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Abstract 

Reinforcement learning algorithms, when used to 
solve multi-stage decision problems, perform a 
kind of online (incremental) search to find an op- 
timal decision policy. The time complexity of this 
search strongly depends upon the size and struc- 
ture of the state space and upon a priori knowl- 
edge encoded in the learners initial parameter val- 
ues. When a priori knowledge is not available, 
search is unbiased and can be excessive. 
Cooperative mechanisms help reduce search by 
providing the learner with shorter latency feed- 
back and auxiliary sources of experience. These 
mechanisms are based on the observation that in 
nature, intelligent agents exist in a cooperative so- 
cial environment that helps structure and guide 
learning. Within this context, learning involves 
information transfer as much as it does discovery 
by trial-and-error. 
Two cooperative mechanisms are described: 
Learning with an External Critic (or LEC) and 
Learning By Watching (or LBW). The search time 
complexity of these algorithms, along with unbi- 
ased Q-learning, are analyzed for problem solving 
tasks on a restricted class of state spaces. The 
results indicate that while unbiased search can be 
expected to require time moderately exponential 
in the size of the state space, the LEC and LBW 
algorithms require at most time linear in the size 
of the state space and under appropriate condi- 
tions, are independent of the state space size alto- 
gether; requiring time proportional to the length 
of the optimal solution path. While these analytic 
results apply only to a restricted class of tasks, 
they shed light on the complexity of search in re- 
inforcement learning in general and the utility of 
cooperative mechanisms for reducing search. 

Introduction 

When reinforcement learning is used to solve multi- 
stage decision problems, learning can be viewed as a 

search process in which the agent, by executing a se- 
quence of actions, searches the world for states that 
yield reward. For real-world tasks, the state space may 
be large and rewards may be sparse. Under these cir- 
cumstances the time required to learn a control policy 
may be excessive. The detrimental effects of search 
manifest themselves most at the beginning of the task 
when the agent has an initially unbiased control strat- 
egy, and in the middle of a task when changes occur 
in the environment that invalidate an existing control 
policy. 

Two cooperative learning algorithms are proposed 
to reduce search and decouple the learning rate from 
state-space size. The first algorithm, called Learning 
with an External Critic (or LEC), is based on the idea 
of a mentor, who watches the learner and generates 
immediate rewards in response to its most recent ac- 
tions. This reward is then used temporarily to bias 
the learner’s control strategy. The second algorithm, 
called Learning By Watching (or LBW), is based on 
the idea that an agent can gain experience vicariously 
by relating the observed behavior of others to its own. 
While LEC algorithms require interaction with knowl- 
edgeable agents, LBW algorithms can be effective even 
when interaction is with equally naive peers. 

The principle idea being advocated in both LEC 
and LBW is that, in nature, intelligent agents do not 
exist in isolation, but are embedded in a benevolent 
society that is used to guide and structure learning. 
Humans learn by watchmg others, by being told, and 
by receiving criticism and encouragement. Learning is 
more often a transfer than a discovery. Similarly, in- 
telligent robots cannot be expected to learn complex 
real-world tasks in isolation by trial-and-error alone. 
Instead, they must be embedded in cooperative envi- 
ronments, and algorithms must be developed to facil- 
itate the transfer of knowledge among them. Within 
this context, trial-and-error learning continues to play 
a crucial role: for pure discovery purposes and for re- 
fining and elaborating knowledge acquired from others. 

The search time complexity is analyzed for pure un- 
biased Q-learning, LEC, and LBW algorithms for an 
important class of state spaces. Generally, the results 
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indicate that unbiased Q-learning can have a search 
time that is exponential in the depth of the state space, 
while the LEC and LBW algorithms require at most 
time linear in the state space size and under appropri- 
ate conditions, time independent of the state space size 
and proportional to the length of the optimal solution 
path. 

In the analysis that follows, only definitions and the- 
orems are given. Proofs can be found in the appendix. 

Characterizing state spaces 
Naturally, the scaling properties of any reinforcement 
learning algorithm strongly depends upon the struc- 
ture of the state space and the details of the algorithm 
itself. Therefore, it is difficult to obtain results for com- 
pletely general situations. However, by making some 
simplifications we can obtain interesting results for a 
representative class of tasks and we can gain insight 
into more general situations. Below we define a num- 
ber of properties that are useful when talking about 
classes of state spaces. We assume that actions are 
deterministic. 

Definition 1 (l-step invertible) A state space is l- 
step invertible if every action has an inverse. That is, 
if in state x, action a causes the system to enter state 
y, there exists an action a-l that when executed in 
state y causes the system to enter state x.l 

Definition 2 (uniformly k-bounded) A state 
space is uniformly k-bounded with respect to a state .- 
X 

1. 

2. 

3. 

The maximum number of steps needed to reach x 
from anywhere in the state space is k. 
All states whose distance to x is less than k have b- 
actions that decrease the distance to x by one, b+ 
actions that increase the distance to x by one, and 
b, actions that leave the distance to x unchanged. 
all states whose distance to x is k have b- actions 
that decrease the distance by one and b,+b+ actions 
that leave the distance unchanged.2 

Definition 3 (homogeneous) A state space is ho- 
mogeneous with respect to state x if it is l-step in- 
vertible and uniformly k-bounded with respect to x. 

Definition 4 (polynomial width) A homogeneous 
state space (of depth k) has polynomial width if the 
size of the state space is a polynomial function of its 
depth (k). 

For example, 2 and 3 dimensional grids have polyno- 
mial width since the size of their state spaces scale as 
O(k2) and O(k3) respectively. 

‘k-step invertibility can be defined analogously and re- 
sults similar to those described below can be obtained. 

2That is, at the boundaries, actions that would normally 
increase the distance to x are folded into actions the leave 
the distance unchanged. 

Homogeneous state spaces are useful for studying the 
scaling properties of reinforcement learning algorithms 
because they are analytically tractable. They represent 
an idealization of the state spaces typically studied in 
AI - in particular, the boundaries of the state space 
are smooth and equally distant from the “center” state 
x, and the interior states share the same local connec- 
tivity pattern. Nevertheless, we expect the complexity 
result obtained for homogeneous state spaces to be in- 
dicative of the scaling properties of more general state 
spaces. 

Q-learning Analysis 
To study the time complexity of unbiased systems 
we have chosen to analyze Q-learning [Watkins, 19891 
as a representative reinforcement learning algorithm. 
Although a variety of other reinforcement algorithms 
have been described in the literature [Barto et al., 
1983; Holland et al., 1986; Watkins, 1989; Jordan and 
Rumelhart, 19901, most are similar to Q-learning in 
that they use temporal difference methods [Sutton, 
1988] to estimate a utility function that is used to 
determine the system’s decision policy. Thus, even 
though our analysis is for Q-learning, we expect our 
results to apply to other algorithms as well. 

In Q-learning, the system’s objective is to learn a 
control policy K, which maps states into actions, that 
maximizes the discounted cumulative reward: 

00 
rt = c yn ft+n (1) 

n=O 

where rt is the discounted cumulative reward (also 
called the return), y is the discount rate (0 5 y < l), 
and rt is the reward received after executing an action 
at time t. 

The system maintains an action-value function, Q, 
that maps state-action pairs into expected returns. 
That is, Q(x, a) is the system’s estimate of the return 
it expects to receive given that it executes action a 
in state x and follows the optimal policy thereafter. 
Given Q the system’s policy, x is determined by the 
rule: 

T(X) = a such that Q(x, a) = ye$Q(x, b)], (2) 

where A is the set of possible actions. 
The estimates represented by the action-value func- 

tion are incrementally improved through trial-and- 
error by using updating rules based on temporal dif- 
ference (TD) methods [Sutton, 19881. In l-step Q- 
learning only the action-value of the most recent state- 
action pair is updated. The rule used is 

Q(xt,at) - (1 - a)Q(xt, a) + Q[Q + yQ+l)], (3) 
where 

W:) = yp$Q(x, b)l, (4) 

where xt, ut, rt are the state, action, and reward at 
time t respectively, and where o is the learning rate 
parameter. 
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1. x t the current state 
2. Select an action a that is usually consistent with 

a(z), but occasionally an alternate. For example, 
one might choose a according to the Boltzmann dis- 
tribution: p(ajx) = 

eQ(-VT where T is a tem- 

perature parameter that adjusts the degree of ran- 
domness . 

3. Execute action a, and let y be the next state and r 
the reward received. 

4. Update the action-value function: 

Q(x, 4 + (1 - 4&(x, 4 + 4- + Ye], 

where U(y) = ma&A [&(Y, b)]. 
5. Go to 1. 

Figure 1: The l-step Q-learning algorithm 

Other Q-learning algorithms use different rules for 
updating the action-value function. Figure 1 summa- 
rizes the steps for I-step Q-learning. 

Definition 5 (zero-initialized) A Q-learning sys- 
tem is zero initialized if all its action-values are ini- 
tially zero. 

Definition 6 (problem solving task) A 
problem solving task is defined as any learning task 
where the system receives a reward only upon entering 
a goal state G. That is, 

rt = 1 ifxct+l =G 
0 otherwise (5) 

Definition 7 (homogeneous problem solving task) 
A task is a homogeneous problem solving task if it is 
a problem solving task and its associated state space is 
homogeneous with respect to the goal state 6. 

Given the above definitions and descriptions we have 
the following result. 

Theorem 8 In a homogeneous problem solving task, 
the expected time needed by a zero-initialized Q- 
learning system to learn the actions along an optimal 
solution path is bounded below by the expression 

Cl * (c2 [$]k-i[($)i-lj +& 

where, 
1 

c1= 1-p= ’ ( > 

P= = 
b 

b= + b; + b- ’ 

b+ P+ = - 
b+ + b- ’ 

and 
P- =1-P+, 

and where i is the length of the optimal solution, and 
k is the depth bound on the state space (with respect to 
the goal). 

Space does not permit a detailed derivation of Equa- 
tion 6, however the key to the proof is to recognize that 
the time needed by a zero-initialized Q-learning system 
to first solve the task is exactly the time needed by a 
process to perform a random walk on a one dimensional 
state space which begins in state i and ends in state 0 
- where the states are numbered left to right from 0 
to k - 1 and the walk takes a leftward step with prob- 
ability P-(1 - P=), a rightward step with probability 
P+(l - P=), and a step having no effect with proba- 
bility P=. That is, when solving the task for the first 
time the zero-initialized system performs an unbiased 
random walk over the state space. It chooses actions 
randomly until it stumbles into the goal state. By con- 
straining our analysis to homogeneous problem solving 
tasks we are able to analyze this walk. In particular, 
it reduces to a random walk on a l-dimensional state 
space. A detailed derivation is given in [Whitehead 
and IBallard, 19911. 

Corollary 9 For state spaces of polynomial width 
(see Definition 4), when P+ > l/2, the expected search 
time is moderately exponential in the state space size. 

In Equation 6, P= is the probability that the sys- 
tem, when choosing actions randomly, selects an ac- 
tion that leaves the distance to the goal unchanged, 
and P+ (and P-) is the conditional probability that 
the system chooses an action that increases (decreases) 
the distance to the goal given that it chooses one that 
changes the distance. 

Figure 2 shows a series of plots of expected solution 
time (Equation 6) versus maximum distance k for a 
i = 10, and P+ E [0.45,0.55]. When P+ > l/2, the 
solution time scales exponentially in Iz, where the base 
of the exponent is the ratio F. When P+ = l/2, the 
solution time scales linearly ink, and when P+ < l/2 
it scales sublinearly. 

The case where P+ > l/2 is important for two rea- 
sons. First, for many interesting problems it is likely 
that P+ > l/2. For example, if a robot attempts to 
build an engine by randomly fitting parts together, it 
is much more likely to take actions that are useless or 
move the system further from the goal than towards 
it. This follows since engine assembly follows a fairly 
sequential ordering. Similarly, a child can be expected 
to take time exponential (in the number of available 
building blocks) to build a specific object when com- 
bining them at random. Of course the state spaces for 
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search time 
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Figure 2: Search time complexity (lower bound) as a 
function of b. 

building engines and assembling blocks are not homo- 
geneous, but they may reasonably be approximated as 
such. 

Second, when P+ is only slightly greater than l/2, 
it doesn’t take long before the exponent leads to unac- 
ceptablely long searches. Figure 2 illustrates this point 
dramatically; even when P+ is as small as 0.51 the so- 
lution time diverges quickly. When P+ = 0.55 (i.e. the 
system is only 10% more likely to take a “bad” action 
than a “good” action), the search time diverges almost 
immediately. 

Theorem 7 applies only to zero-initialized Q-learning 
systems. However, we expect these results to carry 
over to any learning system/algorithm that relies on 
unbiased search to initially solve tasks. 

Cooperation for faster learning 
Theorem 7 suggests that in the absence of a priori task 
knowledge, pure trial-and-error learning does not scale 
well with domain complexity (state-space size). Fortu- 
nately, a number of techniques can be used within the 
reinforcement learning paradigm to improve the learn- 
ing rate. 

One approach is avoid the problem altogether by 
providing the agent with an approximate controller a 
priori. This controller, by encoding a priori knowledge 
about the task, defines an initial policy that positively 
biases the search. In this case, trial-and-error expe- 
rience is used primarily to compensate for modeling 
errors in the approximate controller [Franklin, 19881. 
While this approach is useful for initial learning, its 
drawbacks are that it requires knowledge of the task 

a priori and it is less useful for adapting to change in 
the environment (i.e. low overall adaptability). 

A second approach is to augment the agent with 
a predictive model and use it to perform hypothet- 
ical trial-and-error experiments [Sutton, 1990a; Sut- 
ton, 1990b; Whitehead and Ballard, 1989a; Whitehead 
and Ballard, 1989b]. This technique can improve the 
learning rate even when the predictive model itself is 
learned [Sutton, 1990a; Whitehead, 1989; Lin, 1990; 
Riolo, 19901. The principle shortcoming of this ap- 
proach is that it leads to agents who are only as good as 
their internal predictive models. That is, because mul- 
tiple trials may be required before an accurate model 
can be learned, the model is useless during that first 
crucial trial when the agent first performs a task or first 
adapts to a change. Once, the agent has learned an 
accurate model (including learning the locations of re- 
wards), hypothetical experiments begin to contribute. 

A third approach, the focus of this paper, is to em- 
bed the agent in a cooperative social environment and 
develop algorithms for transferring knowledge. This 
approach is based on the idea that in nature, intelligent 
agents exist in a social structure that supports knowl- 
edge transfer between agents. Individuals learn from 
one another through social and cultural interactions: 
by watching each other, by imitating role-models, by 
receiving criticism from knowledgeable critics, and by 
receiving direction from supervisors. Knowledge trans- 
fer and trial-and-error learning interact synergistically. 
On the level of the individual, mechanisms for knowl- 
edge transfer dominate, and because of its inherent 
complexity, trial-and-error learning plays a lesser role 
- being used primarily to refine/elaborate knowledge 
already gained from others. On the level of the group, 
trial-and-error learning becomes an important tool for 
increasing the cumulative knowledge of the society as 
a whole. That is, even though agents, as individuals, 
cannot make discoveries at a useful rate, the inherent 
parallelism in the population can overcome the com- 
plexity of search and the group can accumulate knowl- 
edge and adapt at an acceptable rate. 

The following sections describe and analyze two co- 
operative mechanisms for improving the adaptability 
of reinforcement learning systems. We call these Learn- 
ing with an External Critic (LEC) and Learning By 
Watching (LBW) respectively. 

LEG Analysis 
The principle idea behind learning with an external 
critic is that the learner, while attempting to solve 
problems, is observed by a helpful critic, who analyzes 
the learners actions and provides immediate feedback 
on its performance. LEC algorithms achieve faster 
learning by reducing the delay between an action and 
its evaluation (i.e. feedback), mitigating the temporal 
credit assignment problem. LEC algorithms require 
only modest changes to the learner, since no inter- 
pretation is required. However, some interpretations 
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skills are required of the external critic. We have stud- 
ied several LEC algorithms [Whitehead and Ballard, 
19911. In this paper we focus on one, called Biasing 
Binary L EC. 

In the Biasing-Binary-LEC (or BB-LEC) algorithm, 
reward from the environment, rw and reward from the 
external critic, P, are treated separately. Reward from 
the environment is treated according to standard Q- 
learning (it is used to learn the action-value function), 
while the critic’s reward is used to learn a biasing func- 
tion, B, over state-action pairs. The biasing function 
is a simple weighted average of the immediate reward 
received from the critic. It is estimated using the rule: 

&+1 (a, 4 +- (1 - W*(zt, at) + @-e(t) (7) 

where re(t) is the reward generated by the external 
critic in response to the agents action at time t and + 
is a decay factor between 0 and 1. We assume that at 
each time step, the critic generates a non-zero reward 
with probability Pcritic according to the rule: 

c(t) = 
+R, if at is optimal 
-R, otherwise (8) 

where R, is a positive constant. 
The decaying average in Equation 7 is used to allow 

the agent to “forget” old advice that has not recently 
been repeated. Without it, the agent may have diffi- 
culty adapting to changes in the task once advice is 
extinguished. 

The decision making rule for BB-LEC is simple. The 
agent sums the action-value and bias-value for each 
possible decision and chooses the decision with the 
largest total. That is, 

r(z) = a such that Q(z, a)+B(e, a) = yg$Q(x, b)+B(x, b)] 

Given the above LEC algorithm, we have the follow- 
ing weak upper bound on the search time. 
Theorem I.0 The expected time needed by a zero- 
initialized BB-LEC system to learn the actions along 
an optimal path for a homogeneous problem solving 
task of depth L is bounded above by 

k 
P 

* 1st * b 
critic 

(9) 

where Pcxitie is the probability that on a given step the 
external critic provides feedback, ISI is the total number 
of states in the state space, b is the branching factor (or 
total number of possible actions per state) and k is the 
depth of the state space. 

This upper bound is somewhat disappointing be- 
cause it is expressed in terms of the state space size, 
IS], and the maximum depth, b. Our goal is to find 
a.lgorithms that depend only upon task difhculty (i.e. 
length of optimal solution) and are independent of 
state space size and depth. Nevertheless the result is 
interesting for two reasons. First, it shows that when 

j$ > l/2, BB-LEC is an improvement over pure zero- 
initialized Q-learning since the search time grows at 
most linearly in bc whereas Q-learning grows at least 
exponentially in k. Second, because the upper bound 
is inversely proportional to Pcritic, the theorem shows 
that even infrequent feedback from the critic is suffi- 
cient to achieve the linear upper bound. This has been 
observed in empirical studies, where even infrequent 
feedback from the critic substantially improves perfor- 
mance [Whitehead and Ballard, 19911. 

The trouble with the LEC algorithm, as we’ve de- 
scribed it so far, is that the critic’s feedback arrives 
late. That is, by the time the learner receives the 
critic’s evaluation it finds itself in another (neighbor- 
ing) state, where the feedback is of no value. If the 
learner had a means of returning to previously encoun- 
tered states, it could make better use of the critic’s 
feedback. This idea has lead to the following re- 
sults, which show that under appropriate conditions 
the search time depends only upon the solution length 
and is independent of state space size. 

Theorem PI If a zero-initialized Q-learning system 
using BB-LEC uses an inverse model to “undo” non- 
optimal actions (as detected based on feedback from the 
external critic) then the expected time needed to learn 
the actions along an optimal path for a homogeneous 
problem solving task is linear in the solution length i, 
independent of state space size, and is bounded above 
by the expression 

[ 

2 
P-(1-P=)-l I * i. (10) 

Similarly, if the task is structured so that the sys- 
tem can give up on problems after some time with- 
out success or if the system is continually presented 
with opportunities to solve new instances of a problem 
then previously encountered situations can be revis- 
ited without much delay and the search time can be 
reduced. 

a‘lheorem 12 A zero-initialized Q-learning system us- 
ing BB-LEG that quits a trial and starts anew if it fails 
to solve the task after nq (np 2 i) steps has, for a ho- 
mogeneous problem solving task, an expected solution 
time that is linear in i, independent of state space size, 
and is bounded from above by the expression 

1 
P-(1 - P=) 

* n,i. (11) 

Corollary 13 A zero-initialized Q-learning system 
using BB-LEC that quits a trial and starts anew upon 
receiving negative feedback from the external critic has 
an expected solution time that is bounded from above 
by the expression 

1 
P= + (1 - K)P+ > 

* i. (12) 
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The crucial assumption underlying the above the- 
orems is that the learner has some mechanism for 
quickly returning to the site of feedback, however for 
some tasks returning to a previous state may not be 
explicitly necessary to decouple search time from the 
state space size. In particular, if the optimal deci- 
sion surface is smooth (i.e., optimal actions for neigh- 
boring states are similar), then action-value estima- 
tors that use approximators that locally interpolate 
(e.g. CMACs, or Neural Nets) can immediately use 
the critic’s feedback to bias the impending decision. 
Similarly, if Q is approximated with overlapping hy- 
percubes (e.g. classifier systems [Holland et al., 1986]), 
then the critic’s feedback can be expected to transfer 
to other situations as well. Although not reflected in 
the above theorems, we suspect that this observation 
is the basis of the ultimate power of LEC algorithms 
and will enable them to be useful even when explicit 
mechanisms for inversion are not available. 

Without help by other means, a population of naive 
LBW agent’s may still require time exponential in the 
state space depth, however, search time can be decou- 
pled from state space size by adding a knowledgeable 
role model. 

Theorem 15 If a naive agent using LB W and a 
skilled (optimal) role-model solve identical tasks in par- 
allel and if the naive agent quits its current task after 
failing to solve it in n4 steps, then an upper bound on 
the time needed by the naive agent to first solve the 
task (and learn the actions along the optimal path) is 
given by i2 11 - nq i-i. 

129 
(13) 

As with LEC results, Theorem 14 relys on the agent 
having a mechanism for returning to previously en- 
countered states. Intuitively this follows since when a 
naive agent and a skilled agent perform similar tasks 

E Analysis 
LEC algorithms are sensitive to naive critics. That is, 
if the critic provides poor feedback, the learner will bias 
its policy incorrectly. This limits the use of LEC algo- 
rithms to cases where the external critic is skilled and 
attentive. Learning By Watching, on the other hand, 
does not rely on a skilled, attentive critic. Instead, the 
learner gains additional experience by interpreting the 
behavior of others. If the observed behavior is skilled 
so much the better, but an LBW system can learn from 
naive behavior too. 

In reinforcement learning, all adaptation is based 
on a sequence of state-action-reward triples that char- 
acterize the system’s behavior. In LBW, the agent 
gets state-action-reward sequences not only by its own 
hand, but also by observing others perform similar 
tasks. In the analysis that follows, we assume that, 
at each time step, the learner can correctly recognize 
the state-action-reward triple of any agent it watches. 
This sequence is then used for learning just as if it were 
the learner’s own personal experience. We also assume 
that the learner can observe the behavior of everyone 
in the population. Although these assumptions are 
overly simplistic and ignore many important issues, 
they are reasonable considering our goal - to illus- 
trate the potential benefits of integrating reinforcement 
learning with cooperative mechanisms like “learning- 
by-watching.“3 

Given the above description of LBW, we can make 
the following observations. 

Theorem 14 The expected time required for a popula- 
tion of naive (zero-initialized) Q-learning agents using 
LBW to learn the actions along an optimal path de- 
creases to the minimum required learning time at a rate 
that is 0(1/n), h w ere n is the size of the population. 

3Results similar to those described below can be ob- 
tained when the assumptions are relaxed. 

of the state space that are never visited by the skilled 
agent. Starting over is a means for efficiently return- 
ing to the optimal solution path. Again, we expect 
LBW systems to perform well on tasks that have de- 
cision surfaces that are smooth or can be represented 
by generalizing function approximators. 

Conclusions 
When used to solve multi-stage decision problems, re- 
inforcement learning algorithms perform a kind of on- 
line, incremental search in order to find an optimal 
decision policy. The time complexity of this search 
strongly depends upon the size and structure of the 
state space and upon any knowledge encoded in the 
system a priori. When a priori knowledge is not avail- 
able or when the system must adapt to a change in the 
environment, search can be excessive. 

An analysis of the search time complexity for zero- 
initialized Q-learning systems indicates that for a re- 
stricted, but representative set of tasks, the search time 
scales at least exponentially in the depth of the state 
space. For polynomial width state spaces, this implies 
search times that are moderately exponential in state 
space size. 

Learning with an External Critic (LEC) and Learn- 
ing By Watching are two cooperative mechanisms that 
can substantially reduce search. LEC algorithms rely 
on feedback from an external critic to reduce feedback 
(reward) latency. LBW algorithms use observations of 
others as an auxiliary source of experience. Both algo- 
rithms reduce search and increase overall adaptability. 

The LEC algorithm in its purest form, has a search 
time complexity that is at most linear in the state space 
size. Even though this is an improvement over pure Q- 
learning, the bound continues to depend on the state 
space size. The trouble with pure LEC is that, because 
the critic’s evaluation is received after the fact, the 

in parallel, it is possible for the naive agent to move 
off the optimal solution path, and find itself in parts 
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learner may find itself in another (neighboring) state, 
where the feedback has little value. When means exist 
for efficiently returning to states that have been pre- 
viously visited (or states that are functionally equiva- 
lent) the search time can be decoupled from the state 
space size. This can be achieved either explicitly or 
implicitly. Explicit mechanisms include allowing the 
learner to use an inverse model and allowing the agent 
to restart (or pick a new instance of) a task if it fails 
to solve it after some time. Critic evaluation can im- 
mediately be made use of implicitly (or automatically) 
when the decision surface is smooth, so that neigh- 
boring state share the same optimal action; or when 
the policy can be represented by generalizing function 
approximators. 

The advantage of LBW over LEC is that it doesn’t 
necessarily rely on an attentive, knowledgeable critic. 
In particular, the search time complexity, of a popula- 
tion of naive LBW agents, scales as the inverse of the 
population size. When a knowledgeable (not necessar- 
ily attentive) role-model is available, a naive agent, un- 
der appropriate conditions, can learn the actions along 
the optimal solution path in time linear in the path 
length, (independent of state space size). 

Although our results are for zero-initialized Q- 
learning systems solving homogeneous problem solving 
tasks, we expect them to apply equally to other rein- 
forcement learning algorithms that depend on search. 
Our simulation studies [Whitehead and Ballard, 19911 
support this hypothesis and also show LEC and LBW 
algorithms to be robust with respect to feedback noise 
and dropout. 

Finally, it might be argued that what we’re doing 
here is moving toward supervised learning, so why not 
abandon reinforcement learning altogether and focus 
on supervised learning. It is true that LEC and LBW 
algorithms take steps toward supervised learning by 
exploiting richer sources of feedback. Indeed, super- 
vised learning (in its classic sense) could be incorpo- 
rated into the LEC algorithm by expanding the vo- 
cabulary between the system and the external critic 
from its present “yes” or “no”, to a list of possible ac- 
tions. However, we want to retain reinforcement learn- 
ing because it is such an autonomous (if weak) learn- 
ing algorithm. Our philosophy is that an autonomous 
learning system should be able to exploit extra infor- 
mation available when learning (e.g., feedback from an 
outside critic), but it should not rely on it completely. 
A framework with reinforcement learning as its basic 
mechanism provides for such autonomy. 
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