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Abstract 
ACP is a fully implemented constraint propagation 
system that computes numeric intervals for variables 
[Davis, 19871 along with an ATMS label [de Kleer, 
I9SSa] for each such interval. The system is built within 
a “focused” ATMS architecture [Forbus and de Kleer, 
1988, Dressler and Farquhar, 19891 and incorporates a 
variety of techniques to improve efficiency. 

Motivation and Overview 
ACP is part of the model-based financial analysis sys- 
tem CROSBY [Hamscher, 19901. Financial reasoning 
is an appropriate domain for constraint-based repre- 
sentation and reasonin 

‘i 
approaches [Bouwman, 1983, 

Dhar and 
s 

oker, 1988. For the most part CROSBY 
uses ACP in he traditional way: to determine the con- 
sistency of sets of variable bindings and to compute 
values for unknown variables. For example, CROSBY 
might have a constraint such as 

Days.Sales.in.Inventory = 
30xMonthly.Cost.of.Goods.Sold 

Average.Inventory 

Given the values Average.Inventory E (199,201) and 
Cost.of.Goods.Sold E (19,21), ACP would compute 
Days.Sales.in.Inventory E (2.84,3.02). Had the fact 
that Days.Sales.in.Inventory E (3.5,3.75) been previ- 
ously recorded, a conflict would now be recorded. 

For the purposes of this paper, all the reader need 
know about CROSBY is that it must construct, ma- 
nipulate, and compare many combinations of underly- 
ing assumptions about the ranges of variables. Contra- 
dictions among small sets of assumptions are common. 
This motivates the need for recording the combinations 
of underlying assumptions on which each variable value 
depends, which in turn motivates the use of an ATMS 
architecture to record such information. 

Although there is extensive literature on the interval 
propagation aspects of the problem, little of the work 
addresses the difficulties that arise when dependencies 
must be recorded. The problems that arise and the 
solutions incorporated into ACP are: 

o Since variable values are intervals, some derived val- 
ues may subsume weaker (superset) interval values. 
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ACP marks variable values that are subsumed as in- 
active via a simple and general extension to ATMS jus- 
tifications. Other systems that maintain dependencies 
while inferring interval labels either use single-context 
truth maintenance [Simmons, 1986, Sacks, 19871, non- 
monotonic reasoning [Williams, 19861 or incorporate 
the semantics of numeric intervals into the ATMS itself 
[Dague et al., 19901. 

o Solving a constraint for a variable already solved for 
can cause redundant computation of variable bind- 
ings and unnecessary dependencies. 

ACP deals with this problem with a variety of strate- 
gies. Empirical results show that it is worthwhile to 
cache with each variable binding not only its ATMS la- 
bel, but also the variable bindings that must also be 
present in any supporting environment. 

e Certain solution paths for deriving variable bindings 
are uninteresting for some applications. 

ACP incorporates a unary “protect” operator into its 
constraint language to allow the user to advise the sys- 
tem to prune such derivation paths. 

Syntax and Semantics 
ACP uses standard notation as reviewed here: [l, 2) de- 
notes {x : 1 2 x < 2}, ( -oo,O) denotes {x : x < 0}, and 
[42, +oo) denotes {x : 42 5 x}. The symbols +oo and 
-oo are used only to denote the absence of upper and 
lower bounds; they cannot themselves be represented 
as intervals. Intervals may not appear as lower or up- 
per bounds of other intervals, that is, [0, (10,20)] is ill 
formed. (,) d enotes the empty set. 

All standard binary arithmetic operators are sup- 
ported, with the result of evaluation being the small- 
est interval that contains all possible results of apply- 
ing the operator pointwise [Davis, 19871. For example, 
W) + (1721 evaluates to (2,4). (1,2)/[0,1) evaluates 
to (1; +oo), with the semicolon replacing the comma to 
denote an interval that includes the undefined result of 
division by zero. 

All binary relations revaluate to one of T or I, obey- 
ing the following rule for intervals 11 and 12: 

I, ?-I2 ++3x,y: xryAxEIlAyE& 
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Corollary special cases include tJx : x F (-00, +oo), 
which evaluates to T, and Vx : x F (, ) which evaluates 
to 1. 

Interval-valued variables can appear in expressions 
and hence in the result of evaluations, for example, 
evaluating the expression ([l ,2] = [2,4] + c) yields 
c = [-3,0]. Appealing to the above rule for binary rela- 
tions, c = [-3,0] can be understood to mean c E [-3,0]. 

ACP has a unary “protect” operator, denoted “!“, 
whose treatment by the evaluator will be described 
later. 

ACP computes the binding of each variable under var- 
ious sets of ATMS assumptions. Let the state of ACP 
be defined by a set of Horn clauses of the form C --) @ 
orC--,V = I, where C is a set of proposition symbols 
denoting assumptions, Qp is a constraint formula, V is a 
real-valued variable and I an interval. The set of Horn 
clauses is to be closed under 

c~3v=I,c2--)@ I- &UC:!+@[I/V] (1) 

where @[I/V] d enotes the result of substituting interval 
I for V in <p and evaluating. C’ -+ V = I’ subsumes 
C+V = I if and only if I’ C_ I and C’ C C. Any 
clause subsumed by a different clause can be deleted. 
Let ,8(V, I?), the binding of V in context I’, be the inter- 
val I that is minimal with respect to subset, such that 
there is a clause C --) V = I with C & I’. 

Although this abstract specification is correct for 
ACP in a formal sense, it does not provide good in- 
tuitions about an implementation. In particular, it is a 
bad idea to literally delete every subsumed clause, since 
that can make it harder to check subsumption for newly 
added clauses. There is also an implicit interaction be- 
tween subsumption and 0 that is not obvious from the 
above description. Hence, the remainder of this paper 
describes ACP mainly in terms of the actual mecha- 
nisms and ATMS data structures used by the program, 
instead of the abstract specification. 

Reason Maintenance 
A node may represent any relation (a’), with a binding 
(V = I) being merely a special case. Each node has 
a label that is a set of minimal sets of supporting as- 
sumptions [de Kleer, 1986a]. The label of node N is 
denoted L(N). I n effect, each node N representing @ 
along with its label represents a set of C ----f ip clauses. 
By the subsumption criterion above, only the minimal 
environments (C) need to be stored. In the remainder 
of the paper, nodes will be shown with their labels. For 
example, node no represents the relation (a = b + c), 
true in the empty environment (1: 

no: (a =b+c) {} 

Nodes ni and n2 bind the variables 
under assumptions B and C: 

b and c, respectively, 

n1 : (b = (6,9)) vu 
n2 : (c = (10,ll)) {C} 

Constraint propagation creates justifications, which 
will be written as clauses of the form NO + Ai lVa. 
ATMS label propagation computes the closure under: 

(NO + ANi) A% E L(Ni) I- IJG E L(No) (2) 
i i i 

Continuing the example, constraint propagation yields 
an interval value for a, creating node n3, justified by 
justification jr, and label propagation adds {B, C) to 
the label of n3: 

. 123 + no A nl A n2 
ii; i (a = (16,20)) {BY Cl 

(In a naive implementation, the system might at this 
point try to derive values for b or c using the new value 
of a; this is an instance of “reflection” and methods for 
preventing it will be discussed later.) 

A query for the binding of variable a in the envi- 
ronment {B, C) - that is, p(u, {B, C}) - should return 
node n3 and hence interval (16,20). 

Unique Bindings 
To control constraint propagation, there should be at 
most one binding per variable per environment. Sup- 
pose, for example, that we get a new value for a under 
assumption A, denoted by node n4 : 

n4 : (a = (17,19)) {A) 

Since this value of a is a subset of the interval for a 
derived earlier, a new justification is required for n3, 
with a resulting update to the label of n3: 

. . 

i: I ;h” z($, 20)) {B, C}(A) Label update 

Note that node n3 representing the less specific inter- 
val (16,20) f or a will need to be kept along with its 
label. /3(u, {B, C}) should still find node n3 and return 
(16,20), but p(u, {A)) should only find node n4, even 
though n3 is true as well. “Shadowing” justifications 
are introduced to provide this functionality. 

A shadowing justification obeys (2), that is, the con- 
sequent is true in any environment in which all its an- 
tecedents are true. This criterion results in updates to 
the node labels L(N). H owever, all nodes also have a 
“shadow label.” Any node supported by a shadowing 
justification in environment C also has C added to its 
shadow label S(N), obeying the usual minimality con- 
vention. ACP distinguishes between nodes being true 
in an environment, and active in an environment: 

true(N, P) w 3C E L(N) : C C I’ 

active(N, J?) t-) true(N, I’) (3) 

n13C E S(N) : c E r 

Intuitively, shadowing environments make the node in- 
visible in all their superset environments. A node shad- 
owed in the empty environment {} would be true in all 
environments, but no inferences would be made from it. 
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The unique binding function ,0 is thus defined in terms 
of the active predicate: 

p(v,r) = I - active(V=I, r) (4) 
In the example above, j2 would be a shadowing jus- 

tification, since in any environment in which 124 is true, 
ng should be ignored. Shadowing justifications will be 
denoted by clauses written with t- and the shadow la- 
bel as that label appearing to the right of a “\,, char- 
acter. Note that any environment appearing in S(N) 
must also be a superset of some environment in L(N). 
However, for compactness of notation in this paper, en- 
vironments that appear in both L(N) and S(N) will 
only be shown to the right of the “\” character. In 
the example below, the reader should understand that 
L(n3) is actually {B,C) {A}: 

. 

ii i Ti =“(?t, 20)) (B, C) \ {A} Label update 

Since any number of different interval values for a 
variable can be created in any order, it is in princi- 
ple possible for O(n2) shadowing justifications to be 
installed for a variable with n bindings. IIowever, since 
shadowing is transitive some of these shadowing justi- 
fications can be deleted. For example, suppose three 
nodes n.101, 12102, and n103 are created. The sequence 
of new justifications and environment propagations il- 
lustrates that after jr02 and jica are created, jrci can 
be deleted: 

m0l : x = [o, lo] (Xl} 
n102 : x = [4,6] (X2) 
A01 : nl01 -+ w02 

12101 : x = [O, lo] {Xl} \ {X2} La-be1 update 
72103 : x = PY 81 {x3) New node 
A02 : n103 -+ 12102 

12103 : x = [4,61 {X3] \ {X2] Label update 
A03 : nl0l * n103 

n101 : 2 = [0, lo] {Xl} \ {X2)(X3} Label update 

ACP attempts to minimize the number of shadowing 
justifications by deleting each one that is no longer 
needed. Although deleting justifications is not a nor- 
mal operation for an ATMS since it can lead to incor- 
rect labelings, this special case guarantees that L(N) 
and S(N) remain the same as if the deletion had not 
taken place. Since the justifications were redundant, 
an efficiency advantage accrues from not recomputing 
labels as more environments are added. 

Having defined the distinction between nodes being 
true versus being active, we now turn to methods for 
controlling propagation inferences. 

Propagation 
ACP propagates interval values for variables using “con- 
sumers” [de Kleer, 1986b]. A consumer is essentially a 
closure stored with a set of nodes; it runs exactly once 
with those nodes as its arguments the first time they all 
become true. Normally, a consumer creates a new node 
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and justification whose antecedents are the nodes whose 
activation triggered it. ACP is built using a focused 
ATMS that maintains a single consistent focus environ- 
ment and only activates consumers to run on nodes that 
are true in that focus environment. ACP takes this fo- 
cusing notion step further, running consumers only on 
nodes that are active. 

The propagation mechanism of ACP distinguishes be- 
tween constraints and bindings. A binding is a con- 
straint of the form V= I. For example, no : (a = b + c) 
is a constraint and n1 : (b = (6,9)) and n200 : (a = 2) 
are bindings. Propagation of a constraint node works 
as shown in the procedure below. For simplicity, the 
example below shows variables bound only to integers, 
rather than to intervals as would be done in ACP. 

1. When a. constraint node becomes active, install con- 
sumers to trigger propagation on each of the variables 
that appear in the constraint. For example, when 
n0 : (a = b + c) becomes active, consumers will be 
installed for variables a, b, and c. 

2 When a binding node for a variable becomes active, 
run each of its consumers; each consumer will sub- 
stitute the current binding into the constraint and 
evaluate it. For example, when n1 : b = 7 becomes 
active, the constraint no : (a = b+c) will be evaluated 
given nl, to produce a new constraint a = 7 + c. 

3. The result of the evaluation in step 2 will fall into 
one of four cases: 

(4 

w 

(4 

(4 

The constant I. For example, if (a * b = 7) and 
U = 0, evaluation returns 1. Create a justifica- 
tion for the distinguished node I from the current 
antecedent nodes, which will result in an ATMS 
conflict. 
The constant T. For example, if (u*b = 0) and a = 
0 then the evaluation will return T. Do nothing. 
A binding. For example, if a = 2 and a = b + 2 
then evaluation returns the binding b = 0. Create 
a new node containing the binding and justify it 
with the current antecedents. 
A constraint. For example, if a = 2 and a = b + c 
then evaluation returns 2 = b + c. Go back to step 
1 above for the new constraint. 

Protection 
In the expression (a = !(b + c)) with a, b, and c being 
variables, b and c are said to be protected. The effect 
of protection is that evaluating any expression, all of 
whose variables are protected, yields T. For example, 
evaluating ([l, 23 = [2,4]+!c) yields T. In step 3(c) 
above, if a = 2 and a = !(b + c) the evaluation returns 
T, because all the variables in 2 = !(b+c) are protected. 

The benefit of the protect operator is that the ACP 
user can advise the system not to ever waste effort 
trying to solve for certain variables. For example, 
CROSBY constructs linear regression equations of the 
formy=cvcxc+.. . + crnxra + ,B, with oi and /? denoting 
constants. In this context it makes no sense to try to 



use the dependent variable y to solve for any of the ?a 
independent zi variables. Protecting the zi variables 
is a simple, local, modular way to prevent ACP from 
doing so. 

Solution Trees 

The propagation procedure above is straightforward 
but would in general result in unnecessary work. For 
one thing, given Q = b + c, b = 2 and c = 2, it would 
derive a = 4 in two different ways. To prevent this the 
variables should only be bound in some strict global 
order (alphabetic, for example). Furthermore, subex- 
pressions that contain operators with idempotent ele- 
ments do not always require all variables to be bound 
before evaluating to a constant; for example, the con- 
straint a = b * c, evaluated with c = 0, should immedi- 
ately yield a I= 0, instead of waiting for a value for b. 
Finally, protected variables guarantee that certain se- 
quences of bindings and evaluations will never yield any 
new bindings. Although relatively minor from a purely 
constraint processing point of view, these are all genuine 
concerns in ACP because the computational overhead 
of creating new nodes, justifications, and consumers far 
outweighs the work involved in actually evaluating the 
constraints and performing the associated arithmetic 
operations. 

Whenever a new constraint node is created, ACP per- 
forms a static analysis to find all the legal sequences in 
which its variables could be bound. The result of this 
analysis is represented as a directed tree whose edges 
each correspond to a variable in the constraint. This 
is called the solution tree. Each path starting from the 
root represents a legal sequence. The recursive algo- 
rithm for generating this tree adds a new arc for each 
variable appearing in the current expression, from the 
current root to a new tree formed from the expression 
derived by deleting that variable. 

For example, the root of the tree for (u = b + c) has 
three branches: one for a leading to a subtree that is 
the tree for (b + c); one for b leading to a subtree that 
is the tree for (u = c); one for c leading to a subtree for 
(a = 6). In this example the c branch can be pruned 
because (a = b) is not a binding and c (alphabetica.lly) 
precedes neither a nor b. 

Had the expression been (a = b * c), the c branch 
would remain because c could be bound to 0 to produce 
the binding a = 0. 

Had the expression been (!a = b + c), the b branch 
could have been pruned because the tree for the subex- 
pression (!a = c) consists only of a single branch a, 
which does not precede b. 

Step 1 of the propagation procedure presented earlier 
need only install consumers on variables corresponding 
to branches emanating from the corresponding position 
in the tree. The propagator computes the solution tree 
once and caches it; this is worthwhile because it is not 
unusual in CROSBY for variables to acquire many dif- 
ferent bindings, and it would be wasteful for ACP to 

repeatedly rediscover worthless sequences of variable 
bindings. 

In an example shown earlier, recall that we had the 
nodes: 

: (a=b+c) (} 
ii; : (b = (6,9)) W 
122 : (c = (10,ll)) {C} 
n3 : (a = (16,20)) {B, C) 

The solution tree ensures that the no and nl would have 
been combined to get (a = (6,9) +c), which would then 
have been combined with n2 to get n3, without deriving 
the result in the symmetric (and redundant) fashion. 

Reflect ion 

As mentioned earlier, nodes no and n3 might in prin- 
ciple be combined and evaluated to yield ((16,20) = 
b + c), “reflecting” back through the no constraint to 
derive new values of b and c. In general, there is little 
point in attempting to derive values for a variable V 
using constraints or bindings that themselves depend 
on some binding of V. 

The straightforward and complete method for check- 
ing this is to search each of the directed acyclic graphs 
(DAGS) of justifications supporting any binding about 
to be combined with a given constraint (step 2 of the 
propaga,tion procedure). If that constraint appears in 
every DAG, inhibit propagation. Worst-case complex- 
ity analysis suggests that this method might be worth 
its cost. Traversing the DAG takes time linear in the 
number of all nodes, but maintaining shadowing justifi- 
cations takes times quadratic in the number of bindings 
for any single variable. Since foregoing the reflection 
test may result in spurious bindings, the DAG strategy 
may pay off asymptotically. Intuitively speaking, when 
reflections go undetected, many extra nodes and justifi- 
cations get created, and depth first searches of justifica- 
tion trees are fast relative to the costs associated with 
creating unnecessary bindings. A further improvement 
to this strategy might be to search the DAG only to a 
fixed finite depth, since binding nodes can be supported 
via arbitrarily long chains of shadowing justifications. 

A different strategy is to cache with each node N 
its Essential Support Set E(N), and test that before 
searching the DAG. E(N) is that set of nodes that must 
appear in a justification DAG for any set of supporting 
assumptions l?. For example, no, nl and n2 all have 
empty essential support sets; node n3 has the essential 
support set (no, nl, 122). ACP tests essential support 
sets to see whether they contain either the constraint 
or any binding for the variable about to be propagated; 
if so the propagation is inhibited. In the example above, 
node 123 will not combine with no : (a = b + c) (that is, 
the n3 consumer that performs this computation will 
not run) as long as no E E(n3). 

Essential support sets can be easily computed locally 
and incrementally each time a justification is installed, 
and they have the useful property that once created, 
they can subsequently only get smaller as propagation 
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proceeds. In general, when justification N t Ai Ni is 
created, E(N) is updated by 

E(N)’ = E(N) n u({N} u E(N)) (5) 
i 

where initially E(N) is represented implicitly by 24, the 
set of all nodes. 

For example, if some new justification n3 t 12201 
were added, nodes no, nl, and n2 could be deleted from 
E(n3). In that case n3 would then appropriately con- 
tinue to propagate with constraint no. 

Essential support sets effectively cache the result of 
searching the support DAG ignoring ATMS labels. As 
compared to the complete and correct strategy, which is 
to search the DAG to an unbounded depth, the essential 
support set strategy (hereafter, ESS) can err only by not 
detecting reflections. 

With this additional propagation machinery in place 
we can now follow ACP as it continues to propagate in 
focus environment {A, B, C} from n4 as shown below. 

n4 : (a = (17,19)) . New node 
721 i- no A 122 A n4 

;I: i (b = (6,9)) VW% Cl . 
125 + no A nl A 124 

ii; i (c = (8,13)) {A, B} 

Label update 

New node . . 
i: I ~~~(~,213)) {A, B} \ {C} Label update 

ACP creates the new node n5 : (c = (8,13)), active 
only in (A, B) . Hence, querying ACP for the value of c 
yields the following results in each of the following F: 

P(c, 0) = P(c, {Al) = P(c, VW = G-00, +4 
P(c, {A, B)) = (8913) 125 

C E I? + p(c, l?) = (10,ll) n2 

Overlapping Intervals 
ACP needs to deal with cases in which a variable is 
assigned intervals which have nonempty intersections 
but neither is a subset of the other; these are called 
overlapping intervals. Suppose that nodes n201 and n202 
are created with overlapping interval values (1,lO) and 
(5,20). ACP creates a third node n203 to represent their 
intersection (5, lo), and the new node in turn shadows 
the two nodes that support it. 

12201 : (x = (1, lo)) {Xl} 

72202 : (X = (5,20)) {X2) 
j200 : n203 +- mol A m2 

New node 

Label update 

r-4203 : (2 = (5,10)) {X1,X2} 
j201 : n201 -e n203 
72201 : (z = (1,lO)) 
j202 : 

{Xl} \ (Xl, X2) 
n202 -e n203 

n202 : (x = (5,20)) {X2} \ {Xl, X2) 
Querying ACP for the value of z yields a d 
in each of the following environments: 

P(X> 0) = -. - - (-9 +m) 

Label update 

ifferent result 

Although in the worst case k variable bindings could 
result in O(k2) overlaps, empirically the number actu- 
ally created is much less than k. Intuitively, the prop- 
agation strategy ensures that overlapping intervals are 
only derived from the most restrictive intervals already 
present in the current focus environment. Whenever 
ACP creates a new overlapping interval, the two inter- 
vals it was created from become shadowed and trigger 
no more inferences in the current focus environment. 

Overlapping intervals result in a small complication 
to reflection checking. Although in general, no informa- 
tion is gained by deriving a value for variable V using 
constraints or bindings that themselves depend on some 
binding of V, overlaps between intervals can in fact add 
information. Hence, DAG and ESS computations ignore 
the presence of overlap justifications. 

Empirical Results 
ACP is implemented in 5500 lines of ANSI Common 
Lisp. Roughly one half is devoted to the expression 
evaluator, one third is the focused ATMS, and ACP- 
specific code comprises the remainder. It is currently 
being used in a prototype program for model-based fi- 
nancial data analysis; the data for Figures 1 and 2 
were generated using two financial models with quar- 
terly data for a real computer peripherals manufacturer. 
The “small” example (data represented by o) uses 116 
variables and involves the exploration of 12 contexts. 
The “large” example (data represented by 0) uses 158 
variables and explores 28 contexts. The horizontal axis 
refers to the reflection check strategies in use: “ ” means 
the null strategy of not checking reflections; “S” refers 
to a simple strategy for which only constraints being 
immediately re-applied were inhibited; “D2” refers to 
the DAG strategy with a depth cutoff of 2, “D” refers 
to the DAG strategy with no depth cutoff, “E” refers to 
the ESS strategy, and the other columns show the use 
of multiple strategies as successive filters. 

Figure 1: Maximum Bindings for any Variable 
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Figure 2: Run Time in Seconds 

0 
0 

0 

O O 0 
0 

0 0 0 

0 

0 

I 
S l3 D2 0 S S l?J 9 

E D D E 
Strategies D 

Figure 1 shows the maximum number of bindings 
created for any variable; in general, the stronger the 
reflection check strategy, the fewer intermediate results 
are created. Figure 1 illustrates that D2 works badly, 
inhibiting no intermediate bindings at all. Further, it 
shows ESS can work almost as well as the unlimited- 
depth DAG strategy. 

Figure 2 shows the run time in seconds on a Sym- 
bolics 3645 (inclusive of paging and ephemeral garbage 
collection) for the same examples. Figure 2 demon- 
strates that although the worst case complexity of the 
DAG strategy appears superior, in fact it is empirically 
much more costly than ESS. Among the reasons for this 
are that (i) the number of shadowing justifications for a 
variable with k bindings is theoretically O(k2) but em- 
pirically never more than 1.5k, a.nd (ii) both DAG and 
ESS tests must be reexecuted every time the ATMS fo- 
cus changes, and the frequency of such changes is larger 
than the average number of bindings per varia.ble. Al- 
though ESS is not much faster than the null strategy, 
the space savings suggested in Figure 1 makes it the 
method of choice in ACP. 

Conelusion 

ACP integrates constraint propagation over intervals 
with assumption-based truth maintenance, contribut- 
ing several novel inference control techniques, includ- 
ing the incorporation of subsumption into the ATMS 
and precomputing feasible solution paths for every con- 
straint. Experiments with ACP further indicate tha.t 
spurious intermediate variable bindings can be effi- 
ciently suppressed by using essential support sets to 
check whether each new variable binding is being de- 
rived in a way that depends on the variable itself. 
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