
IXM2: A Parallel Associative Processor for Knowledge
Tetsuya Higuchil, Hiroaki Kitano2, Tatsurni Furuya’,

Ken-ichi Handal, Naoto Takahashi3, Akio Kokubul

Electrotechnical Laboratory’ Carnegie Mellon University2 University of Tsukuba3
l- 1-4 Umezono, Tsukuba, Center for Machine Translation l-l-l Tennodai, Tsukuba

Ibaraki, Japan 305 Pittsburgh, PA 15213 Ibaraki, Japan 305
Email: higuchi@etl.go.jp

Abstract

This paper describes a parallel associative pro-
cessor, IXM2, developed mainly for semantic
network processing. IXM2 consists of 64 as-
sociative processors and 9 network processors,
having a total of 256K words of associative
memory. The large associative memory en-
ables 65,536 semantic network nodes to be pro-
cessed in parallel and reduces the order of al-
gorithmic complexity to O(1) in basic semantic
net operations. We claim that intensive use of
associative memory provides far superior per-
formance in carrying out the basic operations
necessary for semantic network processing: in-
tersection, marker-propagation, and arithmetic
operations.

1 Introduction

In this paper, we propose a parallel associative memory
processing architecture, and examine its performance su-
periorities over existing architectures for massively paral-
lel machines. The parallel associative memory processing
architecture is characterized by its intensive use of asso-
ciative memory to obtain massive parallelism. The archi-
tecture is ideal for processing very large knowledge bases
often represented by semantic networks. We have imple-
mented the IXM2 associative memory processor based
on our architecture in order to validate benefits of our
architecture.

Several efforts are underway to develop a very large
knowledge base (VLKB) which contains over a million
concepts. MCC’s CYC [Lenart and Guha, 19891 and
EDR’s electric dictionaries [EDR, 19901 are such exam-
ples. The basic framework of these knowledge-bases can
be represented by semantic networks [Quillian, 19671.
While notable effort has been made to develop a sound
theory on how to represent and develop VLKB, no sig-
nificant investigation has been made on how to process
VLKBs. The obvious problem of processing VLKB, as
opposed to a small or medium size knowledge-base, is its
computational cost. Even a simple operation to propa
gate markers through a certain link would require in-
creasing computing time on serial machines as the size
of the network grows. This also applies to three basic op-

296 PARALLEL SUPPORT FOR R-B SYSTEMS

erations for processing semantic networks: (1) intersec-
tion search, (2) marker-propagation, and (3) arithmatic
operations.

One obvious way out from this problem is the devel-
opment of massively parallel machines. There are sev-
eral massively parallel machines already developed, or
currently being developed (SNAP [Moldovan, 19901, the
Connection Machine [Hillis, 19851). In general, these
machines assume one node per processor type mapping
of semantic network onto the hardware. The underlying
assumption is that significant speed up can be obtained
due to parallel computing by each processor in SIMD
manner.

However, the pitfalls of this approach are that (1) pro-
cessing within each processor is performed in a bit-serial
manner, and (2) all marker-propagation must be done
through communication links which is very slow. This
implies that current architectures exhibit serious degra-
dation of performance regardless of the fact that these
operations look highly parallel for the user who observes
the phenoema from outside of the processors. In sci-
entific computings, especially in matrix computing, all
PEs are always active and communictions are limited to
neighbor PEs, thus it takes full advatange of SIMD par-
allelism. However, in the semantic network, although
most processing can be carried out in a SIMD manner,
not all PEs are activated all the time. Number of PEs ac-
tive at a time vary during processing and it could range
from a few PEs to thousands of PEs. Communication of-
ten need to be performed between distant PEs. Thus, a
processing and communication capability of each PE sig-
nificantly affects overall performance of the system. Un-
fortunately, for a machine with l-bit PEs, bit-serial op-
erations and communication hampers high performance
processing.

In this paper, we propose a new approach to mas-
sively parallel computing in order to avoid the problem
described above. Our approach is based on intensive
use of large associative memories. The IXM2 is a ma-
chine built based on this paradigm. The IXM2 consists
of 64 associative processors and 9 network processors.
These are interconnected based on a complete connec-
tion scheme to improve marker propagation, and pro-
vides a 256K words of large associative memory. Using
an associative memory of this size, IXM2 can perform
the parallel processing of 65,536 semantic network nodes

From: AAAI-91 Proceedings. Copyright ©1991, AAAI (www.aaai.org). All rights reserved.

with a processing time of O(1) in basic operations, and
only a minimum communication will be carried out be-
tween processors.

2 Roblems of Current Massively
I?arallel Machines

The central problem which prevent current massively
parallel machines from further performance improve-
ment in AI applications is that all PEs are not always
active. Number of active PEs at a time range from one
to few thousands. Thus, performance bottleneck emerge
in case when relatively small number of PEs are active
and non-local message passings in irregular communica
tion patterns are required. In such cases, the two char-
acterestics of current massively parallel machines, (1) a
bit-serial operation in each processor, and (2) bit-serial
communication between processors, cause the degrada-
tion of performance. This is because current massively
parallel machines assume tasks where most of 1 bit-PEs
are highly utilized during the execution and the local
and simultaneous communications among PEs are per-
formed. In VLKB processing, marker propagation is es-
pecially tough in this respect. In addition, since one
node in the semantic network is mapped to a single PE,
any propagation of a marker must go through commu-
nication links which results in so called hillis bottdeneck.
This section reviews problems in current architectures in
basic operations for processing semantic networks: (1)
set intersection, (2) marker-propagation.

The set intersection is a very important operation in
AI and is frequently performed to find a set of PEs with
two properties. Although set intersection contains SIMD
parallelism, there is a room for further improvement be-
cause a current architecture carrys out the intersection
in a bit serial manner by each l-bit PE.

Marker propagation, however, presents more serious
problems. First, propagation of markers from a base
node to N descendant nodes requires a sequential marker
propagation operation to be carried out N times at the
l-bit PE of the base node. In addition, the serial link is
very slow. Thus, as average fan-out increases, hence par-
allelism increases, current architecture suffers from se-
vere degradation. Second, marker propagations are very
slow because all the propagations are performed through
the message passing communications among PEs. Mes-
sage passing communications between PEs are slow due
to the limited bandwidth of communication lines, the de-
lays caused by intervening PEs in message passing, mes-
sage collisions and so on. For these reasons, the marker
propagation in Connection Machine is two orders of mag-
nitude slower than SUN-4, Cray, and IXM2.

3 IXM2 Architecture

3.1 Design Philosophies behind HXM2

The use of associative memory is the key feature of the
IXM2 architecture. Needless to say, IXM2 is a parallel
machine which is constituted from a number of proces-
sors. However, the IXM2 attains massive parallelism by

associative memory, not by processor itself. IXM2 has
only 64 T800 transputers, each of which has a large (4K)
associative memory [Ogura, 19891. Instead of having
thousands of l-bit PE, IXM2 stores nodes of the seman-
tic network in each associative memory. Because each
associative memory can store up to 1,024 nodes, IXM2
can store 65,536 nodes in total.

Four major issues have been addressed in the design
decision to use associative memory in the IXM2: (1) at-
tainment of parallelism in operations on each node, (2)
minimization of the communication bottleneck, (3) pow-
erful computing capability in each node, and (4) parallel
marker propagation. The term node refers to a node in
the semantic network, not necessary that of a single PE.

By allocating nodes of semantic networks on associa-
tive memories, association and set intersections can be
performed in 0(1). B ecause of the bit-parallel process-
ing on each word of associative memory, these operations
can be performed faster than l-bit PE.

Multiple nodes allocation on a PE offers a significant
advantage in minimizing communication bottleneck. Be-
cause a large number of nodes can be loaded in a PE,
propagation of markers from a node to other node on
the same PE can be done not by communication be-
tween PEs, but by memory reference. In addition, to
deal with marker propagation between PEs, IXM2 em-
ploys a full-connection in which all processors in a cluster
are directly connected. Thus, it decreases the time re-
quired for communication between PEs more than other
connection models such as N-cube or torus. Specifically,
the full-connection minimizes the chance of collision and
message-interleaving PEs.

Associative memory has extremely powerful logical
and arithmetic computing power. When an operand is
stored in each word of the associative memory, a bit-
serial operation can be executed to all words in parallel.
Massive parallelism offered by this mechanism provides
nano seconds order execution time per datum.

By use of the parallel write and the search functions of
associative memory, multiple marker propagation from a
node can be done in parallel, independent of the number
of fan-outs (O(l)). W e call this powerful feature parallel
marker propagation.

3.2 Overall structure

IXM2 contains 64 associative processors (AP) and 9
network processors (NP) for communication. Figure 1
shows an external view of the IXM2 (left), and its struc-
ture (right). Eight APs and one NP form a processing
module (PM), where eight APs are completely intercon-
nected. In recursive fashion, eight processing modules
are also interconnected each other and are connected to
one NP which has the connection with the host SUN-
3. IXM2 works as an AI co-processor. The technical
summary of IXM2 is described in the appendix.

IXM2 employs complete connections to speed-up
marker propagation among APs. Marker propagations
between two APs have to be done as much as possible
between APs which are directly connected; message path
distance in marker propagation must be kept as close to

HIGUCHI, ET AL. 297

Figure 1: The IXM2: An External View and its Structure

Table 1: Average message path distance for IXM2 and
other interconnections

No. of PE IXM2 hypercube torus
64 2.77 3.04 4.03

1 as possible. Although it is almost impossible to es-
tablish a complete connection among 64 APs, complete
connection among a smaller number of APs is possible.
Eight APs are selected as a unit of complete connection
due to the implementation requirement. Furthermore, it
is possible to keep the communication locality in marker
propagation within these 8 APs. It is known that a large
semantic network can be divided into sub semantic net-
works, with dense connectivity among the nodes of a
given sub-semantic network, but with relatively few con-
nections to the outside sub-semantic network [Fahlman,
19791.

Even in a worst case scenario, where communication
locality within a PM is difficult or impossible to main-
tain (i.e. marker passings occur between any pair of the
64 APs), the average message path distance in the IXM2
interconnection can be kept smaller than that of hyper-
cube and torus, as shown in Table 1. There, marker
passings are assumed to occur between each AP and all
other APs in the system and then the average length of
each message path distance is calculated.

The programming language for IXM2 is the knowledge
representation language IXL [Handa, 19861. In IXM2,
data and programs for semantic net processing are allo-
cated as follows:
(1) A large semantic network to be processed by IXM2
is partitioned into semantic sub-networks and stored in
the associative memory of each AP.
(2) Subroutines to execute IXL commands1 are stored
in the local memory of each AP.

The network processors broadcast an IXL command
simultaneously to all the APs. NPs also accept results
from each AP and pass them back to the host computer
for the IXM2 (SUN-3/260).

An IMS B014 transputer board is installed in the
SUN-3 to control the IXM2, load occam2 programs into
the IXM2, collect answers returned from the IXM2, han-
dle errors, and so on.

recessing Using Associative
Memories

This section describes how parallel processing is per-
formed on an associative memory. We begin by describ-
ing the data representation of a semantic network. Then
parallel marker propagation and set intersection are de-
scribed.

‘

IXL

commands are predicates defined for semantic net-
work processing.

298 PARALLEL SUPPORT FOR R-B SYSTEMS

4.1 Representation of Semantic Network

The semantic network representational scheme in IXM2
is strongly node-based. Each node stores information in
both associative memory and RAM.

Node information stored in associative memory is in-
tended to be processed with the massive parallelism pro-
vided by large associative memory (256K words). By
this means, the times for association, set intersection and
marker propagation operations can be reduced to O(1).

The node information in associative memory com-
prises; (1) A marker bit field (28 bits), (2) A link field (8
bits), (3) A p arallel marker propagation identifier (ab-
breviated as PID; 22 bits), and (4) A literal field (16
bits).

The marker bit field stores the results of processing
and is used just like a register in microprocessors. There
are 28 marker bits in the current implementation.

The link field consists of 8 bits; each bit indicates the
existence of a primitive link through which the node
is connected to other nodes. The four types of primi-
tive links are defined in IXM2 to support basic inference
mechanisms in the knowledge representation language
TXL which is an extended Prolog for IXM2. The prim-
itive links are isa, instance-of (iso), destination (des),
and source (sot) link. Because the direction of a prim-
itive link must be distinguished, there are 8 bits in a
link field; from the most significant bit (MSB), they are
rim, isa, tiso, iso, rdes, des, rsoc and sot. ‘r’ signifies
an inverse link. If a node is pointed to by an isa link,
the node has a risa link and the MSB of the link field
becomes 1.

The literal field is prepared for a node which is itself
a value and is processed by algorithms which exploit the
massive parallelism of large associative memories.

On the other hand, the following node information is
kept in RAM; (1) destination nodes from the node (clas-
sified according to the link type), (2) parallel marker
propagation identifiers (PID), (3) search masks for par-
allel marker propagation (PMASK). PID and PMASK are
the information for parallel marker propagation and are
classified according to the 8 link types.

Figure 2 shows an example of the representation of a
semantic network. The node C points to the A node via
an isa link, and the link field of node C has ‘01000000’.
This is because the position of ‘1’ in the link field rep-
resents that the C node has out-going isa links. The
destination field on RAM area has ‘A’ in the isa part,
because the destination of the C node connected by an
isa link is the A node.

4.2 Marker Propagation

Marker propagation in IXM2 is performed either by a
sequential marker propagation or by a parallel marker
propagation.

A sequential marker propagation is performed by mes-
sage passing either within an associative processor or
among associative processors, using the destination in-
formation stored in the RAM area.

Parallel marker propagation is performed within an as-
sociative processor; it can perform multiple marker prop-

agations from a large fan-out node in parallel. (In addi-
tion to this parallelism within one AP, parallelism among
64 APs is available.) The rest of this section describes
how the parallel marker propagation is performed.

In the network example in Figure 2, marker propaga-
tion from node A to C, D and E can be performed using
parallel marker propagation. We call the node A a base
node and nodes C, D and E descendant nodes.

The basic idea of parallel marker propagation is to
search descendant nodes and write a particular marker
bit into them by use of associative memory; the search
and parallel write functions are used. Specifically to, (1)
assign an identifier to all the descendent nodes, (2) assign
the same identifier to the base node, and (3) (at the base
node) issue the search operation with the identifier to
find descendants nodes, and set a new marker bits in
parallel into descendent nodes just searched.

The identifier in (1) and (2) is a parallel marker prop-
agation identifier (PID) described earlier. This is pro-
vided beforehand by the allocator, and loaded with the
network. In the search in (3), a search mask (PMASK) de-
fined before is used to search only for the bits satisfying
the matching.

Using this method, parallel marker propagation is per-
formed in Figure 2 as follows. Suppose parallel marker
propagation is to be performed from the A node to C,
D and E nodes. At first, the PID and the PMASK are re-
trieved from the RAM area for the A node: ‘0100’ for
the PID and ‘0011’ for the PMASK. They are set into the
search data register (SDR) and the search mask register
(SMR)of the associative memory respectively, as shown
in Figure 3 (b); the bits of the dotted area in the search
mask register are all one and the search for those bits
is disabled. Next the search operation is executed; the
words for C, D and E node are hit by this search. Finally,
the parallel write operation, which is a function of the
associative memory, is performed to set a marker bit 1 at
the same time in each of the three words just searched.
Similarly, marker bit 2 of members of set B (nodes D and
E) are written using parallel marker propagation.

The data for parallel marker propagations such as PID
and PMASK are prepared by the semantic network allo-
cator. The allocator recognizes pairs of { a base node,
link type, descendent nodes } and gives to each pair a
unique identifier (PID) and a search mask (PMASK). The
recognition of such pairs is based on the number of the
fan-out which is given to the allocator as a parameter.
If the parameter is N, only the nodes with more than N
fan-out are recognized as the candidates of the parallel
marker propagation. For example, in Figure 2, N is 2 and
two pairs are recognized: { A, risa, (C, D, E) } and (
B, risa, CD, E) }. The number of pairs recognized can
be controlled by changing the value of N, although PID
has an enough length of 22 bits for 1000 nodes on each
PE and so it is unlikely that these 22 bits get used up.

4.3 Set Intersection

To obtain the intersection of sets A and B, we only have
to search those words at which both marker bits 1 and
2 are set. Figure 3 (a) shows the status of associative

HIGUCHI, ET AL. 299

-f+ : isa link

Representation on associative memory Representation on RAM

_ destinations . PID PMASK
marker bit field link field Ii teral PID 5

E : : : : : : . : : :
I ’ ’ . :
12 . . .28 L isa link :

D,E

Figure 2: Data representation of semantic network

memory after two parallel marker propagations. By set-
ting the search mask and the search data registers as
in Figure 3 (c), intersection can be found in one search
operation. Then, a parallel write operation can be per-
formed to set marker bit 3 of the D and the E nodes.
Thus, set intersection can be done in O(1).

marker bit field marker bit field link field link field literal literal PID PID

[olol....- l0I10000000 I .I. looool

12.. . 28

SDRloo 01001

SDR[llOO. - . . . 0001

(c)

Figure 3: Set intersection with associative memory

5 Performance Evaluation

This section discusses the performance of IXM2 in two
contexts: basic operations and applications. The IXM2
performance is compared with results from other high
performance machines such as the Connection Machine
(CM-2), the Cray X-MP and the SUN-4/330.

Sequential computers become very slow as the data
grows larger. It is true even for the Cray, in spite of the
indexing algorithm of O(N). Although the Cray is much
faster than the SUN-4 because of the vectorization avail-
able in the algorithm, there is a difference of three orders
of magnitude between IXM2 and Cray in the processing
of 64K data.

5.1.2 Marker propagation
The figures for IXM2 shown below were measured us- Next we compare the performance of marker propaga-

ing IXM2 of which clock speed is 17.5 MHz. In the pro- tion. First, we compare the time to complete propaga-
grams for IXM2, IXM machine instructions are written tion of markers from one node to all descending nodes.
in occam2. Programs for Cray and SUN are written in The left chart of Figure 4 shows performance by each
C and are optimized with -04. Programs for CM-2 are machine with different fanout from the node. IXM2 is

Table 2: Execution times of set intersection (ps)

~1

written in C* and are optimized. Programs are executed
on CM-2 of which PE clock is 7.0 MHz. Execution times
have been measured using timers on CM-2 and they show
CM busy time, excluding host interaction timings.

5.1 Basic operations

5.1.1 Association and set intersection
Because of the bit-parallel processing in the associative

memory, the execution time of the association operation
on IXM2 is always 12 /.JS for any amount of data up to
64K. It is also possible on sequential machines to imple-
ment O(1) association time using hashing or indexing.

However, set intersection for large data is very time
consuming on sequential machines. Table 2 shows the
performance of set intersection on IXM2, CM-2, Cray
X-MP and SUN-4/330, where two sets of the same size
are intersected.

IXM2 can consistently perform the set intersection in
18 ps for any size of data up to 64K; the set intersection
is performed in O(1). Although CM-2 can also perform
the set intersection constantly in 103 ps, IXM2 is faster
because of bit-parallel associative memory.

300 PARALLEL SUPPORT FOR R-B SYSTEMS

outperformed when only one link exists from the node.
However, if an average fanout is over 1.75, IXM2 outper-
forms the Cray and the SUN-4.2 If an average fanout is
nearly 1, using a parallel machine is not a rational deci-
sion in the first place. It should be noticed that IXM2
completes propagation at a constant time due to paral-
lel marker-passing capability with associative memory.
The pa.rallel marker propagation by one AP constantly
takes 35 ps, independent of the number of descendent
nodes N. On serial machines (Cray and SUN-4), compu-
tational time increases linearly to the number of fanouts.
CM-2 also requies more linear time as fanout increases.
This is due to its serial link constraints that markers for
each descending node has to be send in a serial man-
ner. As we have discussed in section 2, CM-2 does not
gain advantage of parallelism at each processor. Thus,
if average fanout is over 1.75, IXM2 will provide a faster
marker-propagation than any other machines.

The right chart of Figure 4 shows performance against
parallel activation of marker-propagation. We used a
network with 1000 nodes with fanout of 10. By parallel
activation, we mean that more than one node is simul-
taneously activated as a source of marker-propagation.
On the X-axis, we show a level of parallelism. Paral-
lelism 1,000 means that markers are propagated from
1,000 different nodes at a time. Time measured is a time
to complete all propagations. Obviously, serial machines
degrade linearly to parallelism. IXM2 shows similar lin-
ear degradation, but with much less coefficient. This is
because IXM2 needs to fire nodes sequentially at each
T800 processor. The data in this graph is based on one
AP out of 64 APs. Thus, when all 64 APs are used,
the performance improves nearly 64 times. CM-2 has al-
most constant performance because all nodes can simul-
taneously start propagation. It is important, however,
to notice tha.t CM-2 outperforms only when the paral-
lelism exceeds certain level (about 170 in this example),
in case only one AP of the IXM2 is used. This would
be equivalent to 10,880 with 64 APs. This implies that
if aapplications do not require more than 10,880 simulta-
neous marker-propagation, IXM2 is a better choice than
CM-2. This trade-off point, however, changes as average
fanout changes.

5.1.3 Arithmetic and logical operations
Node information can contain the literal field in asso-

ciative memory when a node is itself a value. This literal
field can be processed with bit-serial algorithms for as-
sociative memory [Foster, 19761. Execution time is con-
stant, independent of the number of data items. There-
fore, the execution time per item becomes extremely fast
if the number of data items stored in associative memory
is large.

The less than operation takes on average 36 /JS for
the comparison of 32-bit data. This seems quite slow
when compared with the execution time on sequential

2Tlle reason why Cray is slower than SUN-4 in marker
propagation is considered to be the overhead of recursive pro-
cedure calls used in link traverse. Another Cray (Y-MP) was
also slower.

Table 3: Query processing time (milli sec.)

computers; for example, it takes 1.25 ps in an occam2
program run on a T800 transputer at 20 MHz. However,
it corresponds to an execution time per datum of 0.56 ns
(nano second) when each of 64 K nodes contains a literal
field and is processed in parallel. Although the number
of data items available as candidates for the processing
is application dependent, the associative memory algo-
rithm will surpass the performance on sequential com-
puters if there are at least 100 candidates. The additions
for 8-bit data and Is-bit data take 46 ps (0.72 nano sec-
ond per datum) and 115 ps (1.80 nano second per da-
tum) respectively.

5.2 Application

Two applications have been developed so far on IXM2:
a French wine query system, and memory-based natural
language processing system [Kitano and Higuchi, 19911.

The wine knowledge base consists of 277 nodes and
632 links. The sample query elicits wines which belong to
Bordeaux wine with the ranking of 4 stars. Table 3 shows
the results on IXM2, CM-2 and SUN-4/330. Although
the network is relatively small to take advantage of paral-
lelism, IXM2 performs better than other machines. Max-
imum parallel activation is 87 in this knowledge-base, so
that CM-2 is much slower than IXM2. Plus, over 95% of
computing time in CM-2 was spent on communication
to propagate markers between PEs.

In the natural language processing task, a network
to cover 405 words and entire corpus has been created.
The inputs starts from phoneme sequence so that speech
input can be handled. The network has relatively large
fanout (40.6). Figure 5 shows performance of the IXh/I2,
the SUN-4, and the CM-2. Due to a large fanout factor,
IXM2 far surpasses processing speed of other machines
(SUN-4 and CM-2). SUN-4 is slow because set intersec-
tions are heavily used in this application.

6 Discussions

First, drastic difference of performance in set operation
between serial processors (SUN-4 and Cray) and SIMD
parallel processors (CM-2 and IXM2) rules out the pos-
sibility of serial machines to be used for a large scale
semantic network processing in which extensive set op-
erations involving over 1,000 nodes are anticipated.

Second, performance comparison in marker propaga-
tion indicates that IXM2 exhibits superior performance
than CM-2 for many AI applications. IXM2 is consis-
tently faster for processing semantic network with large
fanout, but limited simultaneous node activation. When
the average fanout is large, IXM2 have advantage over
CM-2, and CM-2 gains benefits when large simultane-
ous activations of nodes take place. Let F and N be an
average fanout, and number of simultaneously activated
nodes in the given task and network. IXM2 outperforms

HIGUCHI, ET AL. 301

Parallel Marker-Propagation Time Parallel Activation and Performance
Time (Microseconds) micro seconds x lo2

0.00

ii let02
1 Fanout es

Figure 4: Marker Propagation Time

milliseconds
Parsing Time vs. Length of Input

9.00
8.00
7.00

6.00

5.00

4.00

3.00

2.00

1.00

,.‘-

.’
.’

.’

.’
.’ CM-2

I
2. . &vut Ien&

Figure 5: Parsing Time vs. Input String Length

CM-2 when the following equation stands:

Tc~iink: N

Trx~noae ’ FxAP

AP is a number of APs used in IXM2 which ranges from
1 to 64. TcM/~~~: is a time required for the CM-2 to
propagate marker for one link from a node. ~~~~~~~~ is
a time required for the IXM2 to propagate markers from
one node to all descending nodes. In this experiment,

TcMlin]c was 800 micro second3, and TIXM~*~~ was 35
micro seconds. Of course, this value changes as system’s
clock, software, compiler optimization and other factors
change.

Average fanout of actual applications which we have
examined, wine data-base and natural language, were
2.8 and 40.6, respectively. In order for the CM-2 to
outperform IXM2, there must be always more than 4097
and 59392 simultaneous activation of nodes, respectively.
Notice that it is the “average number” of simultaneous
activation, not the peak number.

In the wine database, maximum possible parallel ac-
tivation is 87. In this case, all terminal nodes in the net-
work simultaneously propagate markers. For this task,
obviously IXM2 outperforms CM-2. In the natural lan-
guage processing, maximum parallelism is 405 in which
all words are activated (which is not realistic). Since
syntactic, semantic, and pragmatic restriction will be im-
posed on actual natural language processing, the number
of simultaneous marker-propagations would be a magni-
tude smaller than this figure. Thus, in either case, IXM2
is expected to outperform CM-2, and this has been sup-
ported from the experimental results on these applica-
tions.

Although the average parallelism throughout the ex-
ecution would be different in each application domain,
it is unlikely that such a large numbers of nodes (4.11~
and 59.4K nodes in our examples) continue to simulta-
neously propagate markers throughout the execution of
the application. In addition, when such a large number

3This value is the best value obtained in our experiments.
Other values we obtained include 3,000 micro second per link.

302 PARALLEL SUPPORT FOR R-B SYSTEMS

of nodes simultaneously propagate markers, a communi-
cation bottleneck would be so massive that performance
of the CM-2 would be far less efficient than speculated
from the data in the previous section.

In addition, there are other operations such as a set
operation, and logic and arithmetic operations in which
IXM2 has magnitude of performance advantages. Thus,
in most AI applications in which processing of semantic
networks is required, IXM2 is expected to outperform
other machines available today.

7 Conclusion

In this paper, we proposed and examined the IXM2 ar-
chitecture. Most salient features of the IXM2 architec-
ture are (1) an extensive use of associative memory to
attain parallelism, and (2) full connection architecture.
Particularly, the use of associative memory provides the
IXM2 with a truly parallel operation in each node, and
nano-seconds order logical and arithmetic operations.

We have evaluated the performance of the IXM2 asso-
ciative processor using three basic operations necessary
for semantic network processing: intersection search,
parallel marker-propagation, and logical and arithmetic
operations. Summary of results are:

e Association operations and set intersections can be
performed in O(1). IXM2 attains high performance
due to bit-parallel processing on each associative
memory word.

63 Parallel marker propagations from a large fanout
node can be performed in O(1) through the use
of associative memory, while marker propagation
implemented on a sequential computer and CM-2
requires linear time proportional to the number of
links along which a marker is passed.

m Arithmetic and logical operations are executed in
an extremely fast manner due to the algorithms de-
veloped for associative memory. These algorithms
fully utilize parallel operations on all words, thus
attaining nanoseconds performance in some cases.

Cases where other machines possibly outperform
IXM2 has been ruled out, because these situations are
practically implausible. Thus, we can conclude IXM2 is
a highly suitable machine for semantic network process-
ing which is essential to many AI applications.

Beside performance of IXM2, one of major contri-
butions of this paper is the identification of some of
the benchmark criteria for massively parallel machines.
While parallelism has been a somewhat vague notion, we
have clearly distinguished a parallelism in message pass-
ing (by a fanout factor) and in simultaneous activation of
PEs (by active node number). These critaria are essen-
tial in determining which type of mahcine should be used
for what type of processings and networks. For exam-
ple, we can expect IXM2 to be better on large fanout but
not too large simultaneous activations (most AI applica-
tions are this type), but CM-2 is better when a fanout is
small, but large number of PEs are always active (most
scientific computings are this type).

Acknowledgement

Authors thank Hiroshi Kashiwagi and Toshitsugu Yuba
(ETL) for assisting this research, Takeshi Ogura (NTT)
for providing associative memory chips, and Jaime Car-
bonell, Masaru Tom&a, Scott Fahlman, Dave Touretzky,
and Mark Boggs (CMU), Yasunari Tosa (Thinking Ma-
chines) for various supports and valuable advice.

IXM2 technical appendix

References

Assoclatrve

Processor

Network

Processor

~1
4096 X 40 bit associative memory

4 iink adaptors (IMS COlZ)
T800 Transputer (17.5 MHz),

[EDR, 19901 Japanese Electronic Dictionary Research Insti-
tute. An Overview of the EDR Electronic Dictionaries,
TR-024, April 1990.

[Evett, 19901 Evett, M., Hendler, J. and Spector, L.
PARKA: Parallel knowledge representation on the Con-
nection Machine, CS-TR-2409, Univ. of Maryland, 1990.

[Fahlman, 19791 Fahlman, S.E. iVETL: a system for repre-
senting Q& U&rag real-world knowledge, MIT Press, 1979.

[Foster, 19761 Foster, C.C. Content Addressable Parallel
Processors, Van Nostrand Reinhold Company,l976.

[Handa, 19861 Handa, K., Higuchi, T., Kokubu, A. and Fu-
ruya, T. Flexible Semantic Network for knowledge Rep-
resentation, Journal of Information Japan, Vol.10, No.1,
1986.

[Higuchi, 19911 Higuchi, T., Furuya, T., Handa, K., Taka-
hashi, N., Nishiyama H. and Kokubu, A. IXM2: a parallel
associative processor, In Proceedings of 18th International
Symposium on Computer Architecture, May 1991.

[Hillis, 19851 Hillis, D. Connection Machine, MIT Press,
1985.

[Kitano and Higuchi, 19911 Kitano, H. and Higuchi, T.
High Performance Memory-Based Translation on IXM2
Massively Parallel Associative Memory Processor, AAAI-
91, 1991.

[Lenart and Guha, 19891 L enart, D., and Guha, R., Building
Large Knowledge-Based Systems, Addison-Wesley, 1989.

[Moldovan, 19901 Moldovan, D. et. al. Parallel knowledge
processing on SNAP, In Proceedings of International Con-
ference on Parallel Processing, August 1990.

[Ogura, 19891 Ogura, T., Yamada, J., Yamada, S. and
Tanno, M. A 20-Kbit Associative Memory LSI for Arti-
ficial Intelligence Machines, IEEE Journal of Solid-State
Circuits, VoI.24, No.4, August 1989.

[Quillian, 19671 Quillian, M.R. Word concepts: a theory and
simulation of some basic semantic capabilities, Behaviora
Science, 12, 1967, pp.410-430.

HIGUCHI, ET AL. 303

