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Abstract wron

The performance of production programs can be im-
proved by firing multiple rules in a production cy-
ala Trm thia nanan wa nvacant tha smalteomla_ snmdomda
wicT. 4iF LILID Paycl., wo PICBCL[II uiC llbu(bBPlc LUt L vo
maultiple-rules (MCMR) model which speeds up pro-
duction program execution by firing multiple rule con-
currently and guarantees the correctness of the solu-
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h; ner(:Lbe The Intel 1P§C/2 hy,r ercube is chosen be—

cation. To av01d unnecessary synchronization and im-
prove performance, rules are executed asynchronously

and messages are used to
llmlnarv lmnlempnfnﬁon

< ;
allel mference envrronment on the Intel iPSC/2 hy-
percube are reported.

1 Introduction

The multiple rule firing production systems increase
the available parallelism over parallel maich systems

l'\v parallpqurha‘ not nnlv the match nhase, but all
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phases of the inference cycle. To speedup the deriva-

tion of correct solutions by multiple rule firing, two

problems - the compatibility problem and the conver-

gence problem - need to be addressed. The compati-
l‘l nen

bilitv nroblem arises from the data dences be-
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tween production rules. If a set of rules does not have
data dependence among themselves, they are said to
be compatible and are allowed to fire concurrently.
The convergence problem arises from the need to fol-

low the nrnl'\lpm qnlvn'ln‘ nfrafpo‘v used in a prnrlnrhnn

program. If the problem solvmg strategy is ignored,
then two tasks may be executed out of sequence or
two actions for the same task may be executed in the

304 PARALLEL SUPPORT FOR R-B SYSTEMS

patibility and the convergence problems The ﬁrst
approach considers only the compatibility problem
and resolves it by data dependence analysis [3] [6]
[8]. Both synchronous and asynchronous execution
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which are compatible are fired concurrently in a pro-
duction cycle. Because the convergence problem is
not addressed in these models, the problem solving
strategy for a production program may be violated

whe ltinle rules are fired a\mnlfnnnnncl‘r The
WOCH IMNUiLiPpi€ rui€s are inred simuaianeo G

second approach addresses the compatibility and the
convergence problems by developing parallel produc-
tion languages. CREL [6] and Swarm [2] are two such
languages. Production programs written in these lan-

gnnons da nat 11ae roantral Bawr ar canflict reaslution
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to ensure that the right rules are fired. Instead, pro-
duction rules are fired as soon as they are matched.
The correctness of these parallel production programs

is guaranteed by showing that t or any arbitrary exe-

Cl

tained [l] A potential hurdle for CREL
is the possible difficulty to prove the correctness of
a large production program. In addition, to be able
to fire productlon rules as soon as they are matched

may not be the same as being able to fire multiple

rules concurrently. These questions will be answered
when the benchmark production programs have been
translated into CREL and Swarm programs and their

performance measured.

The multiple—contexts-multiple-rules (MCMR)

ity problem by data dependence analysrs lt addresses
the convergence problem by analyzing the control flow
in a production program to maintain the correct task



ordering. In a production program, a complex prob-
lem can be solved by dividing it into smaller tasks
until they are easily solved. These tasks are called
contezts and each context is solved by a set of con-
text rules. The MCMR model improves the perfor-
mance of a production program by activating multi-
ple contexts and firing multiple rules concurrently. It
guarantees the correctness of the solution by deter-
mining the conditions under which multiple contexts
and multiple rules can be activated and fired. To cap-
ture the maximum parallelism, the production rules
and the working memory are distributed when the
MCMR model is implemented on the Intel iPSC/2
hypercube. The sequential inference cycle is also re-
placed with the RUBIC parallel inference cycle. The
RUBIC parallel inference cycle executes rule in dif-
ferent nodes asynchronously and updates the work-
ing memory by message passing. The performance of
production programs on iPSC/2 is measured.

2 Multiple-Contexts-Multiple-
Rules Model

To resolve the compatibility and the convergence
problems successfully, one needs to understand how
problems are solved in production programs. In gen-
eral problem solving, a complex problem is usually
solved by stepwise refinement. It is divided into
smaller and smaller subproblems (or tasks) until they
are easily solved. If other subproblems need to be
solved before solving a subproblem, the program con-
trol is transferred from one subproblem to another.
Production programs solve complex problems in ex-
actly the same way. First, the production rules in a
production program are divided into subsets of rules,
one subset for each subproblem. A subset of rules is
called a contexrt and each individual rule in the sub-
set is called a contexzt rule. Every context rule in the
same context has a special contezrt WME. Rules in
different contexts have different context WMEs. A
programmer can control which context is active by
adding and removing the context WMEs. Context
rules are divided into domain rules and control rules.
Domain rules address the subproblem associated with
the context and conflict resolution is used to select
the right rule to fire. If other subproblems need to
be solved before solving a subproblem, the control
rules transfer the program control to the appropri-
ate contexts by modifying the context WMEs. By
analyzing the control rules, the control flow between
different contexts can be determined. The problem
solving strategy and the control flow diagram for an

Context Level
(control flow)
Rule Level
Rypg ... Ryg Ryy oo Ry Rgqlll RS-P (conflict resolution)
@"”@ signifies that the p control is sferred from C; to C,
Context  Reachable set Context  Reachable set
Co {Cy €, €, €3 C4 Cs} ) Y
Cl (Cl [ C4 Cs} C4 (C4 CS)
C GG Cs (Cs}

Figure 1: Control in Production Program

example production program is shown in Figure 1.

The multiple-contexts-multiple-rules model re-
solves the compatibility and the convergence prob-
lems at two levels: the rule level and the context level.
At the rule level, the MCMR model resolves the com-
patibility problem by data dependence analysis. A
set of rules is allowed to fire concurrently and are
said to be compatible or serializable if executing them
either sequentially or concurrently, the same state is
reached. This is the case if there are no data depen-
dences among rules in the set. The data dependence
analysis is performed at compile time to construct
a parallelism matrix P = [p;;] and a communication
matrix C = [¢;;]. Rules R; and R; are compatible if
pi; = 0; they are incompatibleif p;; = 1. The commu-
nication matrix C is used for communication purpose
when production rules are partitioned and mapped
into different processing nodes in a message-passing
multiprocessor. Rules R; and R; need to exchange
messages to update the database if ¢;; = 1; they do
not need to if ¢;; = 0.

The MCMR model resolves the convergence
problem at the rule level by dividing contexts in a
production program into three different types: (1)
converging contexts, (2) parallel nonconverging con-
texts and (3) nonconverging or sequential contexts.
A context C is a converging context if starting at
a state satisfying the initial condition INIT for that
context, all execution sequences result in states satis-
fying the post condition POST for that context [1] [2].
Otherwise context C is a nonconverging context. The
conflict resolution can be eliminated for a converging
context because all execution sequences converge to
the correct solution. Compatible rules can be fired
simultaneously within a converging context without
error. This is because firing a set of compatible rules
concurrently is equivalent to executing them in some
sequential order and all execution sequences reach the
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correct solution for a converging context (for proof,
see [5]). For a nonconverging context, conflict resolu-
tion must be used to reach the correct solution. The
performance of a nonconverging contexi can be im-

nroved by narall
P H

roved by parallelizing its conflict resolution. A par-

elizing its conflict resolution. A par-
allel nonconverging context is a nonconverging con-
text whose conflict resolution is parallelizable and as
a result multiple rules may be selected. The conflict

resolution for a sequential context is not paralleliz-
: 1
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viding contexts into different types and applying the

correct execution model for each type, the compati-
bility and the convergence problems are resolved at
the rule level.

by a.na,lvzmg; the control ﬂow dlagram to determine
which contexts are allowed to be active at the same
time. These contexts are called compatible contexts.

(R

Two contexts are compamme if their reachable sets do

not intersect and rules in the two reachable sets do

not have data dependences (for proof, see [4]). The
reachable set for a context C; is the set of contexts
which are reachable by following the directed arcs in
the control flow diagram starting from C;. Context
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able set for context C for the example production
program in Figure 1 is {C;, Cs, C4, Cs}.
The production rules are analyzed at compile
time to generate the compatlblhty context matrix
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if cc,, = 0 they are 1ncompat1ble i ccij 1
programmer then consults the CC matrix and mod-
ifies the production rules if needed so that only
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compadtible contexts will be activated concurrently in
proﬂ! f'fir‘m program eYemtien. In this way, the com-

3 RUBIC

Because the traditional rule based inference cycle is
sequential in nature and does not reflect well with
the MCMR model, a new parallel inference model has

) nITNDTAY

been developed. This new model is called the RUBIC
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consists of seven phases: match, local conflict resolu-
tion (LCR), context-wide conflict resolution (CCR),
context-wide compatibility determination (CCD), act,
send-message and receive-message.
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Send-Message:
*: executed for all contexts LCR:1ocel conflict resolution
it d for g only LCD: local compatibility determination
#¥%: pxecuted for paralle]l nonconvergenet CCD: context-wide compatibility determination
and zq\wnhal contexts only CCR: context-wide conflict resolution

RUBIC Parallel Inference Cycle

Type i Context Number | Body

Message Format

Figure 2: RUBIC Parallel Inference Cycle and Mes-

Before the start of production program execu-
tion, the production rules and the working memory
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time, Node; may be executing the CCR phas
context C3 and the act phase for context C'4 depend—
ing on its incoming messages. Each outgoing message
is prepared and sent to the appropriate nodes during
the send-message phase. Wh
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phase. If there are messages waiting to be processed
or newly arrived messages, the oldest message is ex-
amined and the appropriate action is taken. If no
message is available, the node loops and waits for an

nen each node finishes
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in an asynchronous, message-driven fashion, the vari-
ance between execution times for different processing
nodes is reduced and the performance is improved.
We also need to be able to detect the termination
of a production program, whicl 5 1 i

h
no rule matched: i.e. all tagsks h

n matched;

oc
a
By requiring that the context WME for a context be
removed at the completion of that context, a produc-
tion program concludes its computation when no con-
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text WME exists . This is easily implemented with a



special termination rule whose LHS condition is sat-
isfied when no working memory element is present in
the working memory and whose RHS action consists
of an explicit halt command. The implementation of
the RUBIC parallel inference model on Intel iPSC/2
hypercube is explained below in more detail.
RUBIC Parallel Inference Model

Match: The Rete algorithm is used to match the
production rules. However, at the end of the match
phase, different actions are executed depending on
the types of contexts. For rules in convergent con-
texts, the processing node skips the local conflict res-
olution phase and enters the send-message phase im-
mediately. During the send-message phase, the rule
numbers of the matched rule, not rule instantiations,
are sent by messages to the designated CCD node
for compatibility determination. Different converging
contexts have different designated CCD nodes allow-
ing the compatibility determination phases for com-
patible contexts to be executed asynchronously.

For rules in parallel nonconverging and sequen-
tial contexts, each processing node immediately exe-
cutes local conflict resolution phase at the conclusion
of the match phase.

Local Conflict Resolution: The local conflict res-
olution phase is executed for the sequential and the
parallel nonconverging contexts, but is skipped for the
convergent contexts. For the sequential context, each
node uses the conflict resolution strategy to select the
local dominant rule instantiation. At the end of local
conflict resolution phase, the send-message phase is
called to send this dominant rule instantiation to the
designated CCR processor for context-wide conflict
resolution. For parallel nonconverging context, the
local conflict resolution phase is parallelized to select
possibly multiple rule instantiations. The node then
enters the send-message phase and sends these instan-
tiations to the designated CCR node. Each parallel
nonconverging context and sequential context has a
different CCR node allowing the context-wide conflict
resolution to be executed asynchronously for different
contexts.

Context-wide Conflict Resolution: The context-
wide conflict resolution is not executed for converg-
ing contexts. For a sequential context, a context-
wide dominant rule is selected from local dominant
rules. The send-message phase is called to send the
context-wide dominant rule to all nodes containing
rules in that context. For a parallel nonconverging
context, the context-wide conflict resolution is par-
allelized and multiple rule instantiations may be se-
lected. The send-message phase is again called to
send messages to all nodes containing rules in that

context.

Context-wide Compatibility Determination:
The context-wide compatibility determination phase
is not executed for parallel nonconverging and sequen-
tial contexts. For a converging context, a rule is cho-
sen arbitrarily as the dominant rule. To conserve stor-
age space, the parallelism P matrix is broken down
into smaller P; matrices, each for one context. The
CCD node consults its P; matrix to select a set of
compatible rules. At the end of the CCD phase, the
send-message phase is called to deliver messages to
all processors containing rules in that context.

Act: Fach node examines the incoming messages and
executes the right-hand-side of the selected rules. The
communication C matrix is used to send messages
between processors updating and keeping the WM
consistent. If ¢;; = 1, then a message needs to be
sent to PEj if rule R; is fired. If ¢;; = 0, no message
needs to be sent.

Send-Message: The send-message phase deals pri-
marily with the communication protocol for iPSC/2.
It is implemented as a distinct module to make the fi-
nal code more portable to other message-passing ma-
chines. A message consists of three components: a
message type, a context number and the body of the
message. A message can be of the type LCR, LCD
(local compatibility determination), CCR, CCD and
ACT. Even though LCD stands for local compatibil-
ity determination, there is no such operation. It is
used to distinguish different types of messages. The
type of a message dictates the action to be performed
by the receiving node. The context number indicates
the context in which the action should be executed.
The body of a message contains information such as
the local dominant rule, the set of selected rules and
RHS actions. The message format is shown in Fig-
ure 2.

Two matrices are needed to send messages: the
allocation matrix A = [a;;], and the communication
matrix C. The allocation matrix contains the parti-
tioning information. It is used to send LCR and LCD
messages from nodes containing rules in a given con-
text to the designated context node. It is also used to
send the CCR and CCD messages back to the origi-
nal nodes. The communication matrix is used to send
ACT messages to different nodes to maintain a con-
sistent working memory.

Receive-Message: All incoming messages are
stored in a queue. The receive-message phase is called
when the node finishes its current message. If there
are newly arrived messages, these messages are en-
queued and the first message is dequeued and appro-
priate action is taken depending on its type. If the
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queue is empty and there
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Program Termination: A special termination rule
is used to halt the program execution. This rule is sat-
isfied when there is no context WME in the working

Mamary
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memory.
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mand to be sent to all nodes which terminates the
program execution.

4 Results

Table 4.1 Test Production System

| Program | Description |

Tournament: scheduling bridge tournaments

Toru-Waltz16: implementing the Waltz’s edge

Ioballivor aloasndilion
1&0CLINE SagOoTIviin

Cafeteria: setting up cafeteria

Snap-2d’: a two-dimensional semantic network

mola W

Qenns TA. wanifolomae thn Aliihiliée.
CIiap- 1nl VETLYing o€ CLgioiuvy

of TA candidates

!

Hotel: modeling hotel operations

Table 4.2 Sequential Simulation Results

Production Programs
Measurements | A | B [C [D [E |F
7 of rules 26 48 94 574 | 574 832
# of sequential
cycles = o 528 | 207 | 493 | 590 | 1175 | 5115

Table 4.3 Simulation Results using the RUBIC Parallel In-
ference Model

Production Programs
Measurements A B |C |[D JE JF
Are parallel
solutions correct yes ves s ves ves yes
Max # of rules
fired per cycle 120 14 18 15 106 81
Max # of contexts
activated per cycle | 1 1 12 3 3 35
Ave F# of coniexis
activated per cycle | 1 1 6.10 | 2.50 | 2.62 | 9.18
# para-cycles = 8 85 65 78 66 125 263
Speedupayp = /B | 6.21 | 3.18 | 6.32 | 8.94 | 9.40 | 194

In this section, we first present the simulated
speedups obtainable for production programs using
e RUBIC parallel inference cycle, and then present

= s, P S T
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cube. A glc-level qi mlator has been developed to

1Snap is a simulator for semant

under development at USC [7].

308 PARALLEL SUPPORT

there are an infinite number of processors. This sim-

en in Common TIQD and is currentlv
€n in cemmeoen currently

tt
running on a Sun Sparc workstation. Six test produc-
tion programs developed at USC, CMU and Columbia
have been simulated and their performance measured.
To measure the performance of production programs
on iPSC/2 hynercube

on iPSC/2 hypercube,
message-passing protocols to the simulator codes. Be-
cause of the large memory requirement of the LISP
program, we were only able to run 8 nodes concur-
rently. We have finished measuring the performance

af twao tost nrooerams and are in
WL UYWL uULOoU ylvalauxo @livu aiv 111

we have added the necessarv
wo Have aaiCl vl AllosSsSaLy

tha nracess of mea-
wviice PLUUDDB WA Liiuy

suring the rest.

Six test productlon programs developed at C,

MRATT

ViU aﬂ L; Dla Ild.Ve Deen Slmuldl:e(l un Ge two
models: the sequen ial execution and the RUBIC par-

allel inference model. By analyzing the simulations
results, we can verify the validity of the MCMR model
and measure its speedups. Table 4.1 lists and de-

scribes the six test programs. Because the test pro-
ograms

grams range from small programs to large pro

with varying degree of parallehsm and contain all
three types of contexts, they represent a good mix
of production programs.

The sequential and MCMR simulation results
iSfArI n Tnl'\]n 4 9 and 4.2 re f;vnly All uix

SN e,
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test programs reached the correct solution when they
were executed using the the RUBIC parallel inference
model; therefore the validity of the MCMR model was
verified. For Tournament and Toru-Waltz16, only

Mhav ahtainad
. 11I€Y Oouaiiica

v
nd 6.21-folds by firing multiple rules
to exploit the available parallelism within a context.
On the other hand, Cafeteria, Snap-2d, Snap-TA and
Hotel were able to exploit the parallelism across dif-
ferent contexts by a\,uvauus unuuip}e contexts simul-
taneously. As a result, they achieved speedups from
6.32 to 19.45-folds. This indicates that there is con-

siderable parallelism in production programs and the

are
@i T

b

The RUBIC parallel inference cycle has been imple-
mented on the Intel iPSC/2 hypercube with 8 nodes.
o N Lot

3 T

o test programs, (e
art s

the same context are mapped to the same processing



Cafeteria
O Hotel

Figure 3: Performance for Partition-by-Context

node. The performances for Cafeteria and Hotel on
the Intel iPSC/2 hypercube are shown in Figure 3.

Cafeteria and Hotel were able to achieve good
speedups when rules are partitioned by contexts.
Note, due to the timing limitations of LISP on iPSC/2
only the real time was measured. The theoreti-
cal speedup for Cafeteria is 6.32 and it achieved a
speedup of 3.67 for 8 nodes. The theoretical speedup
for Hotel is 8 (only 8 nodes are available) and it
achieved a speedup of 3.79. Since only eight nodes
were available, the upward bound for speedup is eight.
For this reason, the performances for Cafeteria and
Hotel were quite close. But if more nodes were avail-
able, we expect the performance for Hotel would con-
tinue to increase while the performance of Cafeteria
would begin to top off.

Even though good speedups were obtained by
allocating rules in a context to the same node, it is
not clear whether this is the best partition. We are
developing a partitioning algorithm which uses sim-
ulated annealing for rule allocation. This algorithm
will read in the run-time information and uses the
parallelism and the communication matrices to esti-
mate the computational and the communication costs
for each partitioning. To accomplish this goal, we are
also in the process of extending the timing functions
to provide better run-time information.

5 Summary

In this paper, we have presented the multiple-
contexts-multiple-rules (MCMR) model which guar-
antees the correctness of the obtained solution when
multiple rules are fired. Six test programs have been
simulated under the MCMR model and all six pro-
grams reached the correct solutions. Speedups of 3.18
to 19.45-folds have been obtained for these programs
which indicate to us that there are considerable par-
allelism in production programs.

To implement the MCMR effectively on the Intel

iPSC/2 hypercube, the RUBIC parallel inference cy-
cle has been developed. Production programs Cafe-
teria and Hotel have been executed om the iPSC/2
hypercube and obtained good performance. The the-
oretical speedup for Cafeteria is 6.32-fold, and it ob-
tained a speedup of 3.67-folds 8 nodes. The theo-
retical speedup for Hotel is 8-folds (only 8 nodes are
available) and it achieved a speedup of 3.79-fold. The
hypercube performance results indicate that there are
considerable parallelism in production programs and
the RUBIC parallel inference model can effectively
capture the available parallelism.
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