
C eason Maintenance and Inference Control
for Constraint Propagation over Intervals

Walter Hamscher
Price Waterhouse Technology Centre
68 Willow Rd, Menlo Park, CA 94025

Abstract
ACP is a fully implemented constraint propagation
system that computes numeric intervals for variables
[Davis, 19871 along with an ATMS label [de Kleer,
I9SSa] for each such interval. The system is built within
a “focused” ATMS architecture [Forbus and de Kleer,
1988, Dressler and Farquhar, 19891 and incorporates a
variety of techniques to improve efficiency.

Motivation and Overview
ACP is part of the model-based financial analysis sys-
tem CROSBY [Hamscher, 19901. Financial reasoning
is an appropriate domain for constraint-based repre-
sentation and reasonin

‘i
approaches [Bouwman, 1983,

Dhar and
s

oker, 1988. For the most part CROSBY
uses ACP in he traditional way: to determine the con-
sistency of sets of variable bindings and to compute
values for unknown variables. For example, CROSBY
might have a constraint such as

Days.Sales.in.Inventory =
30xMonthly.Cost.of.Goods.Sold

Average.Inventory

Given the values Average.Inventory E (199,201) and
Cost.of.Goods.Sold E (19,21), ACP would compute
Days.Sales.in.Inventory E (2.84,3.02). Had the fact
that Days.Sales.in.Inventory E (3.5,3.75) been previ-
ously recorded, a conflict would now be recorded.

For the purposes of this paper, all the reader need
know about CROSBY is that it must construct, ma-
nipulate, and compare many combinations of underly-
ing assumptions about the ranges of variables. Contra-
dictions among small sets of assumptions are common.
This motivates the need for recording the combinations
of underlying assumptions on which each variable value
depends, which in turn motivates the use of an ATMS
architecture to record such information.

Although there is extensive literature on the interval
propagation aspects of the problem, little of the work
addresses the difficulties that arise when dependencies
must be recorded. The problems that arise and the
solutions incorporated into ACP are:

o Since variable values are intervals, some derived val-
ues may subsume weaker (superset) interval values.

506 TRUTH MAINTENANCE SYSTEMS

ACP marks variable values that are subsumed as in-
active via a simple and general extension to ATMS jus-
tifications. Other systems that maintain dependencies
while inferring interval labels either use single-context
truth maintenance [Simmons, 1986, Sacks, 19871, non-
monotonic reasoning [Williams, 19861 or incorporate
the semantics of numeric intervals into the ATMS itself
[Dague et al., 19901.

o Solving a constraint for a variable already solved for
can cause redundant computation of variable bind-
ings and unnecessary dependencies.

ACP deals with this problem with a variety of strate-
gies. Empirical results show that it is worthwhile to
cache with each variable binding not only its ATMS la-
bel, but also the variable bindings that must also be
present in any supporting environment.

e Certain solution paths for deriving variable bindings
are uninteresting for some applications.

ACP incorporates a unary “protect” operator into its
constraint language to allow the user to advise the sys-
tem to prune such derivation paths.

Syntax and Semantics
ACP uses standard notation as reviewed here: [l, 2) de-
notes {x : 1 2 x < 2}, (-oo,O) denotes {x : x < 0}, and
[42, +oo) denotes {x : 42 5 x}. The symbols +oo and
-oo are used only to denote the absence of upper and
lower bounds; they cannot themselves be represented
as intervals. Intervals may not appear as lower or up-
per bounds of other intervals, that is, [0, (10,20)] is ill
formed. (,) d enotes the empty set.

All standard binary arithmetic operators are sup-
ported, with the result of evaluation being the small-
est interval that contains all possible results of apply-
ing the operator pointwise [Davis, 19871. For example,
W) + (1721 evaluates to (2,4). (1,2)/[0,1) evaluates
to (1; +oo), with the semicolon replacing the comma to
denote an interval that includes the undefined result of
division by zero.

All binary relations revaluate to one of T or I, obey-
ing the following rule for intervals 11 and 12:

I, ?-I2 ++3x,y: xryAxEIlAyE&

From: AAAI-91 Proceedings. Copyright ©1991, AAAI (www.aaai.org). All rights reserved.

Corollary special cases include tJx : x F (-00, +oo),
which evaluates to T, and Vx : x F (,) which evaluates
to 1.

Interval-valued variables can appear in expressions
and hence in the result of evaluations, for example,
evaluating the expression ([l ,2] = [2,4] + c) yields
c = [-3,0]. Appealing to the above rule for binary rela-
tions, c = [-3,0] can be understood to mean c E [-3,0].

ACP has a unary “protect” operator, denoted “!“,
whose treatment by the evaluator will be described
later.

ACP computes the binding of each variable under var-
ious sets of ATMS assumptions. Let the state of ACP
be defined by a set of Horn clauses of the form C --) @
orC--,V = I, where C is a set of proposition symbols
denoting assumptions, Qp is a constraint formula, V is a
real-valued variable and I an interval. The set of Horn
clauses is to be closed under

c~3v=I,c2--)@ I- &UC:!+@[I/V] (1)

where @[I/V] d enotes the result of substituting interval
I for V in <p and evaluating. C’ -+ V = I’ subsumes
C+V = I if and only if I’ C_ I and C’ C C. Any
clause subsumed by a different clause can be deleted.
Let ,8(V, I?), the binding of V in context I’, be the inter-
val I that is minimal with respect to subset, such that
there is a clause C --) V = I with C & I’.

Although this abstract specification is correct for
ACP in a formal sense, it does not provide good in-
tuitions about an implementation. In particular, it is a
bad idea to literally delete every subsumed clause, since
that can make it harder to check subsumption for newly
added clauses. There is also an implicit interaction be-
tween subsumption and 0 that is not obvious from the
above description. Hence, the remainder of this paper
describes ACP mainly in terms of the actual mecha-
nisms and ATMS data structures used by the program,
instead of the abstract specification.

Reason Maintenance
A node may represent any relation (a’), with a binding
(V = I) being merely a special case. Each node has
a label that is a set of minimal sets of supporting as-
sumptions [de Kleer, 1986a]. The label of node N is
denoted L(N). I n effect, each node N representing @
along with its label represents a set of C ----f ip clauses.
By the subsumption criterion above, only the minimal
environments (C) need to be stored. In the remainder
of the paper, nodes will be shown with their labels. For
example, node no represents the relation (a = b + c),
true in the empty environment (1:

no: (a =b+c) {}

Nodes ni and n2 bind the variables
under assumptions B and C:

b and c, respectively,

n1 : (b = (6,9)) vu
n2 : (c = (10,ll)) {C}

Constraint propagation creates justifications, which
will be written as clauses of the form NO + Ai lVa.
ATMS label propagation computes the closure under:

(NO + ANi) A% E L(Ni) I- IJG E L(No) (2)
i i i

Continuing the example, constraint propagation yields
an interval value for a, creating node n3, justified by
justification jr, and label propagation adds {B, C) to
the label of n3:

. 123 + no A nl A n2
ii; i (a = (16,20)) {BY Cl

(In a naive implementation, the system might at this
point try to derive values for b or c using the new value
of a; this is an instance of “reflection” and methods for
preventing it will be discussed later.)

A query for the binding of variable a in the envi-
ronment {B, C) - that is, p(u, {B, C}) - should return
node n3 and hence interval (16,20).

Unique Bindings
To control constraint propagation, there should be at
most one binding per variable per environment. Sup-
pose, for example, that we get a new value for a under
assumption A, denoted by node n4 :

n4 : (a = (17,19)) {A)

Since this value of a is a subset of the interval for a
derived earlier, a new justification is required for n3,
with a resulting update to the label of n3:

. .

i: I ;h” z($, 20)) {B, C}(A) Label update

Note that node n3 representing the less specific inter-
val (16,20) f or a will need to be kept along with its
label. /3(u, {B, C}) should still find node n3 and return
(16,20), but p(u, {A)) should only find node n4, even
though n3 is true as well. “Shadowing” justifications
are introduced to provide this functionality.

A shadowing justification obeys (2), that is, the con-
sequent is true in any environment in which all its an-
tecedents are true. This criterion results in updates to
the node labels L(N). H owever, all nodes also have a
“shadow label.” Any node supported by a shadowing
justification in environment C also has C added to its
shadow label S(N), obeying the usual minimality con-
vention. ACP distinguishes between nodes being true
in an environment, and active in an environment:

true(N, P) w 3C E L(N) : C C I’

active(N, J?) t-) true(N, I’) (3)

n13C E S(N) : c E r

Intuitively, shadowing environments make the node in-
visible in all their superset environments. A node shad-
owed in the empty environment {} would be true in all
environments, but no inferences would be made from it.

HAMSCHER 507

The unique binding function ,0 is thus defined in terms
of the active predicate:

p(v,r) = I - active(V=I, r) (4)
In the example above, j2 would be a shadowing jus-

tification, since in any environment in which 124 is true,
ng should be ignored. Shadowing justifications will be
denoted by clauses written with t- and the shadow la-
bel as that label appearing to the right of a “\,, char-
acter. Note that any environment appearing in S(N)
must also be a superset of some environment in L(N).
However, for compactness of notation in this paper, en-
vironments that appear in both L(N) and S(N) will
only be shown to the right of the “\” character. In
the example below, the reader should understand that
L(n3) is actually {B,C) {A}:

.

ii i Ti =“(?t, 20)) (B, C) \ {A} Label update

Since any number of different interval values for a
variable can be created in any order, it is in princi-
ple possible for O(n2) shadowing justifications to be
installed for a variable with n bindings. IIowever, since
shadowing is transitive some of these shadowing justi-
fications can be deleted. For example, suppose three
nodes n.101, 12102, and n103 are created. The sequence
of new justifications and environment propagations il-
lustrates that after jr02 and jica are created, jrci can
be deleted:

m0l : x = [o, lo] (Xl}
n102 : x = [4,6] (X2)
A01 : nl01 -+ w02

12101 : x = [O, lo] {Xl} \ {X2} La-be1 update
72103 : x = PY 81 {x3) New node
A02 : n103 -+ 12102

12103 : x = [4,61 {X3] \ {X2] Label update
A03 : nl0l * n103

n101 : 2 = [0, lo] {Xl} \ {X2)(X3} Label update

ACP attempts to minimize the number of shadowing
justifications by deleting each one that is no longer
needed. Although deleting justifications is not a nor-
mal operation for an ATMS since it can lead to incor-
rect labelings, this special case guarantees that L(N)
and S(N) remain the same as if the deletion had not
taken place. Since the justifications were redundant,
an efficiency advantage accrues from not recomputing
labels as more environments are added.

Having defined the distinction between nodes being
true versus being active, we now turn to methods for
controlling propagation inferences.

Propagation
ACP propagates interval values for variables using “con-
sumers” [de Kleer, 1986b]. A consumer is essentially a
closure stored with a set of nodes; it runs exactly once
with those nodes as its arguments the first time they all
become true. Normally, a consumer creates a new node

508 TRUTH MAINTENANCE SWI’EMS

and justification whose antecedents are the nodes whose
activation triggered it. ACP is built using a focused
ATMS that maintains a single consistent focus environ-
ment and only activates consumers to run on nodes that
are true in that focus environment. ACP takes this fo-
cusing notion step further, running consumers only on
nodes that are active.

The propagation mechanism of ACP distinguishes be-
tween constraints and bindings. A binding is a con-
straint of the form V= I. For example, no : (a = b + c)
is a constraint and n1 : (b = (6,9)) and n200 : (a = 2)
are bindings. Propagation of a constraint node works
as shown in the procedure below. For simplicity, the
example below shows variables bound only to integers,
rather than to intervals as would be done in ACP.

1. When a. constraint node becomes active, install con-
sumers to trigger propagation on each of the variables
that appear in the constraint. For example, when
n0 : (a = b + c) becomes active, consumers will be
installed for variables a, b, and c.

2 When a binding node for a variable becomes active,
run each of its consumers; each consumer will sub-
stitute the current binding into the constraint and
evaluate it. For example, when n1 : b = 7 becomes
active, the constraint no : (a = b+c) will be evaluated
given nl, to produce a new constraint a = 7 + c.

3. The result of the evaluation in step 2 will fall into
one of four cases:

(4

w

(4

(4

The constant I. For example, if (a * b = 7) and
U = 0, evaluation returns 1. Create a justifica-
tion for the distinguished node I from the current
antecedent nodes, which will result in an ATMS
conflict.
The constant T. For example, if (u*b = 0) and a =
0 then the evaluation will return T. Do nothing.
A binding. For example, if a = 2 and a = b + 2
then evaluation returns the binding b = 0. Create
a new node containing the binding and justify it
with the current antecedents.
A constraint. For example, if a = 2 and a = b + c
then evaluation returns 2 = b + c. Go back to step
1 above for the new constraint.

Protection
In the expression (a = !(b + c)) with a, b, and c being
variables, b and c are said to be protected. The effect
of protection is that evaluating any expression, all of
whose variables are protected, yields T. For example,
evaluating ([l, 23 = [2,4]+!c) yields T. In step 3(c)
above, if a = 2 and a = !(b + c) the evaluation returns
T, because all the variables in 2 = !(b+c) are protected.

The benefit of the protect operator is that the ACP
user can advise the system not to ever waste effort
trying to solve for certain variables. For example,
CROSBY constructs linear regression equations of the
formy=cvcxc+.. . + crnxra + ,B, with oi and /? denoting
constants. In this context it makes no sense to try to

use the dependent variable y to solve for any of the ?a
independent zi variables. Protecting the zi variables
is a simple, local, modular way to prevent ACP from
doing so.

Solution Trees

The propagation procedure above is straightforward
but would in general result in unnecessary work. For
one thing, given Q = b + c, b = 2 and c = 2, it would
derive a = 4 in two different ways. To prevent this the
variables should only be bound in some strict global
order (alphabetic, for example). Furthermore, subex-
pressions that contain operators with idempotent ele-
ments do not always require all variables to be bound
before evaluating to a constant; for example, the con-
straint a = b * c, evaluated with c = 0, should immedi-
ately yield a I= 0, instead of waiting for a value for b.
Finally, protected variables guarantee that certain se-
quences of bindings and evaluations will never yield any
new bindings. Although relatively minor from a purely
constraint processing point of view, these are all genuine
concerns in ACP because the computational overhead
of creating new nodes, justifications, and consumers far
outweighs the work involved in actually evaluating the
constraints and performing the associated arithmetic
operations.

Whenever a new constraint node is created, ACP per-
forms a static analysis to find all the legal sequences in
which its variables could be bound. The result of this
analysis is represented as a directed tree whose edges
each correspond to a variable in the constraint. This
is called the solution tree. Each path starting from the
root represents a legal sequence. The recursive algo-
rithm for generating this tree adds a new arc for each
variable appearing in the current expression, from the
current root to a new tree formed from the expression
derived by deleting that variable.

For example, the root of the tree for (u = b + c) has
three branches: one for a leading to a subtree that is
the tree for (b + c); one for b leading to a subtree that
is the tree for (u = c); one for c leading to a subtree for
(a = 6). In this example the c branch can be pruned
because (a = b) is not a binding and c (alphabetica.lly)
precedes neither a nor b.

Had the expression been (a = b * c), the c branch
would remain because c could be bound to 0 to produce
the binding a = 0.

Had the expression been (!a = b + c), the b branch
could have been pruned because the tree for the subex-
pression (!a = c) consists only of a single branch a,
which does not precede b.

Step 1 of the propagation procedure presented earlier
need only install consumers on variables corresponding
to branches emanating from the corresponding position
in the tree. The propagator computes the solution tree
once and caches it; this is worthwhile because it is not
unusual in CROSBY for variables to acquire many dif-
ferent bindings, and it would be wasteful for ACP to

repeatedly rediscover worthless sequences of variable
bindings.

In an example shown earlier, recall that we had the
nodes:

: (a=b+c) (}
ii; : (b = (6,9)) W
122 : (c = (10,ll)) {C}
n3 : (a = (16,20)) {B, C)

The solution tree ensures that the no and nl would have
been combined to get (a = (6,9) +c), which would then
have been combined with n2 to get n3, without deriving
the result in the symmetric (and redundant) fashion.

Reflect ion

As mentioned earlier, nodes no and n3 might in prin-
ciple be combined and evaluated to yield ((16,20) =
b + c), “reflecting” back through the no constraint to
derive new values of b and c. In general, there is little
point in attempting to derive values for a variable V
using constraints or bindings that themselves depend
on some binding of V.

The straightforward and complete method for check-
ing this is to search each of the directed acyclic graphs
(DAGS) of justifications supporting any binding about
to be combined with a given constraint (step 2 of the
propaga,tion procedure). If that constraint appears in
every DAG, inhibit propagation. Worst-case complex-
ity analysis suggests that this method might be worth
its cost. Traversing the DAG takes time linear in the
number of all nodes, but maintaining shadowing justifi-
cations takes times quadratic in the number of bindings
for any single variable. Since foregoing the reflection
test may result in spurious bindings, the DAG strategy
may pay off asymptotically. Intuitively speaking, when
reflections go undetected, many extra nodes and justifi-
cations get created, and depth first searches of justifica-
tion trees are fast relative to the costs associated with
creating unnecessary bindings. A further improvement
to this strategy might be to search the DAG only to a
fixed finite depth, since binding nodes can be supported
via arbitrarily long chains of shadowing justifications.

A different strategy is to cache with each node N
its Essential Support Set E(N), and test that before
searching the DAG. E(N) is that set of nodes that must
appear in a justification DAG for any set of supporting
assumptions l?. For example, no, nl and n2 all have
empty essential support sets; node n3 has the essential
support set (no, nl, 122). ACP tests essential support
sets to see whether they contain either the constraint
or any binding for the variable about to be propagated;
if so the propagation is inhibited. In the example above,
node 123 will not combine with no : (a = b + c) (that is,
the n3 consumer that performs this computation will
not run) as long as no E E(n3).

Essential support sets can be easily computed locally
and incrementally each time a justification is installed,
and they have the useful property that once created,
they can subsequently only get smaller as propagation

HAMSCHER 509

proceeds. In general, when justification N t Ai Ni is
created, E(N) is updated by

E(N)’ = E(N) n u({N} u E(N)) (5)
i

where initially E(N) is represented implicitly by 24, the
set of all nodes.

For example, if some new justification n3 t 12201
were added, nodes no, nl, and n2 could be deleted from
E(n3). In that case n3 would then appropriately con-
tinue to propagate with constraint no.

Essential support sets effectively cache the result of
searching the support DAG ignoring ATMS labels. As
compared to the complete and correct strategy, which is
to search the DAG to an unbounded depth, the essential
support set strategy (hereafter, ESS) can err only by not
detecting reflections.

With this additional propagation machinery in place
we can now follow ACP as it continues to propagate in
focus environment {A, B, C} from n4 as shown below.

n4 : (a = (17,19)) . New node
721 i- no A 122 A n4

;I: i (b = (6,9)) VW% Cl .
125 + no A nl A 124

ii; i (c = (8,13)) {A, B}

Label update

New node . .
i: I ~~~(~,213)) {A, B} \ {C} Label update

ACP creates the new node n5 : (c = (8,13)), active
only in (A, B) . Hence, querying ACP for the value of c
yields the following results in each of the following F:

P(c, 0) = P(c, {Al) = P(c, VW = G-00, +4
P(c, {A, B)) = (8913) 125

C E I? + p(c, l?) = (10,ll) n2

Overlapping Intervals
ACP needs to deal with cases in which a variable is
assigned intervals which have nonempty intersections
but neither is a subset of the other; these are called
overlapping intervals. Suppose that nodes n201 and n202
are created with overlapping interval values (1,lO) and
(5,20). ACP creates a third node n203 to represent their
intersection (5, lo), and the new node in turn shadows
the two nodes that support it.

12201 : (x = (1, lo)) {Xl}

72202 : (X = (5,20)) {X2)
j200 : n203 +- mol A m2

New node

Label update

r-4203 : (2 = (5,10)) {X1,X2}
j201 : n201 -e n203
72201 : (z = (1,lO))
j202 :

{Xl} \ (Xl, X2)
n202 -e n203

n202 : (x = (5,20)) {X2} \ {Xl, X2)
Querying ACP for the value of z yields a d
in each of the following environments:

P(X> 0) = -. - - (-9 +m)

Label update

ifferent result

Although in the worst case k variable bindings could
result in O(k2) overlaps, empirically the number actu-
ally created is much less than k. Intuitively, the prop-
agation strategy ensures that overlapping intervals are
only derived from the most restrictive intervals already
present in the current focus environment. Whenever
ACP creates a new overlapping interval, the two inter-
vals it was created from become shadowed and trigger
no more inferences in the current focus environment.

Overlapping intervals result in a small complication
to reflection checking. Although in general, no informa-
tion is gained by deriving a value for variable V using
constraints or bindings that themselves depend on some
binding of V, overlaps between intervals can in fact add
information. Hence, DAG and ESS computations ignore
the presence of overlap justifications.

Empirical Results
ACP is implemented in 5500 lines of ANSI Common
Lisp. Roughly one half is devoted to the expression
evaluator, one third is the focused ATMS, and ACP-
specific code comprises the remainder. It is currently
being used in a prototype program for model-based fi-
nancial data analysis; the data for Figures 1 and 2
were generated using two financial models with quar-
terly data for a real computer peripherals manufacturer.
The “small” example (data represented by o) uses 116
variables and involves the exploration of 12 contexts.
The “large” example (data represented by 0) uses 158
variables and explores 28 contexts. The horizontal axis
refers to the reflection check strategies in use: “ ” means
the null strategy of not checking reflections; “S” refers
to a simple strategy for which only constraints being
immediately re-applied were inhibited; “D2” refers to
the DAG strategy with a depth cutoff of 2, “D” refers
to the DAG strategy with no depth cutoff, “E” refers to
the ESS strategy, and the other columns show the use
of multiple strategies as successive filters.

Figure 1: Maximum Bindings for any Variable
90

60

30

Max

0 0

O 0 0
0 0 0 0

0 0
0

0 0
0 0 0 0

I
S l3 lcs2 b S S l2 S

Strategies
E D D E

D

510 TRUTH MAINTENANCE SYSTEMS

200

100

Sets

Figure 2: Run Time in Seconds

0
0

0

O O 0
0

0 0 0

0

0

I
S l3 D2 0 S S l?J 9

E D D E
Strategies D

Figure 1 shows the maximum number of bindings
created for any variable; in general, the stronger the
reflection check strategy, the fewer intermediate results
are created. Figure 1 illustrates that D2 works badly,
inhibiting no intermediate bindings at all. Further, it
shows ESS can work almost as well as the unlimited-
depth DAG strategy.

Figure 2 shows the run time in seconds on a Sym-
bolics 3645 (inclusive of paging and ephemeral garbage
collection) for the same examples. Figure 2 demon-
strates that although the worst case complexity of the
DAG strategy appears superior, in fact it is empirically
much more costly than ESS. Among the reasons for this
are that (i) the number of shadowing justifications for a
variable with k bindings is theoretically O(k2) but em-
pirically never more than 1.5k, a.nd (ii) both DAG and
ESS tests must be reexecuted every time the ATMS fo-
cus changes, and the frequency of such changes is larger
than the average number of bindings per varia.ble. Al-
though ESS is not much faster than the null strategy,
the space savings suggested in Figure 1 makes it the
method of choice in ACP.

Conelusion

ACP integrates constraint propagation over intervals
with assumption-based truth maintenance, contribut-
ing several novel inference control techniques, includ-
ing the incorporation of subsumption into the ATMS
and precomputing feasible solution paths for every con-
straint. Experiments with ACP further indicate tha.t
spurious intermediate variable bindings can be effi-
ciently suppressed by using essential support sets to
check whether each new variable binding is being de-
rived in a way that depends on the variable itself.

References
[Bouwman, 19831 M. J. Bouwman. Human Diagnostic

Reasoning by Computer: An Illustration from Finan-
cial Analysis. Management Science, 29(6):653-672,
June 1983.

[Dague et al., 19901 P. Dague, 0. Jehl, and P. Taillib-
ert. An Interval Propagation and Conflict Recogni-
tion Engine for Diagnosing Continuous Dynamic Sys-
tems. In Proc. Int. Workshop on Expert Systems in
Engineering, in: Lecture Notes in AI, Vienna, 1990.
Springer.

[Davis, 19871 E. Davis. Constraint Propagation with
Interval Labels. Artificial Intelligence, 32(3):281-
332, July 1987.

[de Kleer, 1986a] J. de Kleer. An Assumption-Based
TMS. Artificial Intelligence, 28(2):127-162, 1986.

[de Kleer, 1986b] J. de Kleer. Problem solving with the
ATMS. Artificial Intelligence, 28(2):197-224, 1986.

[Dhar and Croker, 19881 V. Dhar and A. Croker.
Knowledge Based Decision Support in a Business:
Issues and a Solution. IEEE Expert, pages 53-62,
Spring 1988.

[Dressler and Farquhar, 19891 0. Dressler and A. Far-
quhar. Problem Solver Control over the ATMS. In
Proc. German Workshop on AI, 1989.

[Forbus and de Kleer, 1988]
K. D. Forbus and J. de Kleer. Focusing the ATMS.
In Proc. 7th National Conf. on Artificial Intelligence,
pages 193-198, Minneapolis, MN, 1988.

[Hamscher, 19901 W. C. Hamscher. Explaining Un-
expected Financial Results. In Proc. AAAI Spring
Symposium on Automated Abduction, pages 96-100,
March 1990. Available from the author.

[Sacks, 19871 E. Sacks. Hierarchical Reasoning about
Inequalities. In Proc. 6th National Conf on Artifi-
cial Intelligence, pages 649-655, Seattle, WA, August
1987.

[Simmons, 19861 R. 6. Simmons. Commonsense Arith-
metic Reasoning. In Proc. 5th National Conf. on Ar-
tificial Intelligence, Philadelphia, PA, August 1986.

[Williams, 19861 B. C. Williams. Doing Time: Putting
Qualitative Reasoning on Firmer Ground. In Proc.
5th National Conf on Artificial Intelligence, pages
105-112, Philadelphia, PA, August 1986.

Acknowledgements

Heinrich Taube contributed to the implementation of
the expression evaluator. An anonymous reviewer sug-
gested the inclusion of the abstract specification.

HAMSCHER 511

