computational feasibility and become
operational, the resulting expert system must often be
rewritten using less expressive tools.

We propose an architecture integrating efficiently
an OPS-like inference engine and an Assumption
based Truth Maintenance System (AT&IS). These
paradigms have been separately investigated and
extended. Roles distribution between an ATMS and an
inference engine integrated in a single framework is
one of the major issues to obtain good overall
performance.

Two architectures will be studied : loose coupling,
where the ATMS and the inference engine are clearly
separated, and tight coupling where the ATMS is
intimately integrated with the match phase of a RETE-
based inference engine. The advantages and
drawbacks of both solutions are described in details.
Finally, future work is discussed.

Expert systems in complex domains require rich
knowledge representation formalisms and problem solving
paradigms. Commercially available expert system shells
provide some compromise between expressiveness and
tractability.

A forward chaining engine with an OPS-like rule
language is one of the key components of such shells. Its
operation involves a match-select-act cycle:

1. Match : The condition part of each rule is
compared to the content of the fact base (or working
memory). If a set of facts conjointly satisfy all the

Thii work has been supported in part by the DRET (French
DARPA) under grant number 89/568.

268 EXTENSIONS OF TRUTH MAINTENANCE

conditions, the rule is said to be instantiated. One or
many rule instantiations may thus be found, and are
queued in a list of executable operators, called the
conflict set or the agenda.

Select : One or more rule instantiations are selected
from the agenda for future execution of their action
part. Selection is done according to some user defined
conflict resolution strategy. Predefined strategies
usually include FIFO, LIFO, highest priority, and
more.

Act : The right-hand-side actions of the selected
rule, or rules, are executed. These actions may modify
the fact base, which will possibly instantiate new
rules.

Having the possibility to retract facts from the working
memory is necessary in many applications. When allowing
this, one should be aware that the conclusions derived from
the removed facts are not necessarily valid anymore. And
when there are contradictions in the fact base, the system
may not be able to pursue its reasoning process. To avoid
handling these problems manually, Reason Maintenance
Systems @MS) have been developed.

Expert systems using a RMS store justifications : a
justification is a link between a fact created on the right-
hand-side of a rule and the facts which instantiated this
rule. Let us illustrate this through an example in an OPS-
like syntax :

Rule base; (Rule birds-fly (Bird ?x) + (assert (fly ?x)))

Fact base: (Bird Tweety)

In this example, the justification
(Bird Tweety) + (Fly Tweefy) will be created.

When retracting a fact, the system follows the links
established by the justifications, to retract not only the
desired fact, but also all the facts it enabled to derive.

Among the different RMSs, the ATMS (Assumption
based Truth Maintenance System) became very popular in
the last few years. ATMSs are a convenient way of
exploring many choices in parallel when solving a
problem.

From: AAAI-91 Proceedings. Copyright ©1991, AAAI (www.aaai.org). All rights reserved.

With an ATMS, the user does not need to program the
expansion of the search space, as he would usually have to
in a framework with control primitives and a backtracking
mechanism.

Inference engines and ATMSs have been separately
investigated and extended. Their integration and
interfacing in a single framework implies many design
choices. Roles distribution between the ATMS and the
inference engine is one of the major issues.

In this article, we propose an architecture enabling to
efficiently integrate an OPS-like inference engine with
blackboard-like control, and a reason maintenance system.
Different architectures will be studied : loose coupling,
where the ATMS and the inference engine are clearly
separated, and tight coupling where the ATMS is
intimately integrated within the match phase of the
inference engine. The advantages and drawbacks of both
solutions are described in details.

For a better understanding of the remaining of this article,
basic concepts of an Assumption Based Truth Maintenance
System are listed.

ATMSs make the distinction between assumptions and
other data (or facts). Assumptions are data which are
presumed to be true, unless there is evidence of the
contrary. Other data are primitive data always true, or that
can be derived from other data or assumptions. The ATMS
records such dependencies through justifications. It is then
in charge of determining which combinations of choices

(assumptions) are consistent, and which conclusions they
enable to draw.

To achieve this, each datum is stamped with a label
consisting of the list of environments (i.e. sets of
assumptions) under which it holds. When a new
justification for a datum is provided, its label is updated
with the label of the left-hand-side of the justification (i.e.
list of environments under which all facts or hypotheses
supporting the datum through this justification, are
simultaneously true).

An environment is inconsistent if it enables to derive a
special datum representing the contradiction (usually noted
I). It is then called a nogood. When such an environment
is discovered, it has to be removed from all the labels.

The context of a consistent environment is the set of
facts that can be derived from the assumptions of that
environment. A problem with many possible solutions will
thus generate many contexts. The main advantage of an
ATMS is that all solutions are developed in parallel, and
maximum work is shared between solutions.

However, nogoods handling and labels updating are
costly operations and their efficient implementation is a
key point in the successful use of ATMSs in real world
problems.

The first and simplest way of combining an OPS-like
inference engine and an ATMS is to modify the select and
act steps of the inference engine cycle. The match step
remains unchanged.

New ATMS node with label

::$::
‘.‘.‘.~.‘.~.~.~.~.~.~.......~.......~...~,~,. ,. .,. ,. ., ,. _. . .

with ATMS node, instal

.I AddaNOGOOD

Figure 1: Loose Coupling of an ATMS and an inference engine.

MORGUE & CHEHIRE 269

The ATMS is responsible of all the truth maintenance
computations (updating labels, handling contradictions ..).
The inference engine transmits facts, assumptions and
justifications to the ATMS.

Justifications are created when a rule is fired,
maintaining the dependency of the fact (or assumption)
created by the action part over the facts (or assumptions)
that instantiated the left-hand-side of the rule. This
overhead occurs in the act step of the inference engine and
is not CPU intensive, unless the justification is installed on
an already existing fact, since the ATMS has to update its
label, which may cause a chain of label modifications of
other connected facts.

An important situation occurs when the label of the
justifications’s left-hand-side is empty. In this case,
updating labels does not modify the labels of existing
ATMS node, and creating an ATMS node with an empty
label is useless, since the associated datum does not hold in
any context. Such justifications bring no new information,
and firing a rule whose left-hand-side has been matched by
a contradictory fact tuple can thus be prevented.

Thus, in the loose coupling approach, we slightly modify
the select phase of the inference engine. When a rule
instantiation is selected from the agenda the ATMS is
called to compute the label of the facts or hypotheses that
matched its left-hand-side. If the computed label is empty,
the selection is invalidated and the selection phase has to
try another rule instantiation.

Other justifications of interest are those that support the
I datum, since they may create new nogoods. Such
justifications are created using special rules called
contradiction-rules, the sole implicit action of which is to
derive 1.

Firing contradiction-rules will possibly prevent some
other rule firing, by augmenting the nogoods.

Moreover, if the contradiction rules are fired too late,
expensive label updating may occur due to justifications
introduced by rules that would have been otherwise
prevented from firing. One of the crucial problems in
interfacing an OPS-like inference engine and an ATMS is
thus to discover the contradictions, thereby creating
nogoods, before firing any rule instantiated by a tuple, the
label of which contains a superset of such nogoods.

Contradiction rules are thus given a special priority., and
the select phase will always pick them first in the agenda.
This loose coupling approach has some advantages, but
can quickly become intractable in a combinatorial
application.

Let us illustrate this with the well known 4-Queens
problem :

(for ?i from 1 to 4 do
(assume (queen ?i ?j)))))

(solution ?i ?j ?k ?l))>

Rule find-solution will be instantiated by the following
fact tuples:

(queen 1 1) (queen 2 I) (queen 3 1) (queen 4 1)
(queen 1 1) (queen 2 1) (queen 3 1) (queen 4 2)
(queen 1 1) (queen 2 1) (queen 3 1) (queen 4 3)
(queen 1 1) (queen 2 1) (queen 3 1) (queen 4 4)
etc...

One clearly sees that 256 instantiations of the
find solution rule are queued in the agenda whereas only 2
will-get fired to find the 2 solutions to the 4-queens
problem. The match process of the inference engine has
done useless work, because the overall label of a tuple
instantiating the find-solution rule is computed only after
the rule is completely instantiated, and not while the
inference engine is trying to match its condition part with
facts in the fact base.

Another important issue is that the ATMS will
recompute the label of the fact tuple ((queen 1 1) (queen 2
1)) 4 times, to compute the label of the tuples which
created the first 4 instantiations of the find-solution rule,
listed above.

The problem with this loose coupling is therefore that a
lot of work is done either repeatably by the ATMS or
uselessly by the match step of the inference engine.

We clearly need to integrate the ATMS label
computation with the match step of the inference engine,
and store intermediate label computation in order to share
label computations between many rule instantiations. The
RETE algorithm has been chosen for such an approach,
since it is a state saving and node sharing algorithm and
one of the most efficient ones for OPS-like inference
engines.

involves some modifications to the RETE algorithms. We
presume some familiarity with production systems and the
RETE algorithm. We invite the reader to refer to the book
“Programming in OPS 5” (Brow.nston et al. 1985), to
articles on the RETE (Forgy 1982) (Scales 86), (Schorr et
aL.1986) and (Chehire 1990).

The basic idea is to make the ATMS intervene earlier in
e inference engine cycle : we will thus modify the match

step instead of the selection step. This method will enable
to discover the contradictions much earlier, and thus to

270 EXTENSIONS OF TRUTH MAINTENANCE

shortcut a great amount of computations (join operations)
in the RETE network. Label computations are stored in the
RETE memory nodes, and possibly shared among different
rule instantiations.

Creating partial justifications
Let us fire the rules in the following example :

Rules : (Rule R2
(employee ?name ?department)
(location ?department ?floor)
(test (I ?floor 2))

+ (assert (takes-stairs ?name)))
(Rule R3

(employee ?name ?department)
(location ?department ?floor)
(test (< ?floor 2))
(age ?name ?age & > 50)

+ (assert (warn ?name take-lift)))
search) (location research 1)

In the loose coupling approach, justifications provided
by the inference engine consist in two completely
instantiated rules :

Ii”,“““‘-“’ ““’ ““““““’ “““” “” ‘.’ ”
(employee Betty re

(location research

(age Betty 51

Figure 2 : ATMS nodes and links.

The label of the fact (takes-stairs Betty) is computed
from the labels of the (employee Betty research), and
(location research I) facts. The label of the fact
(warn Betty take-lift) is then computed from the labels of
the (employee Betty research), (location research I), and
(age Betty 51) facts.

The computation of the first justification could be used
for the second one.

To insure the sharing of labels computations and thus
improve global performance, we introduce artial
justifications and new ATMS nodes.

(location research 1)

Figure 3 : Partial justifications.

We replace the previous two total justifications by the
following four partial justifications :

(Employee Betty research) A (location research 1) + Nl
Nl A (age Betty 51) + N2
N2 + (warn Betty take-lift)
Nl + (takes-stairs Betty)

The label of Nl corresponds to the label of the tuple
((employee Betty research) (location research 1)). It will
be used to compute the label of (takes-stairs Betty), and the
label of N2, which in turn will be used to compute the label
of (warn Betty take-lift). Some of the computation is thus
factorized.

Furthermore, this structure is very easily matched on the
RETE architecture : it can be built incrementally while
propagating the fact tuples in the RETE network. The
RETE memory nodes now contain not only the tuples
instantiating the joined patterns, but also the interme
Ba of this tuple (label of the corresponding partial
ju cation).

The only modification to the basic RETE propagation
algorithm is to compute the label of each created fact tuple,
and if this label is empty, the tuple is discarded and not
transmitted to successor nodes in the network.

Labels recordings in the memory nodes significantly
reduces labels re-computations for a single rule. Moreover,
labels recomputations for different rules can be reduced
when carefully coding the rules, thanks to the node sharing
algorithm of the RETE network.
Another important issue for global performance of the
RETE network, is that the memory nodes can have a
significantly smaller size when label computations are
included in the network, since inconsistent fact tuples are
discarded early in the network.

Nevertheless, a problem arises when a new nogood is
discovered. If this environment has already been used in
some intermediate labels, all memory nodes where it
appears have to be updated. A similar problem arises when
a new justification is installed on an existing fact. Label
updating is a costly operation in an ATMS, and is made
even worse with tight coupling, since we have added new
ATMS nodes that are stored in the RETE memory nodes.
If a fact (or a fact tuple) becomes inconsistent, it has to be
removed from the RETE memory nodes, together with all
facts or tuples connected to it.

In order to optimize label updating, and possible fact or
nodes, we do more
operations :

- each fact records the a-memory nodes where it is
stored,

- each fact tuple records the P-memory node where it
was created,

MORGUE & CHEHIRE 271

- each environment records all facts and fact tuples,
in the label of which it appears,

- each fact and fact tuple records the links through
partial justifications to other facts and fact tuples.

When a nogood is discovered, the label of each fact or
fact tuple recorded in this environment has to be updated,
propagation of label updating follows the partial
justifications links. When the label of a fact or a fact tuple
becomes empty, it has to be removed from the RETE
memory nodes where it appears.

The important point is that this retract operation is made
very efficient.

- The remove-fact procedure : if a fact has to be
removed we just add the recorded a-memory nodes
in a list of modified RETE nodes. We then follow
the partial justification links to remove the fact
tuples directly connected to this fact, calling the
remove-tuple procedure. No updating of the RETE
nodes has yet taken place.

- The remove-tunle nrocedure : if a fact tuple has to
be removed, we just add the recorded P-memory
node in the list of modified RETE nodes. We then
follow the partial justification links to remove the
tuples directly connected to this fact. No updating
of the RETE nodes is done.

When the previous two procedures are done, we iterate
on the list of modified RETE nodes to simply remove the
marked facts or fact tuples.

The retract operation is here very different from the add
operation, which is not the case in the standard RETE
technique. The memory nodes that really need to be
updated, and only those, are accessed. Moreover, they are
accessed only once for a single retract operation.

However, label updating and nogood handling remain
costly operations and great attention should be paid not to
uselessly transmit tuples which will later be discovered
inconsistent, and will thus have to be removed from the
memory nodes.

This problem arises for example when a fact tuple
instantiates both a contradiction rule and other rules. As
soon as the contradiction is fired, all such instantiations
will be removed from the agenda, and intermediate fact
tuples removed from the RETE memory nodes.

In order to avoid this, the user needs to tune the
propagation of fact tuples in the RETE network. The
classical solution consists in adding control facts. This will
result in less readable rules, where domain knowledge is
mixed with control knowledge.

In the 4-queens problem, facts created by the initialize
rule are transmitted to the FWIE nodes of thefivzd-solution
rule before any contradiction rule is fired. All the work
done to instantiate the rule 256 times and compute all the
labels will have to be defeased. This problem disappears if
we split thefind-solution rule :

272 EXTENSIONS OF TRUTH MAINTENANCE

(Rule end-solution priority 10
(startJimding_solutions)
(queen 1 ?i) (queen 2 ?j)
(queen 3 ?k) (queen 4 ?I)
+ (assert (solution ?i ?j ?k ?I)))

Combination of tuples in the memory nodes of the
find-solution rule will be delayed until the
(startf?nding-solutions) fact is created. This control fact
will be added by another rule that will be fiied only after
all contradiction rules are fired. Thus, only consistent
tuples will be created and transmitted, nogood ones will be
discarded. This technique results in important performance
gains.

The multiple agendas mechanism that is described in
(Chehire 1990) is a more convenient way of controlling
fact propagation in the RETE network. However, this
mechanisms is aimed at providing blackboard like control
in OPS-like systems. The control over fact propagation is
only a by-product and optimizes the RETE network by
focussing it on the most promising nodes with regard to the
solution under evaluation. If this mechanism is used to
optimize the ATMS computations , conflicts may arise
with its use for pure control over rule packets scheduling.
We thus need to provide another mean of optimizing
contradiction handling.

~~ti~izi~~ the
When a memory een a contradiction
and other rules, we need to fire the contradiction before
transmitting the fact tuples to the other rules. Therefore, in
such a case, all the tests for a contradiction have to be
executed before the tests for transmitting the fact tuples to
the successor nodes. The contradiction rules will not be
queued in the agenda with the other rules, but will have to
be fired as soon as instantiated.

In order to stress the important gains of the proposed
optimization, let US rewrite the find-solution rule of the
4-Queens problem in the following form :

The join keyword in this rule transforms the comb shape
of the RETE in a balanced tree. This optimization
technique enables to ensure a better sharing of nodes in the
network. We show the size of the memory nodes in the
cases of loose coupling, and tight coupling with special
contradiction handling:

Loose coupling anproach
Thefind_solution rule is instantiated 43680 times, and the
select step of the inference engine will discard all but 48 of
them.

It is important to note that the tight coupling approach
without special contradiction handling directly in the
RETE is even worse than loose coupling, in this example.
Indeed, all the work done in the loose coupling approach
has still to be done, but on top of that, all the fact tuples
stored in the memory nodes and that become inconsistant
after the firing of the contradiction rules, have to be
removed.

Contra Rule
Queen-attack

Figure 4 : Size of memory nodes using the loose coupling
approach.

Tipht counling with snecial contradiction handling
ill2m@a

Figure 5 : Size of memories using tight coupling approach, and
handling contradictions in join nodes.

When a new hypothesis is sent to the RETE network, it
is combined with previous queen hypotheses. If a pair of
queens satisfies the contradiction tests, a nogood is created;
otherwise the pair is stored for further transmission in the
network. This transmission occurs when all tuples involved
in the current fact transmission have been tested for

tion. The 152 contradictions are fired as soon as
, and only IO4 tuples are stored in the first

P-memory node, instead of 256. These tuples are then
combined, and since all contradictions have been first
discovered, only the 48 valid combinations are stored in
the final p-memory node. The number of labels
computations does not exceed 256 in the first AND-node,
and 104*104=10816 in the second. In fact, only 6192 label
computations occurred in the match step of the inference
engine (due to the elimination of tuples containing several
time the same queen), whereas 43680 were needed in the
select step of the loose coupling approach. Moreover, label

tations are much more efficient in the tight coupling
ch since they involve only two labels at a time.

g an OPS-like inference engine and an ATMS
has important consequences on the performances of the
overall system.

Determining when loose or tight coupling should be
used is greatly application-dependant. The bookkeeping
and memory-nodes updating needed in the tight coupling
approach are significant overheads.

However, in a combinatorial application involving many
contradictions, such as the N-Queens problem, the loose
coupling approach may become intractable, and
exponential performance gains can be obtained using tight
coupling with special handling of contradictions.

Therefore both possibilities should be offered in a
generic expert system shell. A careful analysis of the
problem then enables to choose the most appropriate
coupling approach for a specific application.

We are currently investigating extensions of this work to
the domain of contextual control of the inference engine
over the ATMS (Dressler & Farquhar 1990). The tight
coupling approach, associated with the multiple agendas
mechanism, provide a good framework for implementing
an efficient focus of attention for the ATMS, allowing to
guide rule execution and limit label propagation.

Tight coupling also offers interesting possibilities in the
domains of non-monotonicity and of default reasoning in
OPS -like inference engines.

This work has been implemented in XIA, which is the
Thomson-CSF environment for developping and delivering
expert modules that can be embedded in conventional
applications. XIA results partly from ESPRIT project P96
and from Thomson Strategic Project on AI.

The work described in this paper has been partially
funded by the DRET.

We would like to thank Pr Michel Cayrol and Dr Pierre
Tayrac of Paul Sabatier University (Toulouse, France) for
valuable discussions and comments on ATMSs.

MORGUE & CHEHIRE 273

References

Brownston, Farrell, Kant & Martin. 1985. Programming in
OPS5 : an introduction to Rule-based Programming.
Addislon-Wesley Series in Artificial Intelligence.

Cayrol M. and Tayrac P. 1989. Les resolutions CAT-
correctes et CCT-correctes, la resolution CAT correcte
dans l’ATMS. In Proceedings of the Colloque International
sur l’informatique cognitive des organisations.Qu&ec

Charpillet F, Theret P.and Haton J.P. 1989. X-TRA : un
moteur d’inference comportant deux modes de compilation
de regles TREAT ou RETE et un systeme de maintien de
la v&it6 de type ATMS” In Proceedings of the ninth
International Workshop on Expert Systems and their
Applications, 285-299. Avignon, France.

Chehire T. 1990. Augmenting the RETE network to
efficiently compile a blackboard system. In Proceedings of
Expert Systems 90.253-262. Ed. T.R Addis and R. Muir,
British Computer Society Conference Series, London.

Dermott J.Mc, Newell A. and Moore J. 1978. The
Efficiency of certain Production System Implementations.
Pattern-directed Inference Systems. Academic Press.

Doyle J. 1979 A Truth Maintenance System. Artificial
Intelligence 12~23 1-272.

Dressler O., and Farquhar. 1990. Putting the Problem
Solver Back in the Driver Seat : Contextual Control over
the ATMS. In Proceedings of ECAI 90 Workshop on
Truth Maintenance Systems, European Conference on
Artificial Intelligence,S tockholm Sweden.

Dressler 0. 1989. An extended basic ATMS, In
Proceedings of the 2nd International Workshop on Non-
Monotonic Reasoning, Springer LNCS 346

Dressler 0. 1988. Extending the ATMS. In Proceedings of
the European Conference on Artificial Intelligence, 535
540, Munich,.

Forgy C.L. 1982. RETE : A Fast Algorithm for the Many
Pattern/Many Object Pattern Match Problem. Artificial
Intelligence 19:17-37.

Ghallab M. 1989. Qptimisation de processus decisionnels
pour la robotique. These d&t, UPS, Toulouse.

Gupta A., Forgy C. and Newell A. 1982. High-Speed
Implementations of Ruled-Based Systems. A CM
Transactions on Computer Systems

de Kleer J. 1986. An Assumption based Truth Maintenance
System. ArtifZcial Intelligence 28: 127-224.

de Kleer J. 1988. A general labeling algorithm for
assumption-based Truth Maintenance. In Proceedings of
the sixth National Conference on Artificial Intelligence,
188- 192, Saint-Paul MN.

Miranker D.P. 1987. TREAT : A Better Match Algorithm
for AI Production Systems. In Proceedings of the Fifth
National Conference on Artificial Intelligence, 42-47,
Seattle.

Scales D.J. 1986. Efficient Matching Algorithms for the
SOAR/OPSS Production System, Report No KSL 86-47,
Knowledge System Laboratory, Stanford Univ.

Schorr M.I., Daly, T.P., Lee I-IS. and Tibbits B.R. 1986.
Advances in RETE pattern matching. In Proceedings of the
Fourth National Conference on Artificial Intelligence.

Reiter R. and de Kleer J., 1987. Foundations of
Assumption-based Truth Maintenance System. Preliminary
report In Proceedings of the Fifth National Conference on
Artificial Intelligence, 227-234, Seattle.

Tayrac P. and Cayrol M. 1990. ARC : an extended ATMS
based on directed CAT-correct resolution. In Proceedings
of ECAI 90 Workshop on Truth Maintenance Systems,
European Conference on Artificial Intelligence,Stockholm
Sweden.

274 EXTENSIONS OF TRUTH MAINTENANCE

