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Constraint satisfaction problems involve finding values 
for variables subject to constraints on which 
combinations of values are permitted. They arise in a wide 
variety of domains, ranging from scene analysis to 
temporal reasoning. We present a new representation for 
partial solutions as cross products of sets of values. This 
representation can be used to improve the performance of 
standard algorithms, especially when seeking all 
solutions or discovering that none exist. 

Constraint-based reasoning has long been recognized as a 
primary component of AI problem solving and has seen 
increasing interest and application in recent years. 
Constraint-based reasoning has been used in many areas of 
artificial intelligence: vision, language, planning, 
diagnosis, scheduling, configuration, design, temporal 
reasoning, defeasible reasoning, truth maintenance, 
qualitative physics, logic programming, expert systems. 

This research focuses on the constraint satisfaction 
problem (CSP) paradigm, which underlies many of these 
applications [Mackworth 871. Constraint satisfaction 
problems involve finding values for a set of problem 
variables that simultaneously satisfy a set of constraints or 
restrictions on which combinations of values are 
permissible. A variety of approaches have been developed 
for solving these problems; the basic algorithmic tools are 
backtracking and constraint propagation [Nleseguer 891. 

A basic problem in constraint satisfaction problem search 
is a phenomenon that we might call “the battle of the 
bulge”. Search commonly proceeds by developing partial 
solutions, discarding them once it is clear that they cannot 
be extended to complete solutions. Initially we start with a 
small number of partial solutions. Ultimately, for some 
problems, there are relatively few complete solutions. 

lThis material is based upon work supported by the 
National Science Foundation under Grant No. RI-89 13040. 
The Government has certain rights in this material. 

partial solutions, candidates for completion to full 
solutions. 

Of course, this phenomena is common to other AI search 
domains. For example, beam search is an effort to address 
the problem in the classic state space domain. In fact the 
technique proposed here for addressing the problem was 
inspired by a very similar technique demonstrated by Wu 
[Wu 901 in what is, at least superficially, a very different 
search domain: diagnosis in the presence of multiple 
diseases. 

The general principle involved might be stated as 
follows: 

Find a method of representing search subspaces that 
permits operating on the subspaces more efliciently 
than operating on their individual elements. 

In the CSP context: 

Find a method of representing sets of partial solutions 
such that further values can be tested against a set 

more efficiently than against each member 
individually. 

We implement this principle by using a cross product 
representation of sets of partial solutions. Suppose, for 
example, that a, b, c, k are the potential values for variable 
X and c, d, e, h are the potential values for variable Y. If 
the pairs of values that satisfy the constraint between X and 
Y are: 

this set can be represented by two cross products: 
{abc}X{def}and(k}X{eh) 

A value for another variable can be tested against one of 
these cross product sets by testing against each value for 
each variable in the cross product. If the value g, for 
variable 2, is consistent with every value but b and h, we 
arrive at the extended partial solution sets: 

04 X {de0 X &I and {k) X W X W. 
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If the value m for Z is also consistent with every value 
but b and h we have the new partial solution sets: 

{ac}X(def}X{gm}and{k}X{e)X{gm). 
The cross product representation permits additive as 

opposed to multiplicative complexity. For example, value 
g for variable Z can be tested against the cross product 
representation {a b c} X {d e f} with six (3 + 3) consistency 
tests : 3 to see if g is consistent with a, b and c and 3 more 
to see if g is consistent with d, e and f. With the standard 
backtrack search tree representation we need to see if g is 
consistent with each of the 3 * 3 = 9 pairs, and for each 
pair 1 or 2 tests must be made, depending on whether the 
first test succeeds or not, resulting in a total of between 9 
and 18 tests. 

A related technique was utilized in [Freuder and Quinn 
851 to take advantage of variables that are not directly 
constrained. The lack of a direct constraint between 
variables implies that all combinations (the cross product of 
the variable domains) are consistent. Here all combinations 
in a cross product of subsets of the domains are consistent. 

This representation supports search algorithms that can 
be time as well as (relatively) space efficient, especially in 
searching for all solutions. We call this representation the 
cross product representation or CPR. 

It might seem that there would be a problem with a 
potential combinatorial space explosion in utilizing this 
representation. However, we will see that the cross product 
representation can be profitably utilized within an 
essentially depth-first search context where space is not a 
serious concern. 

CPR can be applied to both classical backtracking and 
forward checking, one of the most highly regarded variants 
of backtrack search in the literature [Golumb and Baumert 
65; Haralick and Elliott 80; Nadel891. In both cases, when 
finding all solutions, adding CPR can not increase the 
number of constraint checks, a standard measure of CSP 
algorithm performance. This is true, in particular, in the 
special case where there are no solutions, and finding all 
solutions means discovering that the problem is insoluble. 
(A constraint check is counted every time we ask the basic 
question “is value a for variable X consistent with value b 
for variable Y”, i.e. is the pair (a b) allowed by the 
constraint between X and Y.) 

In practice CPR can greatly reduce the number of 
constraint checks required by backtracking or forward 
checking, in some cases even when searching for a single 
solution. In fact we have hopes that CPR will be helpful in 
searching for any solutions to “really hard problems” 
[Cheeseman, Kanefsky and Taylor 911, when many 
combinations of values almost succeed, but few fully 
succee& 

The second section discusses the experimental design we 
use to gather concrete constraint check and cpu time data. 
The third section presents a basic algorithm for adding CPR 

to backtrack search, and suggests directions for refinement. 
We establish the theoretical and practical advantages of the 
new algorithm. The fourth section discusses an algorithm 
for adding CPR to forward checking. The final section is a 
brief conclusion. 

We show in the next section that it is theoretically 
impossible for the addition of CPR to require more 
constraint checks from backtracking or forward checking, 
when seeking all solutions. (Between backtracking and 
forward checking neither is always superior in theory, 
though forward checking often is superior in practice.) 
However, several interesting questions remain, which 
experimental evidence can address: 

* How many constraint checks can be saved? 
* Can the savings be correlated with problem structure? 
* Does overhead cost seriously affect the savings? 
* Can we save when only seeking some solutions? 

We performed tests with classical backtracking (BT) and 
with backtracking augmented by CPR (BT-CPR) to address 
these questions. (The CPR augmentation of forward 
checking has not yet been implemented; however, BT-CPR 
has been compared, favorably in some cases, with forward 
checking.) 

Our test problems are binary CSPs: constraints involve 
two variables at a time. Random ten variable problems were 
generated with different specified “expected” values for three 
parameters: constraint density, constraint tightness and 
domain size. Domain size is a positive integer indicating 
the number of values per variable. Constraint tightness is a 
number between 0 and 1 indicating what fraction of the 
combinatorially possible pairs of values from two variable 
domains are not allowed by the constraint. (If the constraint 
between X, with values a and b, and Y, with values c and d, 
does not permit the pairs (a c) and (b c) and (b d), then the 
constraint tightness is .75.) 

Constraint density is just a bit more involved. Binary 
CSPs can be represented as constraint graphs, with the 
vertices corresponding to variables and the edges to 
constraints. We want to deal with problems with connected 
constraint graphs, as unconnected components can be solved 
independently. A connected constraint graph with n vertices 
has, at a minimum, n-l edges, and, at a maximum, (n2-n)/2 
edges. Constraint density is a number between 0 and 1 
indicating what fraction of the possible constraints, beyond 
the minimum n-l, that the problem possesses. For 
example, a CSP with a complete constraint graph, where 
every vertex is connected to every other, has a constraint 
density of 1; a tree-structured constraint graph has a 
constraint density of 0. 
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The random problem generator allows us to specify 
“expected” values for density and, somewhat indirectly, 
tightness and domain size. For example, if we specify 
tightness is 5, every pair of values will have a 50/50 
chance of being allowed. 

Our main set of test problems consisted of five problems 
for each of fifteen combinations of tightness and density 
parameter values. The density parameter values tested were 
.l, .5 and .9; the tightness parameter values tested were .l, 
.3, .5, .7 and .9. The expected domain size was 5. 

The method of generating problems has pros and cons 
that we do not have space to discuss fully here, but it 
should be noted that it permits some variation in actual 
results. For example, one variable domain size might 
actually be 3, another 7, rather than 5. 

We measure performance in terms of constraint checks 
and cpu time. We also compute the ratio of the two, the 
number of checks per second. Cpu time measurements need 
to be viewed with even more than the usual skepticism as 
tests were not always conducted with the same machine, and 
an improvement was made to the algorithms during testing. 
None of this however affects the constraint check count, and 
the overall conclusions to be drawn from the timing results 
clearly coincide with the overall conclusions to be drawn 
from the constraint check results. 

This set of problems includes many with no solutions 
and a few with millions of solutions. The ratio of the 
number of solutions to the number of possible value 
combinations ranges from 0 to about one in three. 
Constraint checks required by backtracking range from 8 to 
almost 78,000,OOO; time required by backtracking ranges 
from an unmeasurable .OO seconds (which we report as .Ol 
to avoid problems in dividing by 0 in computing ratios) to 
almost 14,000 seconds, nearly 4 hours. For each set of five 
problems with specified parameter values we calculated, for 
each algorithm, the average constraint checks required, the 
average cpu time utilized and the average checks/second 
ratio. Effort can vary considerably among a set of five 
problems for a fixed set of tightness, density and domain 
size expected-value parameters. Therefore we do not wish to 
impute too much to individual averages over these sets. 
However, there are clearly strong, broad patterns in the 
averages viewed together over the range of parameter values. 

We also compute ratios of BT and BT-CPR performance 
using constraint checks, cpu time and checks/second data. 
This permits a quick assessment of the relative performance 
of the two algorithms being compared. The larger the 
numbers the better the relative performance of BT-CPR. 
(Thus BT performance is in the numerator when comparing 
constraint checks and cpu time, and in the denominator 
when comparing checks/second) Any number greater than 1 
indicates superior performance by BT-CPR. 

We were concerned that it could be misleading to 
compute, for example, constraint check ratios, for the two 

algorithms, by simply taking the average number of 
constraint checks used by one algorithm for a set of five 
problems and dividing it by the average number of 
constraint checks used by the other algorithm for the same 
five problems. One problem in the set of five might be so 
much larger than the others that it would unfairly dominate 
the result. Therefore we compute the ratio of constraint 
checks for each of the five problems separately and then 
average those ratios. The cpu time ratios, and the ratios of 
the checks/second ratios, were similarly computed 

The cross product principle can be used to augment classical 
backtrack search. An algorithm, BT-CPR, is given in 
Figure 1. BT-CPR involves a “generate and merge” process. 
Given a cross product P, and a value, v, for the next 
variable to consider, V, we compute the subset, P’, of the 
cross product, consistent with v, forming a new cross 
product P’ X v. We do this for each value v of V. These 
new cross products are children of P in the search tree. Any 
children of P which are identical except for the value of V 
can be merged into a single child. For example, if a and b 
are both consistent with the same cross product set P’, we 
can form the new cross product P’ X {a b). 

Procedure BT-CPR 
Push the set of values for the first variable 

onto CP-stack 
While CP-stack is not empty 

Pop P from the CP-stack 
N-list <- empty list 
For each value v in the first variable V 

that is not represented in P 
p’<-PX (v) 
B’ <- P’ after removing values 

inconsistent with v 
If P’ f empty cross product 

then N-list <- N-list append P 
Merge all P’ in N-list differing only 

in the value of V 
If V is the last variable to consider 

then 
output N-list as solutions 

else 
push all elements in N-list 

onto CP-stack 

Figure 1. BT-CPR Algorithm. 
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The search process is basically depth-first; however, it 
generates all the children at a node at once, in order to allow 
merging among the children. There can be at most d 
children, where d is the maximum number of values for any 
variable, and the depth of search is limited by the number of 
variables, n. Thus there is an O(nd) upper bound on the 
number of cross products that the search needs to store at 
any point. There is clearly an O(nd) bound also on the 
number of values stored in any one cross product. 

CPR could also be added to a breadth-first search for all 
solutions. This would offer greater opportunity for merging 
solution sets. In a breadth-first implementation this 
merging could take place among all “cousins” across an 
entire level of the tree, rather than just among siblings. 
However, there would be considerable additional overhead 

This algorithm uses a very simple merging procedure. 
&lore elaborate merging heuristics, or more generally, a 
more elaborate search for an optimal representation as a set 
of cross products, are worth pursuing. Here again there will 
be cost/benefit considerations. 

In theory BT-CPR cannot do worse than classical 
backtracking in searching for all solutions to a CSP, and in 
practice it can do orders of magnitude better. 

Theorem I. Augmenting classical backtrack search with 
CPR will never increase the number of constraint checks 
required to search for all solutions to a CSP, or to 
determine that an unsolvable problem has no solution. 

Proof: Consider that the worst case for backtrack 
augmented by CPR occurs when all the cross product sets 
are singletons, sets of one element. But in this case BT- 
CPR essentially reduces to classical backtracking. 0 

Note that this argument is independent of any ordering 
heuristics that may be applied to enhance backtrack search 
performance. Given a backtrack algorithm with good search 
ordering heuristics, adding CPR cannot increase the number 
of constraint checks required to find all solutions. 

Ordering is something of a catch-22 proposition for 
CPR. On the one hand, the “fail first” principle [Haralick 
and Elliott 801 suggests that we narrow the top of the 
search tree. On the other hand, CPR thrives on handling 
multiple possibilities in a concise manner. (Some initial 
testing suggest that employing the opposite of a good 
standard CSP search heuristic might sometimes be helpful 
in the CPR context.) 

Figure 2 shows the performance ratios, as explained in 
the previous section. BT-CPR never required more 
constraint checks than BT, of course; for all but the 
simplest cases it required less, up to three orders of 
magnitude less for the most weakly constrained set of 
problems. The constraints per second performance ratio is 
uniformly close to 1, suggesting that BT-CPR pays little 

overhead penalty. Indeed, BT-CPR has the advantage on 
three sets of problems. 

Cpu time is, in fact, less for BT-CPR on all but some of 
the simpler problems. Again the performance ratio climbs 
up to three orders of magnitude on the most weakly 
constrained set of problems. On one problem with the 
tightness parameter set to .l and the density parameter set 
to .l, BT-CPR required 25,854 constraint checks and 3.21 
seconds while backtracking required 77,867,372 constraint 
checks and 13,986.59 seconds (almost four hours). 

Clearly, the advantage of CPR increases as the problems 
become less tightly constrained. Weakly constrained 
problems are actually difficult problems for finding all 
solutions for the simple reason that there are a lot of 
solutions to find, and there is relatively little pruning of the 
search space. These problems also have a great many 
solutions, but some applications may need to sift through a 
great many solutions, if only to collect summary statistics, 
or in search of a candidate that will pass a further testing 
process. A simple theoretical analysis shows that in the 
degenerate case where virtually all possibilities are 
solutions backtracking is O(n2dn) while backtracking with 
the cross product representation is O(nd2). 

Roughly speaking BT-CPR does at least an order of 
magnitude better on problems with either low density or 
low tightness parameters. When both parameters are low 
the performance ratio climbs to three orders of magnitude. 

It is important to note that while our experiments have 
provided what might be called “heuristic sufficient 
conditions” for CPR to do especially well, these are not 
presented as necessary conditions. We expect CPR to be 
especially useful under other conditions, as well. 

We expect CPR to help cope with what one might call 
“frustrating” problems, where many sets of value choices 
almost work, by merging many of the partial solutions into 
cross products. Note, for example, that we can take a test 
problem where CPR does extremely well because there are a 
lot of solutions, and transform it into another problem that 
allows no solutions, where CPR continues to do extremely 
well. Simply add an additional variable, all of whose values 
fail to be consistent with any of the solutions for the 
original variables. 

CPR can have an advantage even when we are only 
seeking some solutions. We may be looking for a fixed 
number or we may be taking solutions as needed, 
suspending search in a “lazy evaluation” mode. Figure 3 
shows the constraint check effort required for BT and BT- 
CPR to supply x solutions, with x =l, 5, 10, 15, etc., for 
two sample problems with density parameter .5 and 
tightness parameter -3. (All the problems with density 
parameter .5 and tightness parameter greater than .3 failed to 
have any solutions.) Note that BT-CPR may return 
solutions in batches; for example, it may first find a cross 

424 Problerrr Solving: Constraint Satisfaction 



a) BT constraint checks to BT-CPR constraint checks 

b) BT cpu time to BT-CPR cpu time 
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c) BT-CPR checks per second to BT checks per second 

Figure 2. Performance ratios. 
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product containing 6 solutions, then a cross product with 
15 more, and so on. 

18000 

16000 

p 8000 

solutions 

0 ..I... .,.. ..I... .I.... ,..,,,, . ..I.. .I’... , 

ovb=z 53 F4 z 22 s 3 E: 
solutions 

Figure 3. Asking for x solutions. 

In the first case, a problem with 44 solutions out of 
2,880,OOO possibilities, BT-CPR is superior even when 
only a single solution is sought. In the second, a problem 
with 7,912 solutions out of 27,993,600 possibilites, BT- 
CPR requires more checks initially, but quickly becomes 
increasingly advantageous. 

It is even possible for BT-CPR to require less effort than 
BT when the problem has only one solution. For one of 
our problems, which did happen to have only one solution, 
out of 405,000 possibilities, BT-CPR found that solution 
with 765 constraint checks while BT required 1819 
constraint checks. (BT-CPR required 456 more constraint 
checks to go on and determine that there were no more 
solutions; BT required 133 1 more.) 

Applying CPR to Forward Checking 
Forward checking works by “looking ahead”. When a value 
is chosen for a variable we examine all the remaining 
uninstantiated variables and remove from their domains any 
values inconsistent with the new choice. 

Again we add a “generate and merge” perspective, 
utilizing cross products. A node in the search tree will have 
associated with it a set of domains for uninstantiated 
variables, to be considered lower in the tree. 

In expanding a given node in the search tree we construct 
children corresponding to each of the values in the domain 
of the next variable, and for each of these values we prune 
the domains of uninstantiated variables with a forward 
checking process. Then we merge values for which these 
sets of domains are identical. 

For example, if values a and b for V are both consistent 
with {c d e} for W and (f g} for X, then a and b can be 
merged into a single child { a b ). The cross product 
involving (a b) and the sets at the nodes above (a b) in the 
tree will represent a set of partial solutions, and when we 
reach the bottom of the search tree, a set of solutions. 
(Values a and b are consistent with values above them in 
the search tree; this was assured by similar look ahead 
earlier in the search process.) 

An algorithm augmenting forward checking with CPR, 
FC-CPR, is shown in Figure 4. As before the process is 
basically depth-first, though generating all the children at a 
node at once, in order to allow merging among the children. 

The algorithm incorporates another improvement to 
forward checking, which utilizes a cross product 
representation. This is used here with FC-CPR, but could 
also be applied separately to forward checking. When search 
reaches a point where none of the remaining variables 
directly constrain each other (i.e. they form a “stable set”, 
see [Freuder and Quinn SS]), there is no point in 
continuing. All the remaining values have been (forward) 
checked against all previous choices already; all 
combinations will work. Thus the cross product of the 
domains of the remaining variables can be added to the 
partial solution(s) represented at that point in the search 
tree, and these combinations can be reported as solutions. 

As before, adding CPR to forward checking can not make 
things worse for us, and should in most cases improve 
matters. 

Theorem 2. Augmenting forward checking with CPR 
will never increase the number of constraint checks required 
to search for all solutions to a CSP or to determine that an 
unsolvable problem has no solution. 

Proof: Employ a similar reduction argument to that used 
for Theorem 1. 0 
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While we have not yet implemented forward checking 
augmented by CPR, we found, in earlier experiments, that 
even BT-CPR can be orders of magnitude more efficient 
than forward checking for suitably weakly constrained 
problems. For example, on the sample problem cited 
above, where BT-CPR required 25,854 constraint checks 
and 3.21 seconds while backtracking required 77,867,372 
constraint checks and 13,986.59 seconds, forward checking 
still took 33,789,729 checks and 2,029.5 seconds. 

Procedure FC-CPR 
Push onto Stack a list containing the empty 

cross procuct and the cross product of all 
variable domains 

While Stack is not empty 
Pop (Past-CP Future-CP) from Stack 
If there are no constraints among the variables 

represented by Future-CP (in particular, 
if there is only one variable represented) 

then 
return the solution represented by 

Past-CP X Future-CP 
else 

For each value, v, in the first variable, V, 
represented in Future-CP 

form Future-CP-v by removing from 
Future-CP the component corre- 
sponding to V and removing all 
values inconsistent with v 

For each maximal set of values, S, for 
variable V, for which Future-CP-v 
is identical for each v in S 

New-Past-CP <- Past-CP X S 
New-Future-CP <- Future-CP-v 
Push (New-Past-CP New-Future-CP) 

onto Stack 

Figure 4. Forward checking augmented by CPR. 

Conclusion 
This paper introduces a new representation for partial 
solutions to constraint satisfaction problems. This 
representation can be used with the standard CSP 
algorithms, backtracking and forward checking. When 
searching for all solutions or discovering that a problem is 
insoluble, CPR is guaranteed not to require any additional 
consistency checks. 

Experiments on random problems demonstrate that CPR 
can in fact greatly reduce the number of constraint checks 

required in many cases, and cpu times demonstrate that the 
savings can be far more important than CPR overhead. 
Analysis of these experiments provides heuristic sufficient 
conditions for CPR to excel CPR may also be of help 
when searching for subsets of solutions or even a single 
solution. 

Part of this work was done while the second author was a 
Visiting Scientist at the MIT Artificial Intelligence 
Laboratory. Richard J. Wallace and Karl Gevecker wrote the 
random problem generator. 
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