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Abstract 

The performance of production programs can be im- 
proved by firing multiple rules in a production cy- 
cle. In this paper, we present the multiple-contexts- 
multiple-rules (MCMR) model which speeds up pro- 
duction program execution by firing multiple rule con- 
currently and guarantees the correctness of the solu- 
tion. The MCMR model is implemented using the 
RUBIC parallel inference model on the Intel iPSC/2 
hypercube. The Intel iPSC/2 hypercube is chosen be- 
cause it is a cost-effective solution to large-scale appli- 
cation. To avoid unnecessary synchronization and im- 
prove performance, rules are executed asynchronously 
and messages are used to update the database. Pre- 
liminary implementation results for the RUBIC par- 
allel inference environment on the Intel iPSC/2 hy- 
percube are reported. 

1 Introduction 

The multiple rule firing production systems increase 
the available parallelism over parallel match systems 
by parallelizing not only the match phase, but all 
phases of the inference cycle. To speedup the deriva- 
tion of correct solutions by multiple rule firing, two 
problems - the compatibility problem and the conver- 

gence problem - need to be addressed. The compati- 
bility problem arises from the data dependences be- 
tween production rules. If a set of rules does not have 
data dependence among themselves, they are said to 
be compatible and are allowed to fire concurrently. 
The convergence problem arises from the need to fol- 
low the problem solving strategy used in a production 
program. If the problem solving strategy is ignored, 
then two tasks may be executed out of sequence or 
two actions for the same task may be executed in the 

304 PARALLEL SUPPORT FOR R-B SYSTEMS 

wrong order resulting in an incorrect solution. 

There are three approaches to address the com- 
patibility and the convergence problems. The first 
approach considers only the compatibility problem 
and resolves it by data dependence analysis [3] [6] 
[S]. Both synchronous and asynchronous execution 
models have been proposed. In these models, rules 
which are compatible are fired concurrently in a pro- 
duction cycle. Because the convergence problem is 
not addressed in these models, the problem solving 
strategy for a production program may be violated 
when multiple rules are fired simultaneously. The 
second approach addresses the compatibility and the 
convergence problems by developing parallel produc- 
tion languages. CREL [6] and Swarm [2] are two such 
languages. Production programs written in these lan- 
guages do not use control flow or conflict resolution 
to ensure that the right rules are fired. Instead, pro- 
duction rules are fired as soon as they are matched. 
The correctness of these parallel production programs 
is guaranteed by showing that for any arbitrary exe- 
cution sequence the correct solutions are always ob- 
tained [l]. A potential hurdle for CREL and Swarm 
is the possible difficulty to prove the correctness of 
a large production program. In addition, to be able 
to fire production rules as soon as they are matched 
may not be the same as being able to fire multiple 
rules concurrently. These questions will be answered 
when the benchmark production programs have been 
translated into CREL and Swarm programs and their 
performance measured. 

The multiple-contexts-multiple-rules (MCMR) 
model presented in this paper represents a third ap- 
proach. The MCMR model addresses the compatibil- 
ity problem by data dependence analysis. It addresses 
the convergence problem by analyzing the control flow 
in a production program to ma.intain the correct task 
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ordering. In a production program, a complex prob- 
lem can be solved by dividing it into smaller tasks 
until they are easily solved. These tasks are called 
contexts and each context is solved by a set of con- 

text rules. The MCMR model improves the perfor- 
mance of a production program by activating multi- 
ple contexts and firing multiple rules concurrently. It 
guarantees the correctness of the solution by deter- 
mining the conditions under which multiple contexts 
and multiple rules can be activated and fired. To cap- 
ture the maximum parallelism, the production rules 
and the working memory are distributed when the 
MCMR model is implemented on the Intel iPSC/2 
hypercube. The sequential inference cycle is also re- 
placed with the RUBIC parallel inference cycle. The 
RUBIC parallel inference cycle executes rule in dif- 
ferent nodes asynchronously and updates the work- 
ing memory by message passing. The performance of 
production programs on iPSC/2 is measured. 

-Contexts- 

To resolve the compatibility and the convergence 
problems successfully, one needs to understand how 
problems are solved in production programs. In gen- 
eral problem solving, a complex problem is usually 
solved by stepwise refinement. It is divided into 
smaller and smaller subproblems (or tasks) until they 
are easily solved. If other subproblems need to be 
solved before solving a subproblem, the program con- 
trol is transferred from one subproblem to another. 
Production programs solve complex problems in ex- 
actly the same way. First, the production rules in a 
production program are divided into subsets of rules, 
one subset for each subproblem. A subset of rules is 
called a context and each individual rule in the sub- 
set is called a context rule. Every context rule in the 
same context has a special context WME. Rules in 
different contexts have different context WMEs. A 
programmer can control which context is active by 
adding and removing the context WMEs. Context 
rules are divided into domain rules and control rules. 
Domain rules address the subproblem associated with 
the context and conflict resolution is used to select 
the right rule to fire. If other subproblems need to 
be solved before solving a subproblem, the control 
rules transfer the program control to the appropri- 
ate contexts by modifying the context WMEs. By 
analyzing the control rules, the control flow between 
different contexts can be determined. The problem 
solving strategy and the control flow diagram for an 
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Figure 1: Control in Production Program 

example production program is shown in Figure 1. 

The multiple-contexts-multiple-rules model re- 
solves the compatibility and the convergence prob- 
lems at two levels: the rude level and the context level. 
At the rule level, the MCMR model resolves the com- 
patibility problem by data dependence analysis. A 
set of rules is allowed to fire concurrently and are 
said to be compatible or seriahble if executing them 
either sequentially or concurrently, the same state is 
reached. This is the case if there are no data depen- 
dences among rules in the set. The data dependence 
analysis is performed at compile time to construct 
a parallelism matrix P = [pij] and a communication 
matrix C = [cQ]. Rules Ri and Rj are compatible if 

Pij = 0; they are incompatible if pij = 1. The commu- 
nication matrix C is used for communication purpose 
when production rules are partitioned and mapped 
into different processing nodes in a message-passing 
multiprocessor. Rules Ri and Rj need to exchange 
messages to update the database if cij = 1; they do 
not need to if cij = 0. 

The MCMR model resolves the convergence 
problem at the rule level by dividing contexts in a 
production program into three different types: (1) 
converging contexts, (2) parallel nonconverging con- 
texts and (3) nonconverging or sequential contexts. 
A context C is a converging context if starting at 
a state satisfying the initial condition INIT for that 
context, all execution sequences result in states satis- 
fying the post condition POST for that context [l] [2]. 
Otherwise context C is a nonconverging context. The 
conflict resolution can be eliminated for a converging 
context because all execution sequences converge to 
the correct solution. Compatible rules can be fired 
simultaneously within a converging context without 
error. This is because firing a set of compatible rules 
concurrently is equivalent to executing them in some 
sequential order and all execution sequences reach the 
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correct solution for a converging context (for proof, 
see [5]). For a nonconverging context, conflict resolu- 
tion must be used to reach the correct solution. The 
performance of a nonconverging context can be im- 
proved by parallelizing its conflict resolution. A par- 
allel nonconverging context is a nonconverging con- 
text whose conflict resolution is parallelizable and as 
a result multiple rules may be selected. The conflict 
resolution for a sequential context is not paralleliz- 
able and only sequential execution is possible. By di- 
viding contexts into different types and applying the 
correct execution model for each type, the compati- 
bility and the convergence problems are resolved at 
the rule level. 

The MCMR model resolves the compatibility 
and the convergence problems on the context level 
by analyzing the control flow diagram to determine 
which contexts are allowed to be active at the same 
time. These contexts are called compatible contexts. 

Two contexts are compatible if their reachable sets do 
not intersect and rules in the two reachable sets do 
not have data dependences (for proof, see [4]). The 
reachable set for a context Ci is the set of contexts 
which are reachable by following the directed arcs in 
the control flow diagram starting from Ci. Context 
Ca is included in its own reachable set. The reach- 
able set for context Cr for the example production 
program in Figure 1 is {Cl, C’s, C4, C’s). 

The production rules are analyzed at compile 
time to generate the compatibility context matrix 
CC = [cc;~]. Two contexts Ci and Cj are compat- 
ible and are allowed to be active at the same time 
if CCij = 0; they are incompatible if ccij = 1. The 
programmer then consults the CC matrix and mod- 
ifies the production rules if needed so that only the 
compatible contexts will be activated concurrently in 
production program execution. In this way, the com- 
patibility and the convergence problems are resolved 
on the context level. 

nference 

Model 

Because the traditional rule based inference cycle is 
sequential in nature and does not reflect well with 
the MCMR model, a new parallel inference model has 
been developed. This new model is called the RUBIC 
parallel inference model and is shown in Figure 2. It 
consists of seven phases: match, local conflict resolu- 

tion (L CR), context-wide conflict resolution (CCR), 
context-wide compatibility determination (CCD), act, 

send-message and receive-m,essuge. 

+: executed for all contexts LCR: local conflict !lxolution 
++: executed for umvergent contexts only LCD: local wmpatibility determination 
+*+: executed fat pat&l nonconvcrgcnct (X3 context-wide compatibility determination 

and sequential contexts only CcRi context-wide contlict resolution 
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Figure 2: RUBIC Parallel Inference Cycle and Mes- 
sage Format 

Before the start of production program execu- 
tion, the production rules and the working memory 
are distributed among the processing nodes. Each 
processing node compiles the rules into a Rete net- 
work. During the execution of production programs, 
each node executes the RUBIC parallel inference cy- 
cle asynchronously and communicates with each other 
by messages. The action each node takes depends on 
its incoming message. If processing node Nodei re- 
ceives two messages telling it to execute the match 
phase for context Ci first then the CCD phase for 
context (72, it would execute the match phase for Cl 
first and then the CCD phase for Cz. At the same 
time, Nodej may be executing the CCR phase for 
context C’s and the act phase for context C4 depend- 
ing on its incoming messages. Each outgoing message 
is prepared and sent to the appropriate nodes during 
the send-message phase. When each node finishes 
processing a message, it enters the receive-message 
phase. If there are messages waiting to be processed 
or newly arrived messages, the oldest message is ex- 
amined and the appropriate action is taken. If no 
message is available, the node loops and waits for an 
incoming message. By allowing each node to execute 
in an asynchronous, message-driven fashion, the vari- 
ance between execution times for different processing 
nodes is reduced and the performance is improved. 

We also need to be able to detect the termination 
of a production program, which occurs when there is 
no rule matched; i.e. all tasks have been completed. 
By requiring that the context WME for a context be 
removed at the completion of that context, a produc- 
tion program concludes its computation when no con- 
text WME exists . This is easily implemented with a. 
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special termination rule whose LHS condition is sat- 
isfied when no working memory element is present in 
the working memory and whose RHS action consists 
of an explicit halt command. The implementation of 
the RUBIC parallel inference model on Intel iPSC/2 
hypercube is explained below in more detail. 

RUBIC Parallel Inference Model 

Match: The Rete algorithm is used to match the 
production rules. However, at the end of the match 
phase, different actions are executed depending on 
the types of contexts. For rules in convergent con- 
texts, the processing node skips the local conflict res- 
olution phase and enters the send-message phase im- 
mediately. During the send-message phase, the rule 
numbers of the matched rule, not rule instantiations, 
are sent by messages to the designated CCD node 
for compatibility determination. Different converging 
contexts have different designated CCD nodes allow- 
ing the compatibility determination phases for com- 
patible contexts to be executed asynchronously. 

For rules in parallel nonconverging and sequen- 
tial contexts, each processing node immediately exe- 
cutes local conflict resolution phase at the conclusion 
of the match phase. 

Local Conflict Resolution: The local conflict res- 
olution phase is executed for the sequential and the 
parallel nonconverging contexts, but is skipped for the 
convergent contexts. For the sequential context, each 
node uses the conflict resolution strategy to select the 
local dominant rule instantiation. At the end of local 
conflict resolution phase, the send-message phase is 
called to send this dominant rule instantiation to the 
designated CCR processor for context-wide conflict 
resolution. For parallel nonconverging context, the 
local conflict resolution phase is parallelized to select 
possibly multiple rule instantiations. The node then 
enters the send-message phase and sends these instan- 
tiations to the designated CCR node. Each parallel 
nonconverging context and sequential context has a 
different CCR node allowing the context-wide conflict 
resolution to be executed asynchronously for different 
contexts. 

Context-wide Conflict Resolution: The context- 
wide conflict resolution is not executed for converg- 
ing contexts. For a sequential context, a context- 
wide dominant rule is selected from local dominant 
rules. The send-message phase is called to send the 
context-wide dominant rule to all nodes containing 
rules in that context. For a parallel nonconverging 
context, the context-wide conflict resolution is par- 
allelized and multiple rule instantiations may be se- 
lected. The send-message phase is again called to 
send messages to all nodes containing rules in that 

context. 

Context-wide Compatibility Determination: 

The context-wide compatibility determination phase 
is not executed for parallel nonconverging and sequen- 
tial contexts. For a converging context, a rule is cho- 
sen arbitrarily as the dominant rule. To conserve stor- 
age space, the parallelism P matrix is broken down 
into smaller Pi matrices, each for one context. The 
CCD node consults its Pi matrix to select a set of 
compatible rules. At the end of the CCD phase, the 
send-message phase is called to deliver messages to 
all processors containing rules in that context. 

Act: Each node examines the incoming messages and 
executes the right-hand-side of the selected rules. The 
communication C matrix is used to send messages 
between processors updating and keeping the WM 
consistent. If cij = 1, then a message needs to be 
sent to PEj if rule Rs is fired. If caj = 0, no message 
needs to be sent. 

Send-Message: The send-message phase deals pri- 
marily with the communication protocol for iPSC/2. 
It is implemented as a distinct module to make the fi- 
nal code more portable to other message-passing ma- 
chines. A message consists of three components: a 
message type, a context number and the body of the 
message. A message can be of the type LCR, LCD 
(local compatibility determination), CCR, CCD and 
ACT. Even though LCD stands for local compatibil- 
ity determination, there is no such operation. It is 
used to distinguish different types of messages. The 
type of a message dictates the action to be performed 
by the receiving node. The context number indicates 
the context in which the action should be executed. 
The body of a message contains information such as 
the local dominant rule, the set of selected rules and 
RHS actions. The message format is shown in Fig- 
ure 2. 

Two matrices are needed to send messages: the 
allocation matrix A = [aaj], and the communication 
matrix C. The allocation matrix contains the parti- 
tioning information. It is used to send LCR and LCD 
messages from nodes containing rules in a given con- 
text to the designated context node. It is also used to 
send the CCR and CCD messages back to the origi- 
nal nodes. The communication matrix is used to send 
ACT messages to different nodes to maintain a con- 
sistent working memory. 

Receive-Message: All incoming messages are 
stored in a queue. The receive-message phase is called 
when the node finishes its current message. If there 
are newly arrived messages, these messages are en- 
queued and the first message is dequeued and appro- 
priate action is taken depending on its type. If the 
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queue is empty and there is no newly arrived mes- 
sages, the node loops waiting for an incoming mes- 
sage. 
Program Termination: A special termination rule 
is used to halt the program execution. This rule is sat- 
isfied when there is no context WME in the working 
memory. Its execution causes an explicit halt com- 
mand to be sent to all nodes which terminates the 
program execution. 

4 Results 

Table 4.1 Test Production System 

I 

Program Description 

A Tournament: scheduling bridge tournaments 
B Toru-WaltzlG: implementing the Waltz’s edge 

labelling algorithm 
C Cafeteria: setting up cafeteria 
D 1 Snap-2dl: a two-dimensional semantic network 
E 1 Snap-TA: verifying the eligibility 

F 
of TA candidates 
Hotel: modeling hotel operations 

Table 4.2 Sequential Simulation Results 

Production Programs 
Measurements A B C D E F 

# of rules 26 48 94 574 574 832 
# of sequential 
cycles = cr 528 207 493 590 1175 5115 

Table 4.3 Simulation Results using the RUBIC Parallel In- 

ference Model 

there are an infinite number of processors. This sim- 
ulator is written in Common LISP and is currently 
running on a Sun Spare workstation. Six test produc- 
tion programs developed at USC, CMU and Columbia 
have been simulated and their performance measured. 
To measure the performance of production programs 
on iPSC/2 hypercube, we have added the necessary 
message-passing protocols to the simulator codes. Be- 
cause of the large memory requirement of the LISP 
program, we were only able to run 8 nodes concur- 
rently. We have finished measuring the performance 
of two test programs and are in the process of mea- 
suring the rest. 

4.1 Simulation Results 

Six test production programs developed at USC, 
CMU and Columbia have been simulated under two 
models: the sequential execution and the RUBIC par- 
allel inference model. By analyzing the simulations 
results, we can verify the validity of the MCMR model 
and measure its speedups. Table 4.1 lists and de- 
scribes the six test programs. Because the test pro- 
grams range from small programs to large programs 
with varying degree of parallelism and contain all 
three types of contexts, they represent a good mix 
of production programs. 

The sequential and MCMR simulation results 
are listed in Table 4.2 and 4.3 respectively. All six 
test programs reached the correct solution when they 
were executed using the the RUBIC parallel inference 
model; therefore the validity of the MCMR model was 
verified. For Tournament and Toru-Waltzl6, only 

Measurements 

one context was activated at a time. They obtained 
Production Programs 

A ]B ]C ID ]E IF 
speedups of 3.18 and 6.21-folds by firing multiple rules 
to exploit the available parallelism within a context. 
On the other hand, Cafeteria, Snap-2d, Snap-TA and 
Hotel were able to exploit the parallelism across dif- 
ferent contexts by activating multiple contexts simul- 
taneously. As a result, they achieved speedups from 
6.32 to 19.45-folds. This indicates that there is con- 
siderable parallelism in production programs and the 
RUBIC parallel inference model can effectively cap- 
ture the available parallelism. 

In this section, we first present the simulated 
speedups obtainable for production programs using 
the RUBIC parallel inference cycle, and then present 
the performance achieved on the Intel iPSC/2 hyper- 
cube. A logic-level simulator has been developed to 
measure the theoretical speedups by assuming that 

l Snap is a sim ulator for semantic network array processor 
under development at USC [7]. 

4.2 Hypercube Performance Results 

The RUBIC parallel inference cycle has been imple- 
mented on the Intel iPSC/2 hypercube with 8 nodes. 
We have run two test programs, Cafeteria and Ho- 
tel, using the static partitioning-by-context scheme. 
When rules are partitioned by context, all rules in 
the same context are mapped to the same processing 
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Figure 3: Performance for Partition-by-Context 

node. The performances for Cafeteria and Hotel on 
the Intel iPSC/2 hypercube are shown in Figure 3. 

Cafeteria and Hotel were able to achieve good 
speedups when rules are partitioned by contexts. 
Note, due to the timing limitations of LISP on iPSC/2 
only the real time was measured. The theoreti- 
cal speedup for Cafeteria is 6.32 and it achieved a 
speedup of 3.67 for 8 nodes. The theoretical speedup 
for Hotel is 8 (only 8 nodes are available) and it 
achieved a speedup of 3.79. Since only eight nodes 
were available, the upward bound for speedup is eight. 
For this reason, the performances for Cafeteria and 
Hotel were quite close. But if more nodes were avail- 
able, we expect the performance for Hotel would con- 
tinue to increase while the performance of Cafeteria 
would begin to top off. 

Even though good speedups were obtained by 
allocating rules in a context to the same node, it is 
not clear whether this is the best partition. We are 
developing a partitioning algorithm which uses sim- 
ulated annealing for rule allocation. This algorithm 
will read in the run-time information and uses the 
parallelism and the communication matrices to esti- 
mate the computational and the communication costs 
for each partitioning. To accomplish this goal, we are 
also in the process of extending the timing functions 
to provide better run-time information. 

5 Summary 

In this paper, we have presented the multiple- 
contexts-multiple-rules (MCMR) model which guar- 
antees the correctness of the obtained solution when 
multiple rules are fired. Six test programs have been 
simulated under the MCMR model and all six pro- 
grams reached the correct solutions. Speedups of 3.18 
to 19.45-folds have been obtained for these programs 
which indicate to us that there are considerable par- 
allelism in production programs. 

To implement the MCMR effectively on the Intel 

iPSC/2 hypercube, the RUBIC parallel inference cy- 
cle has been developed. Production programs Cafe- 
teria and Hotel have been executed on the iPSC/2 
hypercube and obtained good performance. The the- 
oretical speedup for Cafeteria is 6.32-fold, and it ob- 
tained a speedup of 3.67-folds 8 nodes. The theo- 
retical speedup for Hotel is 8-folds (only 8 nodes are 
available) and it achieved a speedup of 3.79-fold. The 
hypescube performance results indicate that there are 
considerable parallelism in production programs and 
the RUBIC parallel inference model can effectively 
capture the available parallelism. 
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