
exity si

Steven D. Whitehead
Department of Computer Science

University of Rochester
Rochester, NY 14627

email: white@cs.rochester.edu

Abstract

Reinforcement learning algorithms, when used to
solve multi-stage decision problems, perform a
kind of online (incremental) search to find an op-
timal decision policy. The time complexity of this
search strongly depends upon the size and struc-
ture of the state space and upon a priori knowl-
edge encoded in the learners initial parameter val-
ues. When a priori knowledge is not available,
search is unbiased and can be excessive.
Cooperative mechanisms help reduce search by
providing the learner with shorter latency feed-
back and auxiliary sources of experience. These
mechanisms are based on the observation that in
nature, intelligent agents exist in a cooperative so-
cial environment that helps structure and guide
learning. Within this context, learning involves
information transfer as much as it does discovery
by trial-and-error.
Two cooperative mechanisms are described:
Learning with an External Critic (or LEC) and
Learning By Watching (or LBW). The search time
complexity of these algorithms, along with unbi-
ased Q-learning, are analyzed for problem solving
tasks on a restricted class of state spaces. The
results indicate that while unbiased search can be
expected to require time moderately exponential
in the size of the state space, the LEC and LBW
algorithms require at most time linear in the size
of the state space and under appropriate condi-
tions, are independent of the state space size alto-
gether; requiring time proportional to the length
of the optimal solution path. While these analytic
results apply only to a restricted class of tasks,
they shed light on the complexity of search in re-
inforcement learning in general and the utility of
cooperative mechanisms for reducing search.

Introduction

When reinforcement learning is used to solve multi-
stage decision problems, learning can be viewed as a

search process in which the agent, by executing a se-
quence of actions, searches the world for states that
yield reward. For real-world tasks, the state space may
be large and rewards may be sparse. Under these cir-
cumstances the time required to learn a control policy
may be excessive. The detrimental effects of search
manifest themselves most at the beginning of the task
when the agent has an initially unbiased control strat-
egy, and in the middle of a task when changes occur
in the environment that invalidate an existing control
policy.

Two cooperative learning algorithms are proposed
to reduce search and decouple the learning rate from
state-space size. The first algorithm, called Learning
with an External Critic (or LEC), is based on the idea
of a mentor, who watches the learner and generates
immediate rewards in response to its most recent ac-
tions. This reward is then used temporarily to bias
the learner’s control strategy. The second algorithm,
called Learning By Watching (or LBW), is based on
the idea that an agent can gain experience vicariously
by relating the observed behavior of others to its own.
While LEC algorithms require interaction with knowl-
edgeable agents, LBW algorithms can be effective even
when interaction is with equally naive peers.

The principle idea being advocated in both LEC
and LBW is that, in nature, intelligent agents do not
exist in isolation, but are embedded in a benevolent
society that is used to guide and structure learning.
Humans learn by watchmg others, by being told, and
by receiving criticism and encouragement. Learning is
more often a transfer than a discovery. Similarly, in-
telligent robots cannot be expected to learn complex
real-world tasks in isolation by trial-and-error alone.
Instead, they must be embedded in cooperative envi-
ronments, and algorithms must be developed to facil-
itate the transfer of knowledge among them. Within
this context, trial-and-error learning continues to play
a crucial role: for pure discovery purposes and for re-
fining and elaborating knowledge acquired from others.

The search time complexity is analyzed for pure un-
biased Q-learning, LEC, and LBW algorithms for an
important class of state spaces. Generally, the results

WHITEHEAD 607

From: AAAI-91 Proceedings. Copyright ©1991, AAAI (www.aaai.org). All rights reserved.

indicate that unbiased Q-learning can have a search
time that is exponential in the depth of the state space,
while the LEC and LBW algorithms require at most
time linear in the state space size and under appropri-
ate conditions, time independent of the state space size
and proportional to the length of the optimal solution
path.

In the analysis that follows, only definitions and the-
orems are given. Proofs can be found in the appendix.

Characterizing state spaces
Naturally, the scaling properties of any reinforcement
learning algorithm strongly depends upon the struc-
ture of the state space and the details of the algorithm
itself. Therefore, it is difficult to obtain results for com-
pletely general situations. However, by making some
simplifications we can obtain interesting results for a
representative class of tasks and we can gain insight
into more general situations. Below we define a num-
ber of properties that are useful when talking about
classes of state spaces. We assume that actions are
deterministic.

Definition 1 (l-step invertible) A state space is l-
step invertible if every action has an inverse. That is,
if in state x, action a causes the system to enter state
y, there exists an action a-l that when executed in
state y causes the system to enter state x.l

Definition 2 (uniformly k-bounded) A state
space is uniformly k-bounded with respect to a state .-
X

1.

2.

3.

The maximum number of steps needed to reach x
from anywhere in the state space is k.
All states whose distance to x is less than k have b-
actions that decrease the distance to x by one, b+
actions that increase the distance to x by one, and
b, actions that leave the distance to x unchanged.
all states whose distance to x is k have b- actions
that decrease the distance by one and b,+b+ actions
that leave the distance unchanged.2

Definition 3 (homogeneous) A state space is ho-
mogeneous with respect to state x if it is l-step in-
vertible and uniformly k-bounded with respect to x.

Definition 4 (polynomial width) A homogeneous
state space (of depth k) has polynomial width if the
size of the state space is a polynomial function of its
depth (k).

For example, 2 and 3 dimensional grids have polyno-
mial width since the size of their state spaces scale as
O(k2) and O(k3) respectively.

‘k-step invertibility can be defined analogously and re-
sults similar to those described below can be obtained.

2That is, at the boundaries, actions that would normally
increase the distance to x are folded into actions the leave
the distance unchanged.

Homogeneous state spaces are useful for studying the
scaling properties of reinforcement learning algorithms
because they are analytically tractable. They represent
an idealization of the state spaces typically studied in
AI - in particular, the boundaries of the state space
are smooth and equally distant from the “center” state
x, and the interior states share the same local connec-
tivity pattern. Nevertheless, we expect the complexity
result obtained for homogeneous state spaces to be in-
dicative of the scaling properties of more general state
spaces.

Q-learning Analysis
To study the time complexity of unbiased systems
we have chosen to analyze Q-learning [Watkins, 19891
as a representative reinforcement learning algorithm.
Although a variety of other reinforcement algorithms
have been described in the literature [Barto et al.,
1983; Holland et al., 1986; Watkins, 1989; Jordan and
Rumelhart, 19901, most are similar to Q-learning in
that they use temporal difference methods [Sutton,
1988] to estimate a utility function that is used to
determine the system’s decision policy. Thus, even
though our analysis is for Q-learning, we expect our
results to apply to other algorithms as well.

In Q-learning, the system’s objective is to learn a
control policy K, which maps states into actions, that
maximizes the discounted cumulative reward:

00
rt = c yn ft+n (1)

n=O

where rt is the discounted cumulative reward (also
called the return), y is the discount rate (0 5 y < l),
and rt is the reward received after executing an action
at time t.

The system maintains an action-value function, Q,
that maps state-action pairs into expected returns.
That is, Q(x, a) is the system’s estimate of the return
it expects to receive given that it executes action a
in state x and follows the optimal policy thereafter.
Given Q the system’s policy, x is determined by the
rule:

T(X) = a such that Q(x, a) = ye$Q(x, b)], (2)

where A is the set of possible actions.
The estimates represented by the action-value func-

tion are incrementally improved through trial-and-
error by using updating rules based on temporal dif-
ference (TD) methods [Sutton, 19881. In l-step Q-
learning only the action-value of the most recent state-
action pair is updated. The rule used is

Q(xt,at) - (1 - a)Q(xt, a) + Q[Q + yQ+l)], (3)
where

W:) = yp$Q(x, b)l, (4)

where xt, ut, rt are the state, action, and reward at
time t respectively, and where o is the learning rate
parameter.

608 LEARNING AND EVALUATION FUNCTIONS

1. x t the current state
2. Select an action a that is usually consistent with

a(z), but occasionally an alternate. For example,
one might choose a according to the Boltzmann dis-
tribution: p(ajx) =

eQ(-VT where T is a tem-

perature parameter that adjusts the degree of ran-
domness .

3. Execute action a, and let y be the next state and r
the reward received.

4. Update the action-value function:

Q(x, 4 + (1 - 4&(x, 4 + 4- + Ye],

where U(y) = ma&A [&(Y, b)].
5. Go to 1.

Figure 1: The l-step Q-learning algorithm

Other Q-learning algorithms use different rules for
updating the action-value function. Figure 1 summa-
rizes the steps for I-step Q-learning.

Definition 5 (zero-initialized) A Q-learning sys-
tem is zero initialized if all its action-values are ini-
tially zero.

Definition 6 (problem solving task) A
problem solving task is defined as any learning task
where the system receives a reward only upon entering
a goal state G. That is,

rt = 1 ifxct+l =G
0 otherwise (5)

Definition 7 (homogeneous problem solving task)
A task is a homogeneous problem solving task if it is
a problem solving task and its associated state space is
homogeneous with respect to the goal state 6.

Given the above definitions and descriptions we have
the following result.

Theorem 8 In a homogeneous problem solving task,
the expected time needed by a zero-initialized Q-
learning system to learn the actions along an optimal
solution path is bounded below by the expression

Cl * (c2 [$]k-i[($)i-lj +&

where,
1

c1= 1-p= ’ (>

P= =
b

b= + b; + b- ’

b+ P+ = -
b+ + b- ’

and
P- =1-P+,

and where i is the length of the optimal solution, and
k is the depth bound on the state space (with respect to
the goal).

Space does not permit a detailed derivation of Equa-
tion 6, however the key to the proof is to recognize that
the time needed by a zero-initialized Q-learning system
to first solve the task is exactly the time needed by a
process to perform a random walk on a one dimensional
state space which begins in state i and ends in state 0
- where the states are numbered left to right from 0
to k - 1 and the walk takes a leftward step with prob-
ability P-(1 - P=), a rightward step with probability
P+(l - P=), and a step having no effect with proba-
bility P=. That is, when solving the task for the first
time the zero-initialized system performs an unbiased
random walk over the state space. It chooses actions
randomly until it stumbles into the goal state. By con-
straining our analysis to homogeneous problem solving
tasks we are able to analyze this walk. In particular,
it reduces to a random walk on a l-dimensional state
space. A detailed derivation is given in [Whitehead
and IBallard, 19911.

Corollary 9 For state spaces of polynomial width
(see Definition 4), when P+ > l/2, the expected search
time is moderately exponential in the state space size.

In Equation 6, P= is the probability that the sys-
tem, when choosing actions randomly, selects an ac-
tion that leaves the distance to the goal unchanged,
and P+ (and P-) is the conditional probability that
the system chooses an action that increases (decreases)
the distance to the goal given that it chooses one that
changes the distance.

Figure 2 shows a series of plots of expected solution
time (Equation 6) versus maximum distance k for a
i = 10, and P+ E [0.45,0.55]. When P+ > l/2, the
solution time scales exponentially in Iz, where the base
of the exponent is the ratio F. When P+ = l/2, the
solution time scales linearly ink, and when P+ < l/2
it scales sublinearly.

The case where P+ > l/2 is important for two rea-
sons. First, for many interesting problems it is likely
that P+ > l/2. For example, if a robot attempts to
build an engine by randomly fitting parts together, it
is much more likely to take actions that are useless or
move the system further from the goal than towards
it. This follows since engine assembly follows a fairly
sequential ordering. Similarly, a child can be expected
to take time exponential (in the number of available
building blocks) to build a specific object when com-
bining them at random. Of course the state spaces for

WHITEHEAD 609

lower bounc-
on

search time
(in steps) _

1000 - 0.49 ,

0'
0 20 40 60 80

k (maximum distance to G)
100

Figure 2: Search time complexity (lower bound) as a
function of b.

building engines and assembling blocks are not homo-
geneous, but they may reasonably be approximated as
such.

Second, when P+ is only slightly greater than l/2,
it doesn’t take long before the exponent leads to unac-
ceptablely long searches. Figure 2 illustrates this point
dramatically; even when P+ is as small as 0.51 the so-
lution time diverges quickly. When P+ = 0.55 (i.e. the
system is only 10% more likely to take a “bad” action
than a “good” action), the search time diverges almost
immediately.

Theorem 7 applies only to zero-initialized Q-learning
systems. However, we expect these results to carry
over to any learning system/algorithm that relies on
unbiased search to initially solve tasks.

Cooperation for faster learning
Theorem 7 suggests that in the absence of a priori task
knowledge, pure trial-and-error learning does not scale
well with domain complexity (state-space size). Fortu-
nately, a number of techniques can be used within the
reinforcement learning paradigm to improve the learn-
ing rate.

One approach is avoid the problem altogether by
providing the agent with an approximate controller a
priori. This controller, by encoding a priori knowledge
about the task, defines an initial policy that positively
biases the search. In this case, trial-and-error expe-
rience is used primarily to compensate for modeling
errors in the approximate controller [Franklin, 19881.
While this approach is useful for initial learning, its
drawbacks are that it requires knowledge of the task

a priori and it is less useful for adapting to change in
the environment (i.e. low overall adaptability).

A second approach is to augment the agent with
a predictive model and use it to perform hypothet-
ical trial-and-error experiments [Sutton, 1990a; Sut-
ton, 1990b; Whitehead and Ballard, 1989a; Whitehead
and Ballard, 1989b]. This technique can improve the
learning rate even when the predictive model itself is
learned [Sutton, 1990a; Whitehead, 1989; Lin, 1990;
Riolo, 19901. The principle shortcoming of this ap-
proach is that it leads to agents who are only as good as
their internal predictive models. That is, because mul-
tiple trials may be required before an accurate model
can be learned, the model is useless during that first
crucial trial when the agent first performs a task or first
adapts to a change. Once, the agent has learned an
accurate model (including learning the locations of re-
wards), hypothetical experiments begin to contribute.

A third approach, the focus of this paper, is to em-
bed the agent in a cooperative social environment and
develop algorithms for transferring knowledge. This
approach is based on the idea that in nature, intelligent
agents exist in a social structure that supports knowl-
edge transfer between agents. Individuals learn from
one another through social and cultural interactions:
by watching each other, by imitating role-models, by
receiving criticism from knowledgeable critics, and by
receiving direction from supervisors. Knowledge trans-
fer and trial-and-error learning interact synergistically.
On the level of the individual, mechanisms for knowl-
edge transfer dominate, and because of its inherent
complexity, trial-and-error learning plays a lesser role
- being used primarily to refine/elaborate knowledge
already gained from others. On the level of the group,
trial-and-error learning becomes an important tool for
increasing the cumulative knowledge of the society as
a whole. That is, even though agents, as individuals,
cannot make discoveries at a useful rate, the inherent
parallelism in the population can overcome the com-
plexity of search and the group can accumulate knowl-
edge and adapt at an acceptable rate.

The following sections describe and analyze two co-
operative mechanisms for improving the adaptability
of reinforcement learning systems. We call these Learn-
ing with an External Critic (LEC) and Learning By
Watching (LBW) respectively.

LEG Analysis
The principle idea behind learning with an external
critic is that the learner, while attempting to solve
problems, is observed by a helpful critic, who analyzes
the learners actions and provides immediate feedback
on its performance. LEC algorithms achieve faster
learning by reducing the delay between an action and
its evaluation (i.e. feedback), mitigating the temporal
credit assignment problem. LEC algorithms require
only modest changes to the learner, since no inter-
pretation is required. However, some interpretations

610 LEARNING AND EVALUATION FUNCTIONS

skills are required of the external critic. We have stud-
ied several LEC algorithms [Whitehead and Ballard,
19911. In this paper we focus on one, called Biasing
Binary L EC.

In the Biasing-Binary-LEC (or BB-LEC) algorithm,
reward from the environment, rw and reward from the
external critic, P, are treated separately. Reward from
the environment is treated according to standard Q-
learning (it is used to learn the action-value function),
while the critic’s reward is used to learn a biasing func-
tion, B, over state-action pairs. The biasing function
is a simple weighted average of the immediate reward
received from the critic. It is estimated using the rule:

&+1 (a, 4 +- (1 - W*(zt, at) + @-e(t) (7)

where re(t) is the reward generated by the external
critic in response to the agents action at time t and +
is a decay factor between 0 and 1. We assume that at
each time step, the critic generates a non-zero reward
with probability Pcritic according to the rule:

c(t) =
+R, if at is optimal
-R, otherwise (8)

where R, is a positive constant.
The decaying average in Equation 7 is used to allow

the agent to “forget” old advice that has not recently
been repeated. Without it, the agent may have diffi-
culty adapting to changes in the task once advice is
extinguished.

The decision making rule for BB-LEC is simple. The
agent sums the action-value and bias-value for each
possible decision and chooses the decision with the
largest total. That is,

r(z) = a such that Q(z, a)+B(e, a) = yg$Q(x, b)+B(x, b)]

Given the above LEC algorithm, we have the follow-
ing weak upper bound on the search time.
Theorem I.0 The expected time needed by a zero-
initialized BB-LEC system to learn the actions along
an optimal path for a homogeneous problem solving
task of depth L is bounded above by

k
P

* 1st * b
critic

(9)

where Pcxitie is the probability that on a given step the
external critic provides feedback, ISI is the total number
of states in the state space, b is the branching factor (or
total number of possible actions per state) and k is the
depth of the state space.

This upper bound is somewhat disappointing be-
cause it is expressed in terms of the state space size,
IS], and the maximum depth, b. Our goal is to find
a.lgorithms that depend only upon task difhculty (i.e.
length of optimal solution) and are independent of
state space size and depth. Nevertheless the result is
interesting for two reasons. First, it shows that when

j$ > l/2, BB-LEC is an improvement over pure zero-
initialized Q-learning since the search time grows at
most linearly in bc whereas Q-learning grows at least
exponentially in k. Second, because the upper bound
is inversely proportional to Pcritic, the theorem shows
that even infrequent feedback from the critic is suffi-
cient to achieve the linear upper bound. This has been
observed in empirical studies, where even infrequent
feedback from the critic substantially improves perfor-
mance [Whitehead and Ballard, 19911.

The trouble with the LEC algorithm, as we’ve de-
scribed it so far, is that the critic’s feedback arrives
late. That is, by the time the learner receives the
critic’s evaluation it finds itself in another (neighbor-
ing) state, where the feedback is of no value. If the
learner had a means of returning to previously encoun-
tered states, it could make better use of the critic’s
feedback. This idea has lead to the following re-
sults, which show that under appropriate conditions
the search time depends only upon the solution length
and is independent of state space size.

Theorem PI If a zero-initialized Q-learning system
using BB-LEC uses an inverse model to “undo” non-
optimal actions (as detected based on feedback from the
external critic) then the expected time needed to learn
the actions along an optimal path for a homogeneous
problem solving task is linear in the solution length i,
independent of state space size, and is bounded above
by the expression

[

2
P-(1-P=)-l I * i. (10)

Similarly, if the task is structured so that the sys-
tem can give up on problems after some time with-
out success or if the system is continually presented
with opportunities to solve new instances of a problem
then previously encountered situations can be revis-
ited without much delay and the search time can be
reduced.

a‘lheorem 12 A zero-initialized Q-learning system us-
ing BB-LEG that quits a trial and starts anew if it fails
to solve the task after nq (np 2 i) steps has, for a ho-
mogeneous problem solving task, an expected solution
time that is linear in i, independent of state space size,
and is bounded from above by the expression

1
P-(1 - P=)

* n,i. (11)

Corollary 13 A zero-initialized Q-learning system
using BB-LEC that quits a trial and starts anew upon
receiving negative feedback from the external critic has
an expected solution time that is bounded from above
by the expression

1
P= + (1 - K)P+ >

* i. (12)

WHITEHEAD 611

The crucial assumption underlying the above the-
orems is that the learner has some mechanism for
quickly returning to the site of feedback, however for
some tasks returning to a previous state may not be
explicitly necessary to decouple search time from the
state space size. In particular, if the optimal deci-
sion surface is smooth (i.e., optimal actions for neigh-
boring states are similar), then action-value estima-
tors that use approximators that locally interpolate
(e.g. CMACs, or Neural Nets) can immediately use
the critic’s feedback to bias the impending decision.
Similarly, if Q is approximated with overlapping hy-
percubes (e.g. classifier systems [Holland et al., 1986]),
then the critic’s feedback can be expected to transfer
to other situations as well. Although not reflected in
the above theorems, we suspect that this observation
is the basis of the ultimate power of LEC algorithms
and will enable them to be useful even when explicit
mechanisms for inversion are not available.

Without help by other means, a population of naive
LBW agent’s may still require time exponential in the
state space depth, however, search time can be decou-
pled from state space size by adding a knowledgeable
role model.

Theorem 15 If a naive agent using LB W and a
skilled (optimal) role-model solve identical tasks in par-
allel and if the naive agent quits its current task after
failing to solve it in n4 steps, then an upper bound on
the time needed by the naive agent to first solve the
task (and learn the actions along the optimal path) is
given by i2 11 - nq i-i.

129
(13)

As with LEC results, Theorem 14 relys on the agent
having a mechanism for returning to previously en-
countered states. Intuitively this follows since when a
naive agent and a skilled agent perform similar tasks

E Analysis
LEC algorithms are sensitive to naive critics. That is,
if the critic provides poor feedback, the learner will bias
its policy incorrectly. This limits the use of LEC algo-
rithms to cases where the external critic is skilled and
attentive. Learning By Watching, on the other hand,
does not rely on a skilled, attentive critic. Instead, the
learner gains additional experience by interpreting the
behavior of others. If the observed behavior is skilled
so much the better, but an LBW system can learn from
naive behavior too.

In reinforcement learning, all adaptation is based
on a sequence of state-action-reward triples that char-
acterize the system’s behavior. In LBW, the agent
gets state-action-reward sequences not only by its own
hand, but also by observing others perform similar
tasks. In the analysis that follows, we assume that,
at each time step, the learner can correctly recognize
the state-action-reward triple of any agent it watches.
This sequence is then used for learning just as if it were
the learner’s own personal experience. We also assume
that the learner can observe the behavior of everyone
in the population. Although these assumptions are
overly simplistic and ignore many important issues,
they are reasonable considering our goal - to illus-
trate the potential benefits of integrating reinforcement
learning with cooperative mechanisms like “learning-
by-watching.“3

Given the above description of LBW, we can make
the following observations.

Theorem 14 The expected time required for a popula-
tion of naive (zero-initialized) Q-learning agents using
LBW to learn the actions along an optimal path de-
creases to the minimum required learning time at a rate
that is 0(1/n), h w ere n is the size of the population.

3Results similar to those described below can be ob-
tained when the assumptions are relaxed.

of the state space that are never visited by the skilled
agent. Starting over is a means for efficiently return-
ing to the optimal solution path. Again, we expect
LBW systems to perform well on tasks that have de-
cision surfaces that are smooth or can be represented
by generalizing function approximators.

Conclusions
When used to solve multi-stage decision problems, re-
inforcement learning algorithms perform a kind of on-
line, incremental search in order to find an optimal
decision policy. The time complexity of this search
strongly depends upon the size and structure of the
state space and upon any knowledge encoded in the
system a priori. When a priori knowledge is not avail-
able or when the system must adapt to a change in the
environment, search can be excessive.

An analysis of the search time complexity for zero-
initialized Q-learning systems indicates that for a re-
stricted, but representative set of tasks, the search time
scales at least exponentially in the depth of the state
space. For polynomial width state spaces, this implies
search times that are moderately exponential in state
space size.

Learning with an External Critic (LEC) and Learn-
ing By Watching are two cooperative mechanisms that
can substantially reduce search. LEC algorithms rely
on feedback from an external critic to reduce feedback
(reward) latency. LBW algorithms use observations of
others as an auxiliary source of experience. Both algo-
rithms reduce search and increase overall adaptability.

The LEC algorithm in its purest form, has a search
time complexity that is at most linear in the state space
size. Even though this is an improvement over pure Q-
learning, the bound continues to depend on the state
space size. The trouble with pure LEC is that, because
the critic’s evaluation is received after the fact, the

in parallel, it is possible for the naive agent to move
off the optimal solution path, and find itself in parts

612 LEARNING AND EVALUATION FUNCTIONS

learner may find itself in another (neighboring) state,
where the feedback has little value. When means exist
for efficiently returning to states that have been pre-
viously visited (or states that are functionally equiva-
lent) the search time can be decoupled from the state
space size. This can be achieved either explicitly or
implicitly. Explicit mechanisms include allowing the
learner to use an inverse model and allowing the agent
to restart (or pick a new instance of) a task if it fails
to solve it after some time. Critic evaluation can im-
mediately be made use of implicitly (or automatically)
when the decision surface is smooth, so that neigh-
boring state share the same optimal action; or when
the policy can be represented by generalizing function
approximators.

The advantage of LBW over LEC is that it doesn’t
necessarily rely on an attentive, knowledgeable critic.
In particular, the search time complexity, of a popula-
tion of naive LBW agents, scales as the inverse of the
population size. When a knowledgeable (not necessar-
ily attentive) role-model is available, a naive agent, un-
der appropriate conditions, can learn the actions along
the optimal solution path in time linear in the path
length, (independent of state space size).

Although our results are for zero-initialized Q-
learning systems solving homogeneous problem solving
tasks, we expect them to apply equally to other rein-
forcement learning algorithms that depend on search.
Our simulation studies [Whitehead and Ballard, 19911
support this hypothesis and also show LEC and LBW
algorithms to be robust with respect to feedback noise
and dropout.

Finally, it might be argued that what we’re doing
here is moving toward supervised learning, so why not
abandon reinforcement learning altogether and focus
on supervised learning. It is true that LEC and LBW
algorithms take steps toward supervised learning by
exploiting richer sources of feedback. Indeed, super-
vised learning (in its classic sense) could be incorpo-
rated into the LEC algorithm by expanding the vo-
cabulary between the system and the external critic
from its present “yes” or “no”, to a list of possible ac-
tions. However, we want to retain reinforcement learn-
ing because it is such an autonomous (if weak) learn-
ing algorithm. Our philosophy is that an autonomous
learning system should be able to exploit extra infor-
mation available when learning (e.g., feedback from an
outside critic), but it should not rely on it completely.
A framework with reinforcement learning as its basic
mechanism provides for such autonomy.

eferences

[Barto et al., 19831 Andrew G. Barto, Richard S. Sut-
ton, and Charles W. Anderson. Neuron-like elements
that can solve difficult learning control problems.
IEEE Trans. on Systems, Man, and Cybernetics,
SMC-13(5):834-846, 1983.

[Franklin, 19881 Judy A. Franklin. Refinement of
robot motor skills through reinforcement learning.
In Proceedings of the 27th IEEE Conference on De-
cision and Control, Austin, TX, December 1988.

[Holland et al., 19861 John H. Holland, Keith F.
Holyoak, Richard E. Nisbett, and Paul R. Thagard.
Induction: processes of inference, learning, and dis-
covery. MIT Press, 1986.

[Jordan and Rumelhart, 19901 Michael I. Jordan and
David E. Rumelhart. Supervised learning with a
distal teacher. Technical report, MIT, 1990.

[Lin, I9901 Long-Ji Lin. Self-improving reactive
agents: Case studies of reinforcement learning
frameworks. In Proceedings of the First Interna-
tional Conference on the Simulation of Adaptive Be-
havior, September 1990.

[Riolo, I9901 Rick L. Riolo. Lookahead planning and
latent learning in classifier systems. In Proceedings
of the First International Conference on the Simu-
lation of Adaptive Behavior, September 1990.

[Sutton, 19881 Richard S. Sutton. Learning to predict
by the method of temporal differences. Machine
Learning, 3(1):9-44, 1988.

[Sutton, 199Oa] Richard S. Sutton. First results with
DYNA, an integrated architecture for learning, plan-
ning, and reacting. In Proceedings of the AAAI
Spring Symposium on Planning in Uncertain, Un-
predictable, or Changing Environments, 1990.

[Sutton, 1990b] Richard S. Sutton. Integrating archi-
tectures for learning, planning, and reacting based
on approximating dynamic programming. In Pro-
ceedings of the Seventh International Conference on
Machine Learning, Austin, TX, 1990. Morgan Kauf-
mann.

[Watkins, 19891 Ch ris Watkins. Learning from delayed
rewards. PhD thesis, Cambridge University, 1989.

[Whitehead and Ballard, 1989a] Steven D. Whitehead
and Dana H. Ballard. Reactive behavior, learning,
and anticipation. In Proceedings of the NASA Con-
ference on Space Telerobotics, Pasadena, CA, 1989.

[Whitehead and Ballard, 1989b] Steven D. Whitehead
and Dana H. Ballard. A role for anticipation in
reactive systems that learn. In Proceedings of the
Sixth International Workshop on Machine Learning,
Ithaca, NY, 1989. Morgan Kaufmann.

[Whitehead and Ballard, 19911 Steven D. Whitehead
and Dana H. Ballard. A study of cooperative mech-
anisms for faster reinforcement learning. TR 365,
Computer Science Dept., University of Rochester,
Feburary 1991. (A shorter version to appear AAAI-
91).

[Whitehead, 19891 St even D. Whitehead. Scaling in
reinforcement learning. Technical Report TR 304,
Computer Science Dept., University of Rochester,
1989.

WHITEHEAD 613

