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Abstract 
A touted advantage of symbolic representations is the ease of 
transferring learned information from one intelligent agent to 
another. This paper investigates an analogous problem: how 
to use information from one neural network to help a second 
network learn a related task. Rather than translate such in- 
formation into symbolic form (in which it may not be readily 
expressible), we investigate the direct transfer of information 
encoded as weights. 
Here, we focus on how transfer can be used to address the im- 
portant problem of improving neural network learning speed. 
First we present an exploratory study of the somewhat sur- 
prising effects of pre-setting network weights on subsequent 
learning. Guided by hypotheses from this study, we sped up 
back-propagation learning for two speech recognition tasks. 
By transferring weights from smaller networks trained on sub- 
tasks, we achieved speedups of up to an order of magnitude 
compared with training starting with random weights, even 
taking into account the time to train the smaller networks. 
We include results on how transfer scales to a large phoneme 
recognition problem. 

Introduction 
Recently, many empirical comparisons (surveyed in [Shav- 
lik et al., 19911) have been performed between neural net- 
work and symbolic machine learning methods on a variety 
of tasks. Back-propagation neural networks [Rumelhart et 
al., 19871 have been shown to perform competitively. At 
present, one reason to prefer symbolic representations is that 
they are more readily portable - we can simply copy axioms, 
rules, definitions, etc. between intelligent agents for reuse 
on new tasks. At least in principle, information learned by 
one agent is easy to share with others. It is less clear how to 
transfer information encoded in neural networks. 

A brute force approach to information transfer in neural 
networks is to store and communicate the entire set of data 
used to train the network. Besides the obvious storage costs, 
this approach suffers from requiring the network to be re- 
trained from scratch every time additional data is received. 

An indirect approach is to extract information in symbolic 
form from one network and insert it into another. While both 
the extraction [Fu, 19901 and insertion [Towell et al., 19901 
processes are receiving some research attention, this indirect 
approach is limited by the fact that information encoded in 
the original network may be infeasible to express in symbolic 
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form. 
In contrast, this paper investigates how information en- 

coded as learned network weights can be directly trans- 
ferred between neural networks, short-cutting the indirect 
approach, as shown in Figure 1. By exploiting previous 
learning, such a process has the potential to increase network 
performance and also to improve learning speed, which has 
been found to be much slower in general for neural networks 
than for symbolic methods. 

We use the back-propagation algorithm for neural network 
learning. This algorithm iteratively modifies a set of initial 
weights, with the goal of building a network that gives cor- 
rect answers on a corpus of training examples. Usually, the 
starting weights are chosen randomly. Here, we show how 
using previously learned information to initialize weights 
non-randomly can speed up network learning. 

Following a brief introduction to back-propagation, we 
present a pilot study that explores transfer from a single 
source to a single target network, as shown in the center 
of Figure I. Then we describe two studies on more com- 
plex tasks that demonstrate transfer from multiple source 
networks to different portions of the target network. 

Back-propagation is an inductive algorithm for concept 
learning and regression. A back-propagation neural network 
contains several layers of computational units, connected via 
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weighted arcs. A typical network has an input layer, a single 
hidden layer, and an output layer of units, with full connec- 
tivity between adjacent layers. Each unit has an associated 
state, called its activation, typically a real number in the in- 
terval [0, 11. A distinguished unit called a threshold is usu- 
ally included in the input and hidden layers. Its activation is 
always I, and its weight is called a bias. 

When using a learned network, input unit activations are 
set externally and used to calculate activations in subsequent 
layers (this process is mlled feedforward). The network’s 
solution to the problem represented by the input activations 
is read from output layer activations. For a given connec- 
tion topology, network behavior is determined by the arc 
weight values. To determine its activation, each unit first 
calculates its input, via an inputfunction. This is typically 
a linear combination of incoming unit activations times con- 
necting weights. The input is fed through a squashingfunc- 
tion, usually sigmoidal in shape, which maps the input value 
into [0, 11. 

Learning in back-propagation networks consists of mod- 
ifying weight values in response to a set of training data 
patterns, each of which specifies an activation for each in- 
put unit and the desired target value for each output unit. 
Network weights are initialized randomly, usually in some 
small-magnituderange such as [-.5, .5]. Then the first train- 
ing data item is used to set input unit activations, and feed- 
forward calculates output unit activations. They are com- 
pared to target values, and an error is determined for each 
output unit. This error is used to determine the change to 
each network weight. This process is repeated for all train- 
ing patterns - one pass through them all is an epoch. ?Lp- 
ically, learning requires thousands of epochs, during which 
weights are updated by small increments until output vec- 
tors are close to target vectors. Weight increment size is de- 
termined in part by the user-supplied parameters 7 (learning 
rate) and a! (momentum). For more details, see [Rumelhart 
et al., 19871. 

‘IO use back-propagation for concept learning tasks, a 
unary encoding is usually used for output units, each of 
which represents a different category. ‘Target vectors contain 
a 1 in the position corresponding to the desired category, and 
O’s elsewhere. When the network is used to classify an input 
vector, the highest output unit activation is used to determine 
the network’s chosen category. 

In this section, we present an exploratory study of the dy- 
namics of networks that have some of their initial weights 
pre-set. Consider a single-hidden-layer network that is fully 
connected in the input-to-hidden (IH) and hidden-to-output 
(HO) layers, and trained for concept learning using unary en- 
coding. Let the input function be linear, so the input to unit 
j is Ij = Ci YdWij, where yi is the activation of incoming 
unit i, and wij is the weight between units i and j. Let the 
squashing function be the step function: 

activation uj = 1 if1i +bias> 0 
0 if1j +bias<O 

This function is a simplification of the sigmoid. It is com- 
monly used for analysis, since for high weight values it ap- 
proximates the sigmoid. 

Consider a space of n dimensions, where n is the number 
of input units. As shown in Figure 2, training data define 

‘nts in this space which can be labelled by correspond- 
target values. Weights leading from input units to a par- 

ticular hidden unit, along with the hidden unit bias, deter- 
mine a hyperplane-bounded decision region in this space. 
For n = 2, the hyperplane is a line. Input vectors on one 
side of this hyperplane cause a hidden unit activation of 0; 
vectors on the other side cause an activation of 1. 

One condition for successful back-propagation learning is 
that IH hyperplanes separate the training data such that no 
decision region contains training data items with different 
target values. Another condition for learning is that IH hy- 

lanes are placed such that there is a correct configuration 
of HO hyperplanes possible (i.e. that hidden layer activa- 
tions are linearly separable). 

0.0 1.0 0.0 1.0 

Paatan 1 miturr 1 

Figure 2: Two examples of hyperplane sets that separate 
training data in a small network. 

Since separating training data items for different targets by 
III hyperplanes is one condition for learning, it is reasonable 
to expect that pre-setting IH weights to produce such hyper- 
planes will lead to faster learning. We performed a series of 
experiments to test this hypothesis. 

All networks studied had a 2-3-l (2 input units, 3 hidden 
units, 1 output unit) topology. They were trained on a small 
set of hand-chosen training data that was not linearly sepa- 
rable and that contained 6 patterns (Figure 2). Each training 
data target was either 0 or 1. A manual search for values 
of 7 and a! (10 pairs tried, on networks with random ini- 
tial weights) resulted in locally optimal values of q = 1.5, 

= .9, which were used for all experiments. Standard back- 
Eropagation [Rumelhart et al., 19871 was used, with a sig- 
moidal activation function, training after every pattern pre- 
sentation, and training data presented sequentially. 

A number of experiments were performed, summarized 
in Table 1. Each row of this table shows results from a set 
of 30 trials (each with different random initiaI weights) of 
the conditions shown. Every network was trained for 2000 
epochs. Experiments fell into the following five categories: 

om low itude initial weirdo ( 
control experiment, 30 networks were initialized with ran- 
dom weights in the range: [-0.5,0.5] (average III, HO mag- 
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Exp#, 
IH 
source 
1: Random 
2: Preset 
3: Preset 
4: Preset 
5: 0.6-perturbed 
6: Centroid 
7: Centroid 
8: Centroid 
9: Random 

IH 
avg. 

mag. 
.25 
.25 .25 
2.5 AI0625 
5.0 AI0625 
2.5 .00625 
.25 .25 
1.25 .00625 
2.5 .OO625 
2.5 .00625 

MO 
avg. 
mag. 
.25 

#con- 
verg- 
ing 
28 
26 
26 
23 
24 
28 
30 
20 
23 

Mean wit* 
Epochs diff 
to Csn- from 
verge #I? 
528 - 
501 N 
228 Y 
151 Y 
199 Y 
591 N 
859 Y 
898 Y 
329 N 

Table 1: Conditions and results for the pilot study. 

nitudes of 0.25). 28 trials converged to a solution. Conver- 
gence time was measured as the number of epochs of training 
before the total squared error over all patterns (TSS) dropped 
below 0.1. As shown, the mean time to converge for the 28 
networks was 528 epochs. 

Pre-set separating I weights, random 0 weights 
(Exps. Z&3,4): 30 converging networks were generated, 
and their separating IH weights were extracted and used to 
initialize a new set of 30 networks (not all of which con- 
verged). Note that since a hyperplane position is deter- 
mined by the ratio, not the magnitude, of its defining weights, 
it is possible to adjust hyperplane magnitudes arbitrarily 
while retaining their positions. IH and HO magnitudes were 
resealed in a variety of ways, as shown. As the IH magnitude 
was raised, fewer networks converged, but those that did had 
shorter training times (significantly shorter in studies 3 and 
4, with p < .OOOl, df = 50,44, according to a t-test). 1 

Perturbed (Exp. 5): The same weights as in the previous 
experiments were used, but each IH weight was modified 
to be w = w + r * w, where r was a random variable in 
[-0.6,0.6]. This produced hyperplanes that didn’t separate 
training data completely, but were in the proximity of effec- 
tive final positions. Perturbed networks trained significantly 
faster (p < .OOOl, df = 46) than randomly initialized net- 
works. 

Centroid initialization (Exp. 6,7,8): To test the general- 
ity of the idea of placing hyperplanes near training data, IH 
hyperplanes were initialized to pass through the training data 
centroid (median value of each input dimension). As shown, 
at best this produced training times no different from the ran- 
dom case. At worst, learning time was longer. 
Random ~ig~-~ag~~t~de initial weights (Erup. 9): This 
experiment verified that the speed-up found with high weight 

‘In order to perform a fair significance test in comparisons with 
randomly initialized networks, when only some subset rE. < 28 
of networks converged, the (30 - L) largest times were removed. 
For Experiment 7, the two worst centroid-initialized scores were 
removed, since it converged more often than the random case. 

magnitudes was due to both their positions and their magni- 
tudes, instead of just their magnitudes. As shown, the high- 
magnitude random networks did not converge significantly 
faster (df = 44) than low-magnitude initialized networks. 

Discussion 

These results yield several observations that can be used as 
hypotheses for investigation on more complex tasks: 

Learning was faster in networks wi 
than when weights were ~a~d~~~y init 
iments 3,4, and 5, learning speed was 
(p < .OOOl,df = 50,44,46) than when weights were ini- 
tialized randomly. 

Learning was faster in networks with -set weights 
specifying near-correct hyperplane posi s than when 
weights were randomly initialized. This was shown in 
Experiment 5. 

Surprisingly, correctly pre-set hypesplanes moved out 
of position. This happened when IH magnitudes were too 
low, as in Experiment 2. Hyperplanes were observed to di- 
verge rapidly in early epochs, losing their preset positions. 
Raising weight magnitudes ma Banes more re- 
tentive. In Experiment 4, hyperplanes moved out of posi- 
tion to a much smaller degree than in Experiment 2. The 
mean number of training data patterns crossed by moving 
hyperplanes during learning was 24.6 in Experiment 4, com- 
pared to 36.4 for Experiment 2. The difference was signifi- 
cant withp < 0.01, df = 58. 

Fastest learning was obtained when weights were pre- 
set in the correct positions and weight magnitudes were 
raised to make them retentive. This was shown in Exper- 
iment 4. 

Networks with pre-set yperplanes tended not to con- 
verge as often. This was shown by Experiments 2-5,8. 

Additional small experiments (only 10 runs, no signifi- 
cance testing) were performed on this same task to deter- 
mine whether these hypotheses are also supported when a 
different learning rate is used: in this case q = 0.1 was tried 
(instead of 1.5). The results of these experiments were con- 
sistent with the above observations. 

In the previous section, we showed that hyperplanes ini- 
tialized near correct positions may move into position, thus 
speeding up learning. Here we extend those results to a more 
complex task. We demonstrate a technique for pre-setting 
network weights that produces faster learning, even taking 
into account the time to learn pre-set weights. This is be- 
cause the original problem is decomposed into subproblems, 
thereby reducing search combinatorics. In this and the next 
section we borrow a decomposition technique introduced by 
[Waibel et al., 19891, who showed improved learning speed 
and performance in networks for consonant recognition. 

586 CONNECTIONIST REPRESENTATIONS 



Using data from [Robinson, I9891, we trained a network 
to perform a vowel recognition task. It had IO input units 
(representing a preprocessed speech signal) and 1% output 
units, each representing a vowel sound. Training was on 528 
vowels pronounced by 8 speakers, and the test set was 462 
vowels from 7 speakers not included in that set. Four base- 
line networks were trained, each with 26 hidden units and no 
decomposition 

We next studied the performance of networks in which III 
and HO hyperplanes were pre-set through problem decom- 
position. The architecture used is illustrated in Figure 3. The 
number of weights in these networks was approximately the 
same as that in-the non-decomposed networks. 

Figure 3: Architecture of the decomposed vowel recognition 
network. Arrows delimit regions of full connectivity. Num- 
bers indicate unit counts. 

The training methodology used by [Waibel et al., I9891 
for decomposed networks included these steps: 

~~a~~~~g: Divide network into subsets; train 
each individually. 

2. GIlae training: Combine subnetworks into a larger net- 
work using additional “glue” units. These are trained 
while subnetwork weights are frozen. 

3. Fine tuning: All weights are modified during further 
training. 
Although fine tuning may be useful in some problems, 

there are a few reasons to question whether it will always 
improve network performance. First, for fine tuning to be 
useful, it would seem to require that, as in Experiment 5 
of the previous section, subnetwork training develops a set 
of roughly positioned hyperplanes, and fine-tuning moves 
them into place. This won’t necessarily happen in all de- 
composed networks - there may be local minima that are 
optimal for subproblems but are not near an optimum solu- 
tion for the full problem. Secondly, weights often grow dur- 
ing back-propagation learning, so it may be important to set 
relative magnitudes between glue and subnetworks system- 
atically. This was not part of the fine-tuning step in [Waibel 
et al., 19891. Finally, for some networks, if glue training is 
stopped before overfitting begins, fine-tuning has the poten- 
tial to cause overfitting, reducing network performance. 

We sought both to test whether problem decomposition 
was useful in decreasing training time and to explore whether 
fine tuning did indeed improve performance on this task. 
Five different decomposed networks were trained, each with 
different initial random weights; they were compared to the 
four non-decomposed networks. We used an “oversized” 

network training technique [Weigend et al., 19901 to control 
for overfItting: networks were trained until their errors on the 
test set ceased to improve. We trained each subnetwork on 
all input vectors in the training set, with all-zero target vec- 
tors for input patterns in classes outside of those correspond- 
ing to a subnetwork’s output units performed t-tests 
of significance on the learning time erformance differ- 
ence between the two populations of decomposed and non- 
decomposed networks. Although space limitations preclude 
reporting all experimental details, major results are outlined 

alux!: No significant difference in test set score 
was found between performance of the decomposed and 
non-decomposed networks (p > 0.05, &f = 7). Perfor- 
mance scores, in percent correct on the test data, were 53, 
58,55,56,55 for the decomposed and 58,6I, 59,54 for the 
non-decomposed networks. 

Learwing 8: Decomposed networks learned faster 
than mono networks. The mean decomposed time was 
40% of the mean non-decomposed time (learning signifi- 
cantly faster with p < .Ol, df = 7). The mean decomposed 
learning time was I.348 x lo9 operations (3096 epochs). 

g: For one arbitrarily chosen set of subnetwork 
weights, four different networks were trained, starting with 
different random glue weights. Generalization scores were 
calculated every 10 epochs. The best scores observed were 
47%, 35%, 43%, and 52%. These are markedly lower than 
the scores at the end of glue training. Substituting further 
glue training for fine tuning did not cause such a drop in per- 
formance. 

Note that this study differs from [Waibel et al., 19891 in 
that it used a network with one hidden layer instead of two. It 
also uses different training data than their consonant recogni- 
tion task. Under these different conditions, our experiments 
also show improved learning speed from problem decompo- 
sition. We have also explored the utility of fine tuning and 
found, in contrast to the previous work, that it may not al- 
ways be useful. Finally, we have established that the network 
training time speedup is statistically significant. 

In the following section, we explore a further modifica- 
tion of the problem decomposition model. As in the vowel 
recognition task, this network is decomposed into subnet- 
works which are trained separately. However we also de- 
compose the set of input units. 

[Kamm and Singhal, 19901 describe a neural network for 
learning part of an acoustic-to-phoneme mapping task. This 
network maps sequences of a spectral representation of a 
speech signal into sequences of phoneme classes. Although 
further high-level processing is necessary to determine the 
exact word pronounced (by disambiguating phonemes via 
context and other constraints), this initial phoneme determi- 
nation is a critical phase of speech recognition. 

The training set for this experiment was the DARPA 
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acoustic-phonetic corpus wisher et al., 19871, which con- 
tains recordings of continuous utterances from a large num- 
ber (630) of talkers. This corpus is used extensively in 
phoneme recognition research. 

The decomposition strategy and training methodology de- 
scribed in the previous section were applied to this more 
complex task. A network was built with the architecture 
shown in Figure 4. Here, each of three subnetworks view 

1ostioRT4uRATIoN n slioflT=ANDmRMEDlA~~ GlUE 
FtlONEMES DUflATlDNPHONEMES 

147lNPUTNODES 147iNRwDEs 
SPANNING 35M sPANN#IGm s?ANRlNG12flls 

Figure 4: Architecture of the decomposed phoneme classifi- 
cation network 

input data spanning a different duration of a speech sig- 
nal [Kamm and Singhal, 19901 reported the construction 
of three non-decomposed networks, one for each input du- 
ration. Their results showed that networks with input dura- 
tions of 35ms and 65ms had much higher performance for 
phonemes with short average duration than for the longest 
phonemes (diphthongs). Based on this finding, we decom- 
posed the problem on the output units so that the two sub- 
networks with short-duration input spans “specialized” on 
subsets of phonemes with short and intermediate average du- 
rations. 

The three subnetworks were trained individually on a 
200-sentence training set (108983 patterns), and then their 
weights were placed into the combined network, along with 
glue weights that were randomly initialized in [-0.3,0.3]. 
These low magnitudes were chosen to give the network flex- 
ibility in moving glue hyperplanes. Glue training and fine- 
tuning were then performed. 

As described in more detail in [Pratt and Kamm, 19911, 
network performance was evaluated by calculating a nor- 
malized average hit rate (AIIR) and false alarm rate (AFA) 
among the top 3 phonemes out of the 46 target classes. 
Learning time was measured as the number of arithmetic op- 
erations required to calculate unit activations and weight up- 
date values. The table in Table 2 shows training conditions 
and results (as tested on an independent 200-sentence set), as 
well as those for [Kamm and Singhal, 19901’s best network 
(with 125ms-duration input). The second and third columns 
in Table 2 show values of q and a! selected (by training sev- 
eral networks to a couple of epochs) for training. 

If we measure overall performance as the top-3 AHR mi- 
nus top-3 AFA, then the final network obtained after fine 
tuning has m > 100% of that of the [Kamm and Sing- 

hal, 19901 network, after lA:i$$fl M 10% of the operations. 
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Total top top 
EP- op’s 3 3 

Network a q o&s x lb” AHR AFA 
K&S net. .l .l 300 10.62 61.7 3.1 

35ms subnt 2.5 .l 7 .06 70.1 7.4 
65ms subnt 1.2 .2 3 .04 65.2 5.8 

125mssubnt 3.0 .Ol 10 .35 33.1 4.3 
glue training 2.0 .5 9 .46 56.5 4.0 

fine tuning 2.0 .5 2 .19 62.4 3.5 
Decomposed Network Total 3 1 1.1 

‘Iable 2: Conditions and results for the phoneme recognition 
network 

This is a substantial speed-up over the previous training time. 
More details about the acoustic-phonetic network can be 

found in Pratt and Kamm, 19911. 

The vowel recognition and phoneme recognition problem 
decomposition experiments demonstrated some of the same 
major findings as the less complex pilot study, despite fun- 
damental differences in the naturn of the task decomposition 
among the studies. In all three studies, time to convergence 
was shorter when some of the weights in the network were 
pre-set than when all weights were set to random initial val- 
ues. Furthermore, when the pre-set weights had relatively 
high magnitudes, the networks were able to retain them dur- 
ing further training. In addition, the vowel task indicated 
that fine-tuning of a decomposed network may not always 
improve performance. 

Note that, by considering transfer of partially incorrect 
weights, we are addressing a more complex issue than if mul- 
tiple network weight sets were simply glued together in a 
modular system at run time. In contrast, we have explored 
how back-propagation learning uses both error-free and er- 
rorful pre-set weight subsets. 

These experiments leave many open questions for further 
research, including the following topics. 

More systematic studies of back-propagation dynamics on 
complex tasks should be done in order to further explore 
the pilot study hypotheses. 
More work is necessary to establish how problem decom- 
position can best be combined with the oversized training 
methodology used on the vowel recognition task. 
The speed-up observed in decomposed vs. non- 
decomposed networks might be due not to the decom- 
posed training methodology, but to the fact that that net- 
works were trained using a constrained topology. This 
possibility should be explored empirically. 
It is interesting that weight magnitudes from prior training 
worked so well in the problem decomposition tasks. This 
may have been due to the high network weights generated 
by subnetwork training. For example, the average subnet- 
work weight magnitude in the vowel study was 15.5. For 
source and target network tasks that differ substantially, 



careful magnitude tuning may be necessary, to avoid local 
minima. Furthermore, for a technique like that described 
in [Towell et al., 19901 (which uses weight sets obtained 
by means other than prior network training) more atten- 
tion to weight magnitudes may be helpful in dealing with 
potentially incorrect initial weights. 

8 The network decomposition on the vowel recognition task 
was chosen arbitrarily. It is important to characterize the 
nature of decompositions for which speedup occurs. Care- 
ful analysis of subproblem interactions should aid in this 
endeavor. Also, further experiments with different arbi- 
trary decompositions should indicate sensitivity to partic- 
ular decompositions. It should also be fruitful to explore 
automated methods for guiding problem decomposition 
using domain knowledge. 

cb When training data is impoverished (noisy, incorrect, in- 
complete), it may be possible to achieve a performance 
improvement by using pre-set weights. Although this 
question has been explored in related contexts [Towell et 
al., 19901, [Waibel et al., 19891, an important open is- 
sue is whether direct network transfer produces significant 
performance improvement over randomly initialized net- 
works. 

e The model of transfer used here decouples initial weight 
determination from learning. Therefore, the learning al- 
gorithm can probably be changed (for example to Conju- 
gate Gradient [Barnard and Cole, 19891) without changes 
to the transfer process. A study should be performed to 
verify that transfer remains effective with this and other 
learning algorithms. 

8 Finally, our most active current area of research explores 
transfer between networks trained on different but related 
populations of training data, for source and target net- 
works with the same topology. For example, speaker- 
dependent training may be sped up by transferring weights 
from a network trained on multiple speakers. The effec- 
tiveness of transfer should be evaluated under conditions 
of different relationships between source and target train- 
ing data (i.e. superset ---) subset, subset- superset, disjoint 
but relatea populations, etc.). 

We have addressed the question of how information stored 
in one neural network may be transferred to another net- 
work for a different task. We explored the behavior of 
back-propagation when some weights in a network are pre- 
set, and we studied the effect of using weights from pre- 
trained subnets on learning time for a larger network. Our re- 
sults demonstrated that the relative magnitudes of the pre-set 
weights (compared to the untrained weights) are important 
for retaining the locations of pre-trained hyperplanes during 
subsequent learning, and we showed that learning time can 
be reduced by a factor of 10 using these task decomposi- 
tion techniques. Techniques like those described here should 
should facilitate the construction of complex networks that 
address real-world problems. 
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