
ugene C. Freuder

Computer Science Department
University of New Hampshire

Durham, NI-I 03824 USA
pdh@cs.unh.edu; ecf@cs.unh.edu

I-Iowever, in between, there may be a huge number of
A b§tKlC&

Constraint satisfaction problems involve finding values
for variables subject to constraints on which
combinations of values are permitted. They arise in a wide
variety of domains, ranging from scene analysis to
temporal reasoning. We present a new representation for
partial solutions as cross products of sets of values. This
representation can be used to improve the performance of
standard algorithms, especially when seeking all
solutions or discovering that none exist.

Constraint-based reasoning has long been recognized as a
primary component of AI problem solving and has seen
increasing interest and application in recent years.
Constraint-based reasoning has been used in many areas of
artificial intelligence: vision, language, planning,
diagnosis, scheduling, configuration, design, temporal
reasoning, defeasible reasoning, truth maintenance,
qualitative physics, logic programming, expert systems.

This research focuses on the constraint satisfaction
problem (CSP) paradigm, which underlies many of these
applications [Mackworth 871. Constraint satisfaction
problems involve finding values for a set of problem
variables that simultaneously satisfy a set of constraints or
restrictions on which combinations of values are
permissible. A variety of approaches have been developed
for solving these problems; the basic algorithmic tools are
backtracking and constraint propagation [Nleseguer 891.

A basic problem in constraint satisfaction problem search
is a phenomenon that we might call “the battle of the
bulge”. Search commonly proceeds by developing partial
solutions, discarding them once it is clear that they cannot
be extended to complete solutions. Initially we start with a
small number of partial solutions. Ultimately, for some
problems, there are relatively few complete solutions.

lThis material is based upon work supported by the
National Science Foundation under Grant No. RI-89 13040.
The Government has certain rights in this material.

partial solutions, candidates for completion to full
solutions.

Of course, this phenomena is common to other AI search
domains. For example, beam search is an effort to address
the problem in the classic state space domain. In fact the
technique proposed here for addressing the problem was
inspired by a very similar technique demonstrated by Wu
[Wu 901 in what is, at least superficially, a very different
search domain: diagnosis in the presence of multiple
diseases.

The general principle involved might be stated as
follows:

Find a method of representing search subspaces that
permits operating on the subspaces more efliciently
than operating on their individual elements.

In the CSP context:

Find a method of representing sets of partial solutions
such that further values can be tested against a set

more efficiently than against each member
individually.

We implement this principle by using a cross product
representation of sets of partial solutions. Suppose, for
example, that a, b, c, k are the potential values for variable
X and c, d, e, h are the potential values for variable Y. If
the pairs of values that satisfy the constraint between X and
Y are:

this set can be represented by two cross products:
{abc}X{def}and(k}X{eh)

A value for another variable can be tested against one of
these cross product sets by testing against each value for
each variable in the cross product. If the value g, for
variable 2, is consistent with every value but b and h, we
arrive at the extended partial solution sets:

04 X {de0 X &I and {k) X W X W.

Hubbe and F’reuder 421

From: AAAI-92 Proceedings. Copyright ©1992, AAAI (www.aaai.org). All rights reserved.

If the value m for Z is also consistent with every value
but b and h we have the new partial solution sets:

{ac}X(def}X{gm}and{k}X{e)X{gm).
The cross product representation permits additive as

opposed to multiplicative complexity. For example, value
g for variable Z can be tested against the cross product
representation {a b c} X {d e f} with six (3 + 3) consistency
tests : 3 to see if g is consistent with a, b and c and 3 more
to see if g is consistent with d, e and f. With the standard
backtrack search tree representation we need to see if g is
consistent with each of the 3 * 3 = 9 pairs, and for each
pair 1 or 2 tests must be made, depending on whether the
first test succeeds or not, resulting in a total of between 9
and 18 tests.

A related technique was utilized in [Freuder and Quinn
851 to take advantage of variables that are not directly
constrained. The lack of a direct constraint between
variables implies that all combinations (the cross product of
the variable domains) are consistent. Here all combinations
in a cross product of subsets of the domains are consistent.

This representation supports search algorithms that can
be time as well as (relatively) space efficient, especially in
searching for all solutions. We call this representation the
cross product representation or CPR.

It might seem that there would be a problem with a
potential combinatorial space explosion in utilizing this
representation. However, we will see that the cross product
representation can be profitably utilized within an
essentially depth-first search context where space is not a
serious concern.

CPR can be applied to both classical backtracking and
forward checking, one of the most highly regarded variants
of backtrack search in the literature [Golumb and Baumert
65; Haralick and Elliott 80; Nadel891. In both cases, when
finding all solutions, adding CPR can not increase the
number of constraint checks, a standard measure of CSP
algorithm performance. This is true, in particular, in the
special case where there are no solutions, and finding all
solutions means discovering that the problem is insoluble.
(A constraint check is counted every time we ask the basic
question “is value a for variable X consistent with value b
for variable Y”, i.e. is the pair (a b) allowed by the
constraint between X and Y.)

In practice CPR can greatly reduce the number of
constraint checks required by backtracking or forward
checking, in some cases even when searching for a single
solution. In fact we have hopes that CPR will be helpful in
searching for any solutions to “really hard problems”
[Cheeseman, Kanefsky and Taylor 911, when many
combinations of values almost succeed, but few fully
succee&

The second section discusses the experimental design we
use to gather concrete constraint check and cpu time data.
The third section presents a basic algorithm for adding CPR

to backtrack search, and suggests directions for refinement.
We establish the theoretical and practical advantages of the
new algorithm. The fourth section discusses an algorithm
for adding CPR to forward checking. The final section is a
brief conclusion.

We show in the next section that it is theoretically
impossible for the addition of CPR to require more
constraint checks from backtracking or forward checking,
when seeking all solutions. (Between backtracking and
forward checking neither is always superior in theory,
though forward checking often is superior in practice.)
However, several interesting questions remain, which
experimental evidence can address:

* How many constraint checks can be saved?
* Can the savings be correlated with problem structure?
* Does overhead cost seriously affect the savings?
* Can we save when only seeking some solutions?

We performed tests with classical backtracking (BT) and
with backtracking augmented by CPR (BT-CPR) to address
these questions. (The CPR augmentation of forward
checking has not yet been implemented; however, BT-CPR
has been compared, favorably in some cases, with forward
checking.)

Our test problems are binary CSPs: constraints involve
two variables at a time. Random ten variable problems were
generated with different specified “expected” values for three
parameters: constraint density, constraint tightness and
domain size. Domain size is a positive integer indicating
the number of values per variable. Constraint tightness is a
number between 0 and 1 indicating what fraction of the
combinatorially possible pairs of values from two variable
domains are not allowed by the constraint. (If the constraint
between X, with values a and b, and Y, with values c and d,
does not permit the pairs (a c) and (b c) and (b d), then the
constraint tightness is .75.)

Constraint density is just a bit more involved. Binary
CSPs can be represented as constraint graphs, with the
vertices corresponding to variables and the edges to
constraints. We want to deal with problems with connected
constraint graphs, as unconnected components can be solved
independently. A connected constraint graph with n vertices
has, at a minimum, n-l edges, and, at a maximum, (n2-n)/2
edges. Constraint density is a number between 0 and 1
indicating what fraction of the possible constraints, beyond
the minimum n-l, that the problem possesses. For
example, a CSP with a complete constraint graph, where
every vertex is connected to every other, has a constraint
density of 1; a tree-structured constraint graph has a
constraint density of 0.

422 Problem Solving: Constraint Satisfaction

The random problem generator allows us to specify
“expected” values for density and, somewhat indirectly,
tightness and domain size. For example, if we specify
tightness is 5, every pair of values will have a 50/50
chance of being allowed.

Our main set of test problems consisted of five problems
for each of fifteen combinations of tightness and density
parameter values. The density parameter values tested were
.l, .5 and .9; the tightness parameter values tested were .l,
.3, .5, .7 and .9. The expected domain size was 5.

The method of generating problems has pros and cons
that we do not have space to discuss fully here, but it
should be noted that it permits some variation in actual
results. For example, one variable domain size might
actually be 3, another 7, rather than 5.

We measure performance in terms of constraint checks
and cpu time. We also compute the ratio of the two, the
number of checks per second. Cpu time measurements need
to be viewed with even more than the usual skepticism as
tests were not always conducted with the same machine, and
an improvement was made to the algorithms during testing.
None of this however affects the constraint check count, and
the overall conclusions to be drawn from the timing results
clearly coincide with the overall conclusions to be drawn
from the constraint check results.

This set of problems includes many with no solutions
and a few with millions of solutions. The ratio of the
number of solutions to the number of possible value
combinations ranges from 0 to about one in three.
Constraint checks required by backtracking range from 8 to
almost 78,000,OOO; time required by backtracking ranges
from an unmeasurable .OO seconds (which we report as .Ol
to avoid problems in dividing by 0 in computing ratios) to
almost 14,000 seconds, nearly 4 hours. For each set of five
problems with specified parameter values we calculated, for
each algorithm, the average constraint checks required, the
average cpu time utilized and the average checks/second
ratio. Effort can vary considerably among a set of five
problems for a fixed set of tightness, density and domain
size expected-value parameters. Therefore we do not wish to
impute too much to individual averages over these sets.
However, there are clearly strong, broad patterns in the
averages viewed together over the range of parameter values.

We also compute ratios of BT and BT-CPR performance
using constraint checks, cpu time and checks/second data.
This permits a quick assessment of the relative performance
of the two algorithms being compared. The larger the
numbers the better the relative performance of BT-CPR.
(Thus BT performance is in the numerator when comparing
constraint checks and cpu time, and in the denominator
when comparing checks/second) Any number greater than 1
indicates superior performance by BT-CPR.

We were concerned that it could be misleading to
compute, for example, constraint check ratios, for the two

algorithms, by simply taking the average number of
constraint checks used by one algorithm for a set of five
problems and dividing it by the average number of
constraint checks used by the other algorithm for the same
five problems. One problem in the set of five might be so
much larger than the others that it would unfairly dominate
the result. Therefore we compute the ratio of constraint
checks for each of the five problems separately and then
average those ratios. The cpu time ratios, and the ratios of
the checks/second ratios, were similarly computed

The cross product principle can be used to augment classical
backtrack search. An algorithm, BT-CPR, is given in
Figure 1. BT-CPR involves a “generate and merge” process.
Given a cross product P, and a value, v, for the next
variable to consider, V, we compute the subset, P’, of the
cross product, consistent with v, forming a new cross
product P’ X v. We do this for each value v of V. These
new cross products are children of P in the search tree. Any
children of P which are identical except for the value of V
can be merged into a single child. For example, if a and b
are both consistent with the same cross product set P’, we
can form the new cross product P’ X {a b).

Procedure BT-CPR
Push the set of values for the first variable

onto CP-stack
While CP-stack is not empty

Pop P from the CP-stack
N-list <- empty list
For each value v in the first variable V

that is not represented in P
p’<-PX (v)
B’ <- P’ after removing values

inconsistent with v
If P’ f empty cross product

then N-list <- N-list append P
Merge all P’ in N-list differing only

in the value of V
If V is the last variable to consider

then
output N-list as solutions

else
push all elements in N-list

onto CP-stack

Figure 1. BT-CPR Algorithm.

Hubbe and F'reuder 423

The search process is basically depth-first; however, it
generates all the children at a node at once, in order to allow
merging among the children. There can be at most d
children, where d is the maximum number of values for any
variable, and the depth of search is limited by the number of
variables, n. Thus there is an O(nd) upper bound on the
number of cross products that the search needs to store at
any point. There is clearly an O(nd) bound also on the
number of values stored in any one cross product.

CPR could also be added to a breadth-first search for all
solutions. This would offer greater opportunity for merging
solution sets. In a breadth-first implementation this
merging could take place among all “cousins” across an
entire level of the tree, rather than just among siblings.
However, there would be considerable additional overhead

This algorithm uses a very simple merging procedure.
&lore elaborate merging heuristics, or more generally, a
more elaborate search for an optimal representation as a set
of cross products, are worth pursuing. Here again there will
be cost/benefit considerations.

In theory BT-CPR cannot do worse than classical
backtracking in searching for all solutions to a CSP, and in
practice it can do orders of magnitude better.

Theorem I. Augmenting classical backtrack search with
CPR will never increase the number of constraint checks
required to search for all solutions to a CSP, or to
determine that an unsolvable problem has no solution.

Proof: Consider that the worst case for backtrack
augmented by CPR occurs when all the cross product sets
are singletons, sets of one element. But in this case BT-
CPR essentially reduces to classical backtracking. 0

Note that this argument is independent of any ordering
heuristics that may be applied to enhance backtrack search
performance. Given a backtrack algorithm with good search
ordering heuristics, adding CPR cannot increase the number
of constraint checks required to find all solutions.

Ordering is something of a catch-22 proposition for
CPR. On the one hand, the “fail first” principle [Haralick
and Elliott 801 suggests that we narrow the top of the
search tree. On the other hand, CPR thrives on handling
multiple possibilities in a concise manner. (Some initial
testing suggest that employing the opposite of a good
standard CSP search heuristic might sometimes be helpful
in the CPR context.)

Figure 2 shows the performance ratios, as explained in
the previous section. BT-CPR never required more
constraint checks than BT, of course; for all but the
simplest cases it required less, up to three orders of
magnitude less for the most weakly constrained set of
problems. The constraints per second performance ratio is
uniformly close to 1, suggesting that BT-CPR pays little

overhead penalty. Indeed, BT-CPR has the advantage on
three sets of problems.

Cpu time is, in fact, less for BT-CPR on all but some of
the simpler problems. Again the performance ratio climbs
up to three orders of magnitude on the most weakly
constrained set of problems. On one problem with the
tightness parameter set to .l and the density parameter set
to .l, BT-CPR required 25,854 constraint checks and 3.21
seconds while backtracking required 77,867,372 constraint
checks and 13,986.59 seconds (almost four hours).

Clearly, the advantage of CPR increases as the problems
become less tightly constrained. Weakly constrained
problems are actually difficult problems for finding all
solutions for the simple reason that there are a lot of
solutions to find, and there is relatively little pruning of the
search space. These problems also have a great many
solutions, but some applications may need to sift through a
great many solutions, if only to collect summary statistics,
or in search of a candidate that will pass a further testing
process. A simple theoretical analysis shows that in the
degenerate case where virtually all possibilities are
solutions backtracking is O(n2dn) while backtracking with
the cross product representation is O(nd2).

Roughly speaking BT-CPR does at least an order of
magnitude better on problems with either low density or
low tightness parameters. When both parameters are low
the performance ratio climbs to three orders of magnitude.

It is important to note that while our experiments have
provided what might be called “heuristic sufficient
conditions” for CPR to do especially well, these are not
presented as necessary conditions. We expect CPR to be
especially useful under other conditions, as well.

We expect CPR to help cope with what one might call
“frustrating” problems, where many sets of value choices
almost work, by merging many of the partial solutions into
cross products. Note, for example, that we can take a test
problem where CPR does extremely well because there are a
lot of solutions, and transform it into another problem that
allows no solutions, where CPR continues to do extremely
well. Simply add an additional variable, all of whose values
fail to be consistent with any of the solutions for the
original variables.

CPR can have an advantage even when we are only
seeking some solutions. We may be looking for a fixed
number or we may be taking solutions as needed,
suspending search in a “lazy evaluation” mode. Figure 3
shows the constraint check effort required for BT and BT-
CPR to supply x solutions, with x =l, 5, 10, 15, etc., for
two sample problems with density parameter .5 and
tightness parameter -3. (All the problems with density
parameter .5 and tightness parameter greater than .3 failed to
have any solutions.) Note that BT-CPR may return
solutions in batches; for example, it may first find a cross

424 Problerrr Solving: Constraint Satisfaction

a) BT constraint checks to BT-CPR constraint checks

b) BT cpu time to BT-CPR cpu time

1.6
H il# 1.4

B 1.2

4 1
p5
2 0.8

Iif.

p ::I

i 0.2
s ss=.l

0 .3

c) BT-CPR checks per second to BT checks per second

Figure 2. Performance ratios.

Hubbe and F’reuder 425

product containing 6 solutions, then a cross product with
15 more, and so on.

18000

16000

p 8000

solutions

0 ..I... .,.. ..I... .I.... ,..,,,, . ..I.. .I’... ,

ovb=z 53 F4 z 22 s 3 E:
solutions

Figure 3. Asking for x solutions.

In the first case, a problem with 44 solutions out of
2,880,OOO possibilities, BT-CPR is superior even when
only a single solution is sought. In the second, a problem
with 7,912 solutions out of 27,993,600 possibilites, BT-
CPR requires more checks initially, but quickly becomes
increasingly advantageous.

It is even possible for BT-CPR to require less effort than
BT when the problem has only one solution. For one of
our problems, which did happen to have only one solution,
out of 405,000 possibilities, BT-CPR found that solution
with 765 constraint checks while BT required 1819
constraint checks. (BT-CPR required 456 more constraint
checks to go on and determine that there were no more
solutions; BT required 133 1 more.)

Applying CPR to Forward Checking
Forward checking works by “looking ahead”. When a value
is chosen for a variable we examine all the remaining
uninstantiated variables and remove from their domains any
values inconsistent with the new choice.

Again we add a “generate and merge” perspective,
utilizing cross products. A node in the search tree will have
associated with it a set of domains for uninstantiated
variables, to be considered lower in the tree.

In expanding a given node in the search tree we construct
children corresponding to each of the values in the domain
of the next variable, and for each of these values we prune
the domains of uninstantiated variables with a forward
checking process. Then we merge values for which these
sets of domains are identical.

For example, if values a and b for V are both consistent
with {c d e} for W and (f g} for X, then a and b can be
merged into a single child { a b). The cross product
involving (a b) and the sets at the nodes above (a b) in the
tree will represent a set of partial solutions, and when we
reach the bottom of the search tree, a set of solutions.
(Values a and b are consistent with values above them in
the search tree; this was assured by similar look ahead
earlier in the search process.)

An algorithm augmenting forward checking with CPR,
FC-CPR, is shown in Figure 4. As before the process is
basically depth-first, though generating all the children at a
node at once, in order to allow merging among the children.

The algorithm incorporates another improvement to
forward checking, which utilizes a cross product
representation. This is used here with FC-CPR, but could
also be applied separately to forward checking. When search
reaches a point where none of the remaining variables
directly constrain each other (i.e. they form a “stable set”,
see [Freuder and Quinn SS]), there is no point in
continuing. All the remaining values have been (forward)
checked against all previous choices already; all
combinations will work. Thus the cross product of the
domains of the remaining variables can be added to the
partial solution(s) represented at that point in the search
tree, and these combinations can be reported as solutions.

As before, adding CPR to forward checking can not make
things worse for us, and should in most cases improve
matters.

Theorem 2. Augmenting forward checking with CPR
will never increase the number of constraint checks required
to search for all solutions to a CSP or to determine that an
unsolvable problem has no solution.

Proof: Employ a similar reduction argument to that used
for Theorem 1. 0

426 Problem Solving: Constraint Satisfaction

While we have not yet implemented forward checking
augmented by CPR, we found, in earlier experiments, that
even BT-CPR can be orders of magnitude more efficient
than forward checking for suitably weakly constrained
problems. For example, on the sample problem cited
above, where BT-CPR required 25,854 constraint checks
and 3.21 seconds while backtracking required 77,867,372
constraint checks and 13,986.59 seconds, forward checking
still took 33,789,729 checks and 2,029.5 seconds.

Procedure FC-CPR
Push onto Stack a list containing the empty

cross procuct and the cross product of all
variable domains

While Stack is not empty
Pop (Past-CP Future-CP) from Stack
If there are no constraints among the variables

represented by Future-CP (in particular,
if there is only one variable represented)

then
return the solution represented by

Past-CP X Future-CP
else

For each value, v, in the first variable, V,
represented in Future-CP

form Future-CP-v by removing from
Future-CP the component corre-
sponding to V and removing all
values inconsistent with v

For each maximal set of values, S, for
variable V, for which Future-CP-v
is identical for each v in S

New-Past-CP <- Past-CP X S
New-Future-CP <- Future-CP-v
Push (New-Past-CP New-Future-CP)

onto Stack

Figure 4. Forward checking augmented by CPR.

Conclusion
This paper introduces a new representation for partial
solutions to constraint satisfaction problems. This
representation can be used with the standard CSP
algorithms, backtracking and forward checking. When
searching for all solutions or discovering that a problem is
insoluble, CPR is guaranteed not to require any additional
consistency checks.

Experiments on random problems demonstrate that CPR
can in fact greatly reduce the number of constraint checks

required in many cases, and cpu times demonstrate that the
savings can be far more important than CPR overhead.
Analysis of these experiments provides heuristic sufficient
conditions for CPR to excel CPR may also be of help
when searching for subsets of solutions or even a single
solution.

Part of this work was done while the second author was a
Visiting Scientist at the MIT Artificial Intelligence
Laboratory. Richard J. Wallace and Karl Gevecker wrote the
random problem generator.

eferences

[Cheeseman, Kanefsky and Taylor 911 Cheeseman, P.,
Kanefsky B. and Taylor, W., Where the really hard
problems are, Proceedings of the Twelfth International Joint
Conference on Artificial Intelligence, 331-337, 1991.

[Freuder and Quinn 851 Freuder, E. and Quinn, M., Taking
advantage of stable sets of variables in constraint
satisfaction problems, Proceedings of the Ninth
International Joint Conference on Artificial Intelligence,
1985.

[Golumb and Baumert 651 Golomb, S. and Baumert, L.,
Backtrack programming, JACK 12,516-524,1965.

[Haralick and Elliott 801 Haralick R. and Elliott, G.,
Increasing tree search efficiency for constraint satisfaction
problems, Art@cial Intelligence 14,263-313, 1980.

[Mackworth 871 Mackworth, A., Constraint satisfaction, in
Encyclopedia of Artificial Intelligence, S. Shapiro, ed., vol.
1, John Wiley & Sons, New York, 205-211, 1987.

[Meseguer 891 Meseguer, P., Constraint satisfaction
problems: an overview, AI Communications 2,3-17, 1989.

[Nadel 891 Nadel, B., Constraint satisfaction algorithms,
Computational Intelligence, Vol. 5, No. 4, 1989, pp. 188-
224, 1989.

[Wu 911 Wu, T., Domain structure and the complexity of
diagnostic problem solving, Proceedings of the Ninth
National Conference on Artificial Intelligence, 855-86 1,
1991.

Hubbe and Freuder 427

