
ir s

Lorien U. Pratt and
Computer Science Department

Rutgers University
New Brunswick, NJ 08903

Abstract
A touted advantage of symbolic representations is the ease of
transferring learned information from one intelligent agent to
another. This paper investigates an analogous problem: how
to use information from one neural network to help a second
network learn a related task. Rather than translate such in-
formation into symbolic form (in which it may not be readily
expressible), we investigate the direct transfer of information
encoded as weights.
Here, we focus on how transfer can be used to address the im-
portant problem of improving neural network learning speed.
First we present an exploratory study of the somewhat sur-
prising effects of pre-setting network weights on subsequent
learning. Guided by hypotheses from this study, we sped up
back-propagation learning for two speech recognition tasks.
By transferring weights from smaller networks trained on sub-
tasks, we achieved speedups of up to an order of magnitude
compared with training starting with random weights, even
taking into account the time to train the smaller networks.
We include results on how transfer scales to a large phoneme
recognition problem.

Introduction
Recently, many empirical comparisons (surveyed in [Shav-
lik et al., 19911) have been performed between neural net-
work and symbolic machine learning methods on a variety
of tasks. Back-propagation neural networks [Rumelhart et
al., 19871 have been shown to perform competitively. At
present, one reason to prefer symbolic representations is that
they are more readily portable - we can simply copy axioms,
rules, definitions, etc. between intelligent agents for reuse
on new tasks. At least in principle, information learned by
one agent is easy to share with others. It is less clear how to
transfer information encoded in neural networks.

A brute force approach to information transfer in neural
networks is to store and communicate the entire set of data
used to train the network. Besides the obvious storage costs,
this approach suffers from requiring the network to be re-
trained from scratch every time additional data is received.

An indirect approach is to extract information in symbolic
form from one network and insert it into another. While both
the extraction [Fu, 19901 and insertion [Towell et al., 19901
processes are receiving some research attention, this indirect
approach is limited by the fact that information encoded in
the original network may be infeasible to express in symbolic

orristown, NJ 07962- 1910

form.
In contrast, this paper investigates how information en-

coded as learned network weights can be directly trans-
ferred between neural networks, short-cutting the indirect
approach, as shown in Figure 1. By exploiting previous
learning, such a process has the potential to increase network
performance and also to improve learning speed, which has
been found to be much slower in general for neural networks
than for symbolic methods.

We use the back-propagation algorithm for neural network
learning. This algorithm iteratively modifies a set of initial
weights, with the goal of building a network that gives cor-
rect answers on a corpus of training examples. Usually, the
starting weights are chosen randomly. Here, we show how
using previously learned information to initialize weights
non-randomly can speed up network learning.

Following a brief introduction to back-propagation, we
present a pilot study that explores transfer from a single
source to a single target network, as shown in the center
of Figure I. Then we describe two studies on more com-
plex tasks that demonstrate transfer from multiple source
networks to different portions of the target network.

Back-propagation is an inductive algorithm for concept
learning and regression. A back-propagation neural network
contains several layers of computational units, connected via

584 CONNECTIONIST REPRESENTATIONS

From: AAAI-91 Proceedings. Copyright ©1991, AAAI (www.aaai.org). All rights reserved.

weighted arcs. A typical network has an input layer, a single
hidden layer, and an output layer of units, with full connec-
tivity between adjacent layers. Each unit has an associated
state, called its activation, typically a real number in the in-
terval [0, 11. A distinguished unit called a threshold is usu-
ally included in the input and hidden layers. Its activation is
always I, and its weight is called a bias.

When using a learned network, input unit activations are
set externally and used to calculate activations in subsequent
layers (this process is mlled feedforward). The network’s
solution to the problem represented by the input activations
is read from output layer activations. For a given connec-
tion topology, network behavior is determined by the arc
weight values. To determine its activation, each unit first
calculates its input, via an inputfunction. This is typically
a linear combination of incoming unit activations times con-
necting weights. The input is fed through a squashingfunc-
tion, usually sigmoidal in shape, which maps the input value
into [0, 11.

Learning in back-propagation networks consists of mod-
ifying weight values in response to a set of training data
patterns, each of which specifies an activation for each in-
put unit and the desired target value for each output unit.
Network weights are initialized randomly, usually in some
small-magnituderange such as [-.5, .5]. Then the first train-
ing data item is used to set input unit activations, and feed-
forward calculates output unit activations. They are com-
pared to target values, and an error is determined for each
output unit. This error is used to determine the change to
each network weight. This process is repeated for all train-
ing patterns - one pass through them all is an epoch. ?Lp-
ically, learning requires thousands of epochs, during which
weights are updated by small increments until output vec-
tors are close to target vectors. Weight increment size is de-
termined in part by the user-supplied parameters 7 (learning
rate) and a! (momentum). For more details, see [Rumelhart
et al., 19871.

‘IO use back-propagation for concept learning tasks, a
unary encoding is usually used for output units, each of
which represents a different category. ‘Target vectors contain
a 1 in the position corresponding to the desired category, and
O’s elsewhere. When the network is used to classify an input
vector, the highest output unit activation is used to determine
the network’s chosen category.

In this section, we present an exploratory study of the dy-
namics of networks that have some of their initial weights
pre-set. Consider a single-hidden-layer network that is fully
connected in the input-to-hidden (IH) and hidden-to-output
(HO) layers, and trained for concept learning using unary en-
coding. Let the input function be linear, so the input to unit
j is Ij = Ci YdWij, where yi is the activation of incoming
unit i, and wij is the weight between units i and j. Let the
squashing function be the step function:

activation uj = 1 if1i +bias> 0
0 if1j +bias<O

This function is a simplification of the sigmoid. It is com-
monly used for analysis, since for high weight values it ap-
proximates the sigmoid.

Consider a space of n dimensions, where n is the number
of input units. As shown in Figure 2, training data define

‘nts in this space which can be labelled by correspond-
target values. Weights leading from input units to a par-

ticular hidden unit, along with the hidden unit bias, deter-
mine a hyperplane-bounded decision region in this space.
For n = 2, the hyperplane is a line. Input vectors on one
side of this hyperplane cause a hidden unit activation of 0;
vectors on the other side cause an activation of 1.

One condition for successful back-propagation learning is
that IH hyperplanes separate the training data such that no
decision region contains training data items with different
target values. Another condition for learning is that IH hy-

lanes are placed such that there is a correct configuration
of HO hyperplanes possible (i.e. that hidden layer activa-
tions are linearly separable).

0.0 1.0 0.0 1.0

Paatan 1 miturr 1

Figure 2: Two examples of hyperplane sets that separate
training data in a small network.

Since separating training data items for different targets by
III hyperplanes is one condition for learning, it is reasonable
to expect that pre-setting IH weights to produce such hyper-
planes will lead to faster learning. We performed a series of
experiments to test this hypothesis.

All networks studied had a 2-3-l (2 input units, 3 hidden
units, 1 output unit) topology. They were trained on a small
set of hand-chosen training data that was not linearly sepa-
rable and that contained 6 patterns (Figure 2). Each training
data target was either 0 or 1. A manual search for values
of 7 and a! (10 pairs tried, on networks with random ini-
tial weights) resulted in locally optimal values of q = 1.5,

= .9, which were used for all experiments. Standard back-
Eropagation [Rumelhart et al., 19871 was used, with a sig-
moidal activation function, training after every pattern pre-
sentation, and training data presented sequentially.

A number of experiments were performed, summarized
in Table 1. Each row of this table shows results from a set
of 30 trials (each with different random initiaI weights) of
the conditions shown. Every network was trained for 2000
epochs. Experiments fell into the following five categories:

om low itude initial weirdo (
control experiment, 30 networks were initialized with ran-
dom weights in the range: [-0.5,0.5] (average III, HO mag-

PRATT, MOSTOW, JZ KAMM 585

Exp#,
IH
source
1: Random
2: Preset
3: Preset
4: Preset
5: 0.6-perturbed
6: Centroid
7: Centroid
8: Centroid
9: Random

IH
avg.

mag.
.25
.25 .25
2.5 AI0625
5.0 AI0625
2.5 .00625
.25 .25
1.25 .00625
2.5 .OO625
2.5 .00625

MO
avg.
mag.
.25

#con-
verg-
ing
28
26
26
23
24
28
30
20
23

Mean wit*
Epochs diff
to Csn- from
verge #I?
528 -
501 N
228 Y
151 Y
199 Y
591 N
859 Y
898 Y
329 N

Table 1: Conditions and results for the pilot study.

nitudes of 0.25). 28 trials converged to a solution. Conver-
gence time was measured as the number of epochs of training
before the total squared error over all patterns (TSS) dropped
below 0.1. As shown, the mean time to converge for the 28
networks was 528 epochs.

Pre-set separating I weights, random 0 weights
(Exps. Z&3,4): 30 converging networks were generated,
and their separating IH weights were extracted and used to
initialize a new set of 30 networks (not all of which con-
verged). Note that since a hyperplane position is deter-
mined by the ratio, not the magnitude, of its defining weights,
it is possible to adjust hyperplane magnitudes arbitrarily
while retaining their positions. IH and HO magnitudes were
resealed in a variety of ways, as shown. As the IH magnitude
was raised, fewer networks converged, but those that did had
shorter training times (significantly shorter in studies 3 and
4, with p < .OOOl, df = 50,44, according to a t-test). 1

Perturbed (Exp. 5): The same weights as in the previous
experiments were used, but each IH weight was modified
to be w = w + r * w, where r was a random variable in
[-0.6,0.6]. This produced hyperplanes that didn’t separate
training data completely, but were in the proximity of effec-
tive final positions. Perturbed networks trained significantly
faster (p < .OOOl, df = 46) than randomly initialized net-
works.

Centroid initialization (Exp. 6,7,8): To test the general-
ity of the idea of placing hyperplanes near training data, IH
hyperplanes were initialized to pass through the training data
centroid (median value of each input dimension). As shown,
at best this produced training times no different from the ran-
dom case. At worst, learning time was longer.
Random ~ig~-~ag~~t~de initial weights (Erup. 9): This
experiment verified that the speed-up found with high weight

‘In order to perform a fair significance test in comparisons with
randomly initialized networks, when only some subset rE. < 28
of networks converged, the (30 - L) largest times were removed.
For Experiment 7, the two worst centroid-initialized scores were
removed, since it converged more often than the random case.

magnitudes was due to both their positions and their magni-
tudes, instead of just their magnitudes. As shown, the high-
magnitude random networks did not converge significantly
faster (df = 44) than low-magnitude initialized networks.

Discussion

These results yield several observations that can be used as
hypotheses for investigation on more complex tasks:

Learning was faster in networks wi
than when weights were ~a~d~~~y init
iments 3,4, and 5, learning speed was
(p < .OOOl,df = 50,44,46) than when weights were ini-
tialized randomly.

Learning was faster in networks with -set weights
specifying near-correct hyperplane posi s than when
weights were randomly initialized. This was shown in
Experiment 5.

Surprisingly, correctly pre-set hypesplanes moved out
of position. This happened when IH magnitudes were too
low, as in Experiment 2. Hyperplanes were observed to di-
verge rapidly in early epochs, losing their preset positions.
Raising weight magnitudes ma Banes more re-
tentive. In Experiment 4, hyperplanes moved out of posi-
tion to a much smaller degree than in Experiment 2. The
mean number of training data patterns crossed by moving
hyperplanes during learning was 24.6 in Experiment 4, com-
pared to 36.4 for Experiment 2. The difference was signifi-
cant withp < 0.01, df = 58.

Fastest learning was obtained when weights were pre-
set in the correct positions and weight magnitudes were
raised to make them retentive. This was shown in Exper-
iment 4.

Networks with pre-set yperplanes tended not to con-
verge as often. This was shown by Experiments 2-5,8.

Additional small experiments (only 10 runs, no signifi-
cance testing) were performed on this same task to deter-
mine whether these hypotheses are also supported when a
different learning rate is used: in this case q = 0.1 was tried
(instead of 1.5). The results of these experiments were con-
sistent with the above observations.

In the previous section, we showed that hyperplanes ini-
tialized near correct positions may move into position, thus
speeding up learning. Here we extend those results to a more
complex task. We demonstrate a technique for pre-setting
network weights that produces faster learning, even taking
into account the time to learn pre-set weights. This is be-
cause the original problem is decomposed into subproblems,
thereby reducing search combinatorics. In this and the next
section we borrow a decomposition technique introduced by
[Waibel et al., 19891, who showed improved learning speed
and performance in networks for consonant recognition.

586 CONNECTIONIST REPRESENTATIONS

Using data from [Robinson, I9891, we trained a network
to perform a vowel recognition task. It had IO input units
(representing a preprocessed speech signal) and 1% output
units, each representing a vowel sound. Training was on 528
vowels pronounced by 8 speakers, and the test set was 462
vowels from 7 speakers not included in that set. Four base-
line networks were trained, each with 26 hidden units and no
decomposition

We next studied the performance of networks in which III
and HO hyperplanes were pre-set through problem decom-
position. The architecture used is illustrated in Figure 3. The
number of weights in these networks was approximately the
same as that in-the non-decomposed networks.

Figure 3: Architecture of the decomposed vowel recognition
network. Arrows delimit regions of full connectivity. Num-
bers indicate unit counts.

The training methodology used by [Waibel et al., I9891
for decomposed networks included these steps:

~~a~~~~g: Divide network into subsets; train
each individually.

2. GIlae training: Combine subnetworks into a larger net-
work using additional “glue” units. These are trained
while subnetwork weights are frozen.

3. Fine tuning: All weights are modified during further
training.
Although fine tuning may be useful in some problems,

there are a few reasons to question whether it will always
improve network performance. First, for fine tuning to be
useful, it would seem to require that, as in Experiment 5
of the previous section, subnetwork training develops a set
of roughly positioned hyperplanes, and fine-tuning moves
them into place. This won’t necessarily happen in all de-
composed networks - there may be local minima that are
optimal for subproblems but are not near an optimum solu-
tion for the full problem. Secondly, weights often grow dur-
ing back-propagation learning, so it may be important to set
relative magnitudes between glue and subnetworks system-
atically. This was not part of the fine-tuning step in [Waibel
et al., 19891. Finally, for some networks, if glue training is
stopped before overfitting begins, fine-tuning has the poten-
tial to cause overfitting, reducing network performance.

We sought both to test whether problem decomposition
was useful in decreasing training time and to explore whether
fine tuning did indeed improve performance on this task.
Five different decomposed networks were trained, each with
different initial random weights; they were compared to the
four non-decomposed networks. We used an “oversized”

network training technique [Weigend et al., 19901 to control
for overfItting: networks were trained until their errors on the
test set ceased to improve. We trained each subnetwork on
all input vectors in the training set, with all-zero target vec-
tors for input patterns in classes outside of those correspond-
ing to a subnetwork’s output units performed t-tests
of significance on the learning time erformance differ-
ence between the two populations of decomposed and non-
decomposed networks. Although space limitations preclude
reporting all experimental details, major results are outlined

alux!: No significant difference in test set score
was found between performance of the decomposed and
non-decomposed networks (p > 0.05, &f = 7). Perfor-
mance scores, in percent correct on the test data, were 53,
58,55,56,55 for the decomposed and 58,6I, 59,54 for the
non-decomposed networks.

Learwing 8: Decomposed networks learned faster
than mono networks. The mean decomposed time was
40% of the mean non-decomposed time (learning signifi-
cantly faster with p < .Ol, df = 7). The mean decomposed
learning time was I.348 x lo9 operations (3096 epochs).

g: For one arbitrarily chosen set of subnetwork
weights, four different networks were trained, starting with
different random glue weights. Generalization scores were
calculated every 10 epochs. The best scores observed were
47%, 35%, 43%, and 52%. These are markedly lower than
the scores at the end of glue training. Substituting further
glue training for fine tuning did not cause such a drop in per-
formance.

Note that this study differs from [Waibel et al., 19891 in
that it used a network with one hidden layer instead of two. It
also uses different training data than their consonant recogni-
tion task. Under these different conditions, our experiments
also show improved learning speed from problem decompo-
sition. We have also explored the utility of fine tuning and
found, in contrast to the previous work, that it may not al-
ways be useful. Finally, we have established that the network
training time speedup is statistically significant.

In the following section, we explore a further modifica-
tion of the problem decomposition model. As in the vowel
recognition task, this network is decomposed into subnet-
works which are trained separately. However we also de-
compose the set of input units.

[Kamm and Singhal, 19901 describe a neural network for
learning part of an acoustic-to-phoneme mapping task. This
network maps sequences of a spectral representation of a
speech signal into sequences of phoneme classes. Although
further high-level processing is necessary to determine the
exact word pronounced (by disambiguating phonemes via
context and other constraints), this initial phoneme determi-
nation is a critical phase of speech recognition.

The training set for this experiment was the DARPA

PRATT, MOSTOW, & KAMM 587

acoustic-phonetic corpus wisher et al., 19871, which con-
tains recordings of continuous utterances from a large num-
ber (630) of talkers. This corpus is used extensively in
phoneme recognition research.

The decomposition strategy and training methodology de-
scribed in the previous section were applied to this more
complex task. A network was built with the architecture
shown in Figure 4. Here, each of three subnetworks view

1ostioRT4uRATIoN n slioflT=ANDmRMEDlA~~ GlUE
FtlONEMES DUflATlDNPHONEMES

147lNPUTNODES 147iNRwDEs
SPANNING 35M sPANN#IGm s?ANRlNG12flls

Figure 4: Architecture of the decomposed phoneme classifi-
cation network

input data spanning a different duration of a speech sig-
nal [Kamm and Singhal, 19901 reported the construction
of three non-decomposed networks, one for each input du-
ration. Their results showed that networks with input dura-
tions of 35ms and 65ms had much higher performance for
phonemes with short average duration than for the longest
phonemes (diphthongs). Based on this finding, we decom-
posed the problem on the output units so that the two sub-
networks with short-duration input spans “specialized” on
subsets of phonemes with short and intermediate average du-
rations.

The three subnetworks were trained individually on a
200-sentence training set (108983 patterns), and then their
weights were placed into the combined network, along with
glue weights that were randomly initialized in [-0.3,0.3].
These low magnitudes were chosen to give the network flex-
ibility in moving glue hyperplanes. Glue training and fine-
tuning were then performed.

As described in more detail in [Pratt and Kamm, 19911,
network performance was evaluated by calculating a nor-
malized average hit rate (AIIR) and false alarm rate (AFA)
among the top 3 phonemes out of the 46 target classes.
Learning time was measured as the number of arithmetic op-
erations required to calculate unit activations and weight up-
date values. The table in Table 2 shows training conditions
and results (as tested on an independent 200-sentence set), as
well as those for [Kamm and Singhal, 19901’s best network
(with 125ms-duration input). The second and third columns
in Table 2 show values of q and a! selected (by training sev-
eral networks to a couple of epochs) for training.

If we measure overall performance as the top-3 AHR mi-
nus top-3 AFA, then the final network obtained after fine
tuning has m > 100% of that of the [Kamm and Sing-

hal, 19901 network, after lA:i$$fl M 10% of the operations.

588 C~NNECTIONIST REPRESENTATIONS

Total top top
EP- op’s 3 3

Network a q o&s x lb” AHR AFA
K&S net. .l .l 300 10.62 61.7 3.1

35ms subnt 2.5 .l 7 .06 70.1 7.4
65ms subnt 1.2 .2 3 .04 65.2 5.8

125mssubnt 3.0 .Ol 10 .35 33.1 4.3
glue training 2.0 .5 9 .46 56.5 4.0

fine tuning 2.0 .5 2 .19 62.4 3.5
Decomposed Network Total 3 1 1.1

‘Iable 2: Conditions and results for the phoneme recognition
network

This is a substantial speed-up over the previous training time.
More details about the acoustic-phonetic network can be

found in Pratt and Kamm, 19911.

The vowel recognition and phoneme recognition problem
decomposition experiments demonstrated some of the same
major findings as the less complex pilot study, despite fun-
damental differences in the naturn of the task decomposition
among the studies. In all three studies, time to convergence
was shorter when some of the weights in the network were
pre-set than when all weights were set to random initial val-
ues. Furthermore, when the pre-set weights had relatively
high magnitudes, the networks were able to retain them dur-
ing further training. In addition, the vowel task indicated
that fine-tuning of a decomposed network may not always
improve performance.

Note that, by considering transfer of partially incorrect
weights, we are addressing a more complex issue than if mul-
tiple network weight sets were simply glued together in a
modular system at run time. In contrast, we have explored
how back-propagation learning uses both error-free and er-
rorful pre-set weight subsets.

These experiments leave many open questions for further
research, including the following topics.

More systematic studies of back-propagation dynamics on
complex tasks should be done in order to further explore
the pilot study hypotheses.
More work is necessary to establish how problem decom-
position can best be combined with the oversized training
methodology used on the vowel recognition task.
The speed-up observed in decomposed vs. non-
decomposed networks might be due not to the decom-
posed training methodology, but to the fact that that net-
works were trained using a constrained topology. This
possibility should be explored empirically.
It is interesting that weight magnitudes from prior training
worked so well in the problem decomposition tasks. This
may have been due to the high network weights generated
by subnetwork training. For example, the average subnet-
work weight magnitude in the vowel study was 15.5. For
source and target network tasks that differ substantially,

careful magnitude tuning may be necessary, to avoid local
minima. Furthermore, for a technique like that described
in [Towell et al., 19901 (which uses weight sets obtained
by means other than prior network training) more atten-
tion to weight magnitudes may be helpful in dealing with
potentially incorrect initial weights.

8 The network decomposition on the vowel recognition task
was chosen arbitrarily. It is important to characterize the
nature of decompositions for which speedup occurs. Care-
ful analysis of subproblem interactions should aid in this
endeavor. Also, further experiments with different arbi-
trary decompositions should indicate sensitivity to partic-
ular decompositions. It should also be fruitful to explore
automated methods for guiding problem decomposition
using domain knowledge.

cb When training data is impoverished (noisy, incorrect, in-
complete), it may be possible to achieve a performance
improvement by using pre-set weights. Although this
question has been explored in related contexts [Towell et
al., 19901, [Waibel et al., 19891, an important open is-
sue is whether direct network transfer produces significant
performance improvement over randomly initialized net-
works.

e The model of transfer used here decouples initial weight
determination from learning. Therefore, the learning al-
gorithm can probably be changed (for example to Conju-
gate Gradient [Barnard and Cole, 19891) without changes
to the transfer process. A study should be performed to
verify that transfer remains effective with this and other
learning algorithms.

8 Finally, our most active current area of research explores
transfer between networks trained on different but related
populations of training data, for source and target net-
works with the same topology. For example, speaker-
dependent training may be sped up by transferring weights
from a network trained on multiple speakers. The effec-
tiveness of transfer should be evaluated under conditions
of different relationships between source and target train-
ing data (i.e. superset ---) subset, subset- superset, disjoint
but relatea populations, etc.).

We have addressed the question of how information stored
in one neural network may be transferred to another net-
work for a different task. We explored the behavior of
back-propagation when some weights in a network are pre-
set, and we studied the effect of using weights from pre-
trained subnets on learning time for a larger network. Our re-
sults demonstrated that the relative magnitudes of the pre-set
weights (compared to the untrained weights) are important
for retaining the locations of pre-trained hyperplanes during
subsequent learning, and we showed that learning time can
be reduced by a factor of 10 using these task decomposi-
tion techniques. Techniques like those described here should
should facilitate the construction of complex networks that
address real-world problems.

s
Thanks to Steve and Bellcore for fi-
nancial support during 1990. Thanks also to David Ackley,
Sharad Singhal, and especidly the anonymous reviewers,
who provided helpful comments on previous drafts. Also,
Michiel Noordewier and Haym Hirsh provided critical sup-
port and encouragement for the research program on which
this paper is based.

Barnard, Etienne and Cole, Ronald A. 11989. A neural-net
training program based on conjugate-gradient optimization.
Technical Report CSE 89-014, Oregon Graduate Center.
Fisher, W. M.; Zue, V.; Bernstein, J.; and Pallett, D. 1987.
An acoustic-phonetic data base. J. Acoust. Sot. Am. Suppl.
81(1):S92.
Fu, Li-Min 1990. Recognition of semantically incorrect
rules: A neural-network approach. In Proceedings of
Third International Conference on Industrial and Engineer-
ing Applications of Artificial Intellig and Expert Sys-
tems, IEA/AIE ‘90. Association for C uting Machinery.
Kamm, C. A. and Singhal, S. 1990. Effect of neural net-
work input span on phoneme classification. In Proceedings
of the International Joint Conference on Neural Networks,
1990, volume I, 195-200, San Diego. IEEE.
Pratt, L. Y. and Kamm, C. A. 1991. Improving a phoneme
classification neural network through problem decomposi-
tion. In Proceedings of the International Joint Conference
on Neural Networks (IJCNN-91). IEEE. Forthcoming.
Robinson, Anthony John 1989. Dynamic Error Propaga-
tion Networks. Ph.D. Dissertation, Cambridge University,
Engineering Department.
Rumelhart, D. E.; Hinton, 6. E.; and Williams, R. J. 1987.
Learning internal representations by error propagation. In
Rumelhart, David E. and McClelland, James L., editors
1987, Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, volume 1. MIT Press: Brad-
ford Books. 3 18-362.
Shavlik, J. W.; Mooney, R. J.; and Towell, G. 6. 1991.
Symbolic and neural net learning algorithms: An experi-
mental comparison. Machine Learning 6(2): 111-143.
Towell, Geoffrey G.; Shavlik, Jude W.; and Noordewier,
Michiel 0.1990. Refinement of approximate domain theo-
ries by knowledge-based neural networks. In Proceedings
of AAAI-90,861-866. AAAI, Morgan Kaufmann.
Waibel, Alexander; Sawai, Hidefumi; and Shikano, Kiy-
ohiro 1989. Modularity and scaling in large phonemic neu-
ral networks. IEEE Transactions on Acoustics, Speech, and
Signal Processing 37(12): 1888-1898.
Weigend, Andreas S.; Huberman, Bernard0 A.: and Rumel-
hart, David E. 1990. Predicting the future: A connectionist
approach. Technical Report Stanford-PDP-90-O 1, PARC-
SSl-90-20, Stanford PDP Research Group, Stanford, Cali-
fornia 94305-2 130.

PRATT, MOSTOW, 8~ KAMM 589

