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Abstract 

There has been recent, interest in applying hill- 
climbing or iterative improvement methods to 
constraint satisfaction problems. An important 
issue for such methods is the likelihood of en- 
countering a non-solution equilibrium (locally op- 
timal) point. We present analytic techniques 
for determining the relative densities of solutions 
and equilibrium points with respect to these al- 
gorithms. The analysis explains empirically ob- 
served data for the n-queens problem, and pro- 
vides insight into the potential effectiveness of 
these methods for other problems. 

Introduction 
In several recent, papers [Minton et al. 1990, 
Zweben 1990, Morris 1990, Sosic and Gu 19911, itera- 
tive improvement, methods for solving constraint satis- 
faction and optimization problems have been studied. 
These methods work by making local changes that re- 
duce a cost function. This process continues until a 
configuration or state is reached such that no local 
change can reduce the cost further. We will call such 
a configuration an equilibrium point. When an equi- 
librium point is reached, it is checked to see if it is 
an acceptable solution to the problem. If not, the al- 
gorithm may be restarted or some other action taken 
to proceed to a new equilibrium point. The papers 
above provide empirical evidence that such methods 
may lead to rapid solutions for important classes of 
problems. 

One way of viewing these methods is that they per- 
form a search of equilibrium points looking for solu- 
tions. Clearly the effectiveness of such a search is 
dependent on the density of solutions in equilibrium 
points. The methods will work particularly well if this 
density approaches 1. This motivates us to look for 
a way of analytically determining the density. Such 
an analysis is useful for predicting when iterative im- 
provement methods are likely to be of value, and com- 
plements a quite different, analytic approach presented 
in Minton et al. [1990] which estimates the probability 

that a single hill-climbing step leads towards a solu- 
tion. 

This paper provides first results in this area. We 
use n-queens as an illustrative problem since that has 
been a primary exemplar of the iterative improvement 
approach. However, the techniques are general, and 
should be useful elsewhere. In the next section, we re- 
view some empirical data on solution density for the n- 
queens problem. In the section after that, we present 
analyses that explain these data. In the final section, 
we discuss the applicability of the techniques to other 
problems. 

Empirical Results 
In this section, we describe empirical data reported 
by other authors, as well as results of our own ex- 
periments. For the latter, we estimated the density 
of solutions in equilibrium points (henceforth, we will 
call this the solution/equilibrium density) by starting 
with a random sample of initial states, running the al- 
gorithms to their first equilibrium point, and counting 
the so1utions.l 

As an initial data point, Minton et al. [1990] report 
that their MinConflicts Hill-Climbing2 (MCHC) algo- 
rithm applied to the n-queens problem never failed to 
find a solution for n 2 100. We take this as an in- 
dication that the solution/equilibrium density for the 
method tends to 1 as n tends to infinity. 

The MCHC algorithm employs several refinements. 
For example, the algorithm gets a “head start” on hill- 
climbing by using a preprocessing stage to produce an 
initial queen configuration with few attacks. Second, 
the algorithm permits random “sideways” local modi- 
fications that leave the number of queen attacks unal- 
tered. To better understand the value of these refine- 
ments, we experimented with a simpler algorithm that 

“This estimate is biased by the relative sizes of the 
basins of attraction of the equilibrium points. However, 
the results below concern gross differences in the density 
(whether it approaches 0 or l), and it seems reasonable to 
assume this is not affected by the bias. 

2Note that here “hill-climbing” means movement to 
points of lower cost. 
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starts from a random initial configuration, and makes 
only modifications that strictly reduce the number of 
queen attacks. We will call this Simple Hill-Climbing 
(SHC). Experiments with n = 1000 yielded no solu- 
tions for this algorithm in a sample of 100 equilibrium 
points. This suggests that the solution/equilibrium 
density for SHC may tend to 0 as n tends to infinity. 

We also experimented with strict hill-climbing that 
starts close to a solution. This may be called Head- 
Start Hill-Climbing (HSHC) . The initial configura- 
tions were obtained by starting with a fixed solution to 
the lOOO-queens problem and randomly mutating the 
column positions of the queens on the first 20 rows. 
This yielded 1 solution in a sample of 100 equilibrium 
points. We take this as evidence for a limiting density 
OfO. 

Sosic and Gu [1991] describe an interative improve- 
ment algorithm for the n-queens problem that main- 
tains configurations with one queen per row and one 
queen per column. Thus, the column positions of the 
queens on rows 1 through n form a permutation of 
the integers from 1 to n. Their QSl algorithm starts 
with a random permutation and swaps the columns 
of queens in different rows to reduce the number of 
attacks. They report that for n 2 1000, the equilib- 
rium position was always a solution. This suggests a 
limiting density of 1 for QSl. 

To summarize these results, the empirical evidence 
is consistent with a limiting solution/equilibrium den- 
sity of 1 for MCHC and QSl, and of 0 for SHC and 
HSHC. 

Analytic Met 
The task in the n-queens problem is to place n queens 
on an n x n board such that no two queens are on the 
same row or column or diagonal. By an assignment for 
this problem, we mean a placement of the queens so 
that there is one queen on each row. Clearly, the solu- 
tions form a subset of the assignments. If we assume a 
uniform probability distribution on assignments, then 
the solution/equilibrium density can be expressed as 
the conditional probability that an assignment is a 
solution given that it is an equilibrium point. 

It does not appear feasible to rigorously compute 
the probability entirely from first principles. Our ap- 
proach will be to argue for and adopt reasonable as- 
sumptions about the distribution that will enable us 
to derive the empirically observed results. Note that 
our analysis is only intended to apply for large values 
ofn. 

Now consider a random assignment 
The principal assumption we adopt is 

of the queens. 
as follows. 

Assumption 1 The probability that an arbitrary 
square is attacked along a diagonal by one of the 
queens is bounded away from 1, i.e., there is a fixed 6 
(independent of n) such the probability is less than 6 
and 6 < 1. This is also assumed for conditional prob- 

abilities of this event, unless there 
the condition implies otherwise. 

is reason to believe 

We argue that the assumption is reasonable because 
there are 4n - 2 diagonals. Since there are only n 
queens, each of which sits on 2 diagonals, there must 
be at least 2n - 2 unoccupied diagonals. Even if these 
are the shorter diagonals, they will represent a fraction 
of the board that is bounded away from zero. Thus, 
provided any condition is such that the distribution 
remains roughly uniform as n increases, the probabil- 
ity that an arbitrary square is not in this region should 
be bounded away from 1. 

It is worth noting that a similar assumption with 
respect to column attacks would be false. Suppose we 
know that the first n - 1 queens do not attack each 
other. Then they lie on separate columns. Hence, the 
probability that the last queen is placed on a column 
that is already occupied is (n - 1)/n, which tends to 1 
as n tends to infinity. The difference here is that there 
are only n columns, as compared to 4n - 2 diagonals, 
so columns are ultimately a scarcer resource. 

We now proceed to showing that solutions are dense 
in equilibrium points for Sosic and Gu’s QSl algo- 
rithm, and Minton et al.‘s MCHC algorithm. This 
requires analyzing the cost surface for the problem. 

In the n-queens problem, the cost of an assignment 
is the number of queen attacks, i.e., the number of 
queen pairs that share the same column or diagonal 
in the assignment. Notice that the total cost of an 
assignment can be broken down into two components, 
resulting from column attacks and diagonal attacks, 
respectively. We can study these separately by consid- 
ering two variations of the queens problem, which we 
call the n-rooks problem, and the n-bishops problem.3 
The n-rooks problem is like the n-queens problem ex- 
cept diagonal attacks are ignored. Thus, any assign- 
ment that corresponds to a permutation is a solution. 
In the n-bishops problem, we ignore column attacks, 
so that any assignment with no diagonal attacks is 
a solution. The cost surface for the ordinary queens 
problem will then be a superposition of the surfaces 
for the component problems. In the following, the 
term simple equilibrium point refers to an equilibrium 
point with respect to simple hill-climbing. We will also 
sometimes use “equilibrium point” without qualifica- 
tion where it is clear from the context which algorithm 
is involved. 

We first consider the n-rooks problem. The follow- 
ing result is easily obtained. 

Theorem 1 In the n-rooks problem, 
equilibrium point is a solution. 

every simple 

31n chess, a rook attacks along rows and columns, while 
a bishop attacks along diagonals. A queen combines the 
attacks of a rook and a bishop. 
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Proof: Suppose an assignment is not a solution. Now choose X such that S < X < 1. Clearly 
Then there is some column that contains at least two En 

rooks. It follows that there must also be an empty 
column. Note that moving one of the doubled rooks 
to the empty column reduces the number of attacks. 
Thus, the assignment is not an equilibrium point. 

Next we consider the n-bishops problem. In this 
case, it is not true that every simple equilibrium point 
is a solution. (Consider, for example, a 4 x 4 board 
where the bishops are on the columns 1,3,2,2.) How- 
ever, it turns out that “almost every” (in a well- 
defined sense) such point is a solution. The basic in- 
tuition behind the proof is quite simple and can be 
expressed as follows. Suppose an assignment is not an 
n-bishops solution. Then there is some bishop that is 
attacked. Consider the n - 1 other squares that are 
on the same row as this bishop. Since, by assump- 
tion 1, the probability of diagonal attack is bounded 
away from 1, it follows that, with high probability (for 
sufficiently large n), at least one of these squares is 
not attacked. Thus, with high probability, the assign- 
ment is not an equilibrium point. As we see below, 
presenting a formal proof based on this idea requires 
some work. 

We have the following easy result. 
Lemma 1 For the n-bishops problem, suppose an as- 
signment is a simple equilibrium point. Then, for each 
row, either the bishop on that row is not attacked, or 
else every square on the row is attacked. 

Proof: Immediate. 1 

Now let Ei denote the event that the bishop on the 
6th row is not attacked by any of the other bishops, 
while Fi denotes the event that every square on the i- 
th row is attacked. Note that Ei and Fi are mutually 
exclusive. Set E = El A . . . A Ea. 

It is easy to see that an assignment is a solution if 
and only if E holds. Furthermore, if an assignment is 
a simple equilibrium point, then by Lemma 1, Ei V Fi 
must hold for every i. Thus, 

Pr[(El V FI) A . . . A (En V Fn)] 

provides an upper bound on the probability that an 
assignment is a equilibrium point. We have the fol- 
lowing lemma. 
Lemma 2 In the n-bishops problem, there exists a X 
with 0 < II < 1 such that Pr(Fi) < Xn Pr( Ei) for every 
i and suJJciently large n. 

Proof: Consider any i. Note that Fi implies a diag- 
onal attack on each of the n squares of row i. Recall 
that, by assumption 1, the probability of diagonal at- 
tack is less than S, for some S < 1. Thus, Pr(Fi) < S” 
and Pr(Ei) > (1 - 6). It follows that 

Pr(Fi) 6” P - 
WEa) < 1-S’ 

k < A” 

for sufficiently large n. The result follows. 

Corollary 1 Suppose A = Al A . . . A An, where for 
each i either Ai = Ei or Ai = Fi. Then, under the 
conditions of the lemma, there exists X, with 0 < X < 
1, such that 

Pr(A) < Xn” Pr(E) 
where k is the number of values of i for which Ai = Fi. 

Proof: Let {ir, . . . , ik} be the values of i for 
which Ai = Fi. By an argument similar to that of 
the lemma, we get Pr(F;, A . . . A Fi,) < Sn” and 
Pr(Ei, A.. . A Eik) > (1 - S)k. It follows that 

Pr(Fi, A . . . A Fik) < Xn” Pr(Ei, A . . . A Eik) 

for a suitable X and sufficiently large n. Since assump- 
tion 1 allows us to ignore irrelevant conditioning on 
probabilities, we can add Aig(i,,...,i,) Ei to the con- 
juncts on both sides, giving 

Pr(A) < Xn’ Pr(E). 

We are now ready to prove the following result. 
Theorem 2 In the n-bishops problem, the density of 
solutions in simple equilibrium points approaches 1 for 
large 12. 

Proof: Note that if (El V PI) A . . . A (En V Fn) is 
converted to disjunctive normal form, the number of 
conjuncts with L occurrences of the Fa propositions 
will be i . 0 Thus, by Corollary 1, 

Pr[(El V Fl) A.. . A (En V Fn)] 

< Pr(E)[l + . . . + (Xrs)h + . . . + (Xn)n] 

= Pr(E)(l + A,), 

Since (1 + X”)” tends to 1, we have 

Pr(Ei A . . . A En) 
nl%& Pr((E1 V FI) A.. . A (En V Fn)) = 

1. 

The result follows. 

It may be remarked that empirical testing produces 
results consistent with Theorem 2. 

We now return to consideration of the ordinary 
n-queens problem. One might expect some fraction 
of the n-rooks and n-bishops solutions to intersect, 
giving solutions to the full queens problem. Note, 
however, that the n-rooks solutions are isolated, i.e., 
each of them is surrounded (within one step) by non- 
solution assignments. It thus seems reasonable to ex- 
pect many of the n-rooks solutions to generate non- 
solution equilibrium points in the full problem. As we 
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will see later, this makes simple hill-climbing ineffec- 
tive for generating solutions. 

One way of dealing with this problem might be to 
somehow “factor out” column attacks by performing 
hill-climbing while sticking to assignments that are 
already solutions to the n-rooks problem, i.e., permu- 
tations. In this case, the restricted cost surface might 
be expected to resemble that for the n-bishops prob- 
lem. It is well-known that the space of permutations 
can be traversed by a-step transpositions. This sug- 
gests generalizing the notion of simple hill-climbing 
to that of hill-climbing with bounded lookahead. A 
k-step hill-climbing algorithm is allowed to search k 
steps from the current assignment looking for one of 
lower cost. Each equilibrium point of a k-step hill- 
climbing algorithm will be called a k-step equilibrium 
point. In the queens problem, we are particularly in- 
terested in 2-step equilibrium points. We have the 
following results. 

Lemma 3 In the n-queens problem, the probability 
that a Z-step equilibrium point is a permutation ap- 
proaches 1 for suficiently large n. 

Proof: Informally, the idea of the proof is as fol- 
lows. Suppose an assignment is not a permutation. 
Then there is some column cl that contains at least 
2 queens, and some other column c2 that is free of 
queens. Take one of the queens on cl, and move it to 
some other column j. If there is already one or more 
queens on that column, choose one such arbitarily and 
move it to ~2. Since there are n - 1 possible choices 
for j, it follows from assumption 1, that with arbi- 
trarily high probability (for sufficiently large n), we 
can choose j so that the moved queen(s) will now be 
free of diagonal attacks. Thus, we have not increased 
the count of diagonal attacks. But the count of col- 
umn attacks has been decreased. Thus, the original 
assignment was not a a-step equilibrium point. 

A more formal proof is similar to that of Theorem 2. 
In this case Ei would represent the event that the 
queen on row i is not attacked along a column by 
any of the other queens, while Fi would represent the 
event that it is so attacked and, moreover, none of the 
possible choices for j above frees the moved queen(s) 
of diagonal attacks. It is not hard to see that the 
probability of this Fi declines exponentially with n, 
as required in the proof. (In this case the probability 
of Ei declines linearly with n, but this does not impede 
the proof.) 

Lemma 4 In the n-queens problem, the probability 
that a d-step equilibrium point is free of diagonal at- 
tacks approaches 1 for sufJ&ziently large n. 

Proof: We present the proof informally. Suppose 
the assignment is not free of diagonal attacks. Then 
there must be some queen that is attacked along a di- 
agonal. Take that queen, and move it to some other 
column j. If there is already one or more queens on 

that column, choose one of them arbitarily and move 
it to the column vacated by the first queen. Since 
there are n - 1 possible choices for j, with arbitrarily 
high probability, we can choose j so that the moved 
queen(s) will now be free of diagonal attacks. Note 
that the column attack count has not been increased. 
But the count of diagonal attacks has been decreased. 
Thus, the original assignment was not a a-step equi- 
librium point. 

Again, the proof can be made formal along the lines 
of Theorem 2. 

Theorem 3 In the n-queens problem, the density of 
solutions in 2-step equilibrium points approaches 1 for 
large 12. 

Proof: Immediate from Lemmas 3 and 4. 

We can use these results to explain the performance 
of the QSl algorithm. Recall that this algorithm per- 
forms hill-climbing that swaps columns to reduce the 
number of diagonal attacks, i.e., it moves from per- 
mutation to permutation in 2-step jumps. Essentially 
the same proof as that of Lemma 4 can be used to 
show that, with arbitrarily high probability, the equi- 
librium permutation is free of diagonal attacks, i.e., it 
is a solution. This explains the high density of solu- 
tions encountered by this algorithm. 

In order to understand the behavior of MCHC, we 
divide simple equilibrium points that are not solutions 
into two categories: we will say such a point is a pit 
if every path from the point to a region of lower cost 
must pass through a region of higher cost; otherwise, 
the point is a plateau. (In the case of a plateau, we 
can reach a region of lower cost by passing through 
points of equal cost.) It is easy to see that MCHC 
will eventually escape from a plateau because of its 
random sideways movements. Note that MCHC either 
reaches a solution, or ends up cycling randomly among 
a fixed group of points with equal cost. Since MCHC 
escapes from plateaus, every such point must be a pit. 
We have the following lemma. 
Lemma 5 In the n-queens problem, every pit is a 2- 
step equilibrium point. 
Proof: We will show that if a point is not a a-step 
equilibrium point, then it cannot be a pit. 

Suppose a double queen movement leads to a lower 
cost. If neither queen move singly lowers the cost, this 
can only be because the two queens attack each other 
after one is moved first. But there is at most one 
attack between two queens. Thus, the intermediate 
state, at worst, has equal cost to the original state. 

By theorem 3, for large n, almost every 2-step equi- 
librium point is a solution; thus, there must be few 
pits relative to solutions. It follows that the frequency 
with which MCHC terminates in a solution should ap- 
proach 1 for large n. 
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We now consider the negative data described in 
the section on empirical results. These data sug- 
gest that for SHC (simple hill-climbing) the solu- 
tion/equilibrium density tends to 0. This is borne 
out by the following result. 
Theorem 4 In the n-queens problem, the solu- 
tion/equilibrium density for SHC tends to 0 as n tends 
t 0 infinity. 

Proof: Suppose an assignment is a solution to the 
n-queens problem. Let q be a fixed queen. Consider 
the n-l possible new positions arrived at by swapping 
columns between q and some other queen. The prob- 
ability of diagonal attack on the squares to which the 
queens are moved is bounded away from 1 by assump- 
tion. We can also assume it is bounded away from 0, 
since at least n - 2 of the diagonals are occupied by 
queens. It follows that the probability that the swap 
leads to exactly one diagonal attack is bounded away 
from 0. 

Now let k be some arbitrary number. For suffi- 
ciently large n, with arbitrarily high probability, at 
least k of the possible swaps must lead to a position 
involving exactly one diagonal attack. Any such posi- 
tion is an equilibrium point under simple hill-climbing 
because a single queen movement from the position 
necessarily produces a column attack. 

The above shows that for every solution, with high 
probability, there are at least k non-solution equilib- 
rium points. However, there remains the possibility 
that these overlap for different solutions. We can 
deal with this consideration if we assume that solu- 
tions are distributed roughly uniformly across assign- 
ments. Since the density of solutions in assignments 
declines rapidly with n, and the equilibrium points 
exhibited above are within a bounded distance of the 
corresponding solution, it follows that the amount of 
overlap is ultimately not significant. Therefore, the 
solution/equilibrium density is less than l/k for suf- 
ficiently large 72. But k is arbitrary. Thus, the solu- 
tion/equilibrium density tends to 0. 

An examination of the proof of Theorem 4 shows 
it applies equally well to HSHC.4 These results sug- 
gest that “sideways” local change-not the “head 
start” preprocessing algorithm-is the important fac- 
tor leading to the high density of solutions for MCHC 
in the queens problem. 

Discussion 
In this section, we will try to place the results above 
in perspective, and see how they might apply to other 
problems. We are particularly interested in constraint 
satisfaction problems (CSPs), of which the n-queens 
problem is an example. Informally, a CSP consists of 
a set of variables, each of which is assigned a value 

*However, the density may approach zero at a slower 
rate with HSHC. 

from a set called the domain of the variable. The 
possible assignments are restricted by a set of con- 
straints, which mandate relationships or restrictions 
between the values of different variables. The reader 
is referred to Dechter [1990] for the formal definition 
of a CSP. 

We require some additional terminology. A simple 
equilibrium point that is not a solution will be called 
a basin. The radius of a basin is defined to be the 
number of steps required to escape from it, i.e., the 
minimum number of steps needed to reach a region 
of lower cost. Notice that saying solutions have high 
density in k-step equilibrium points is equivalent to 
saying that basins with radius greater than k are rare 
compared to solutions. 

We can summarize the results of the previous sec- 
tion as follows. In the n-queens problem, for large n, 
basins of radius greater than 2, and hence pits, are 
sparse relative to solutions, but plateaus of radius 2 
are quite common. This suggests that, visually, each 
solution appears surrounded by “stairs,” with steps 
of width 2, rather like in an amphitheatre. Notice 
that the cost surface appears smooth when viewed at 
a coarse resolution. 

The proof method used in the queens problem can 
be generalized to support the following observation: 
If a problem area has the property that an arbitrary 
constraint violation can be removed within k steps with 
low probability of introducing a fresh violation, then 
hill-climbing with k-step lookahead will be an eflective 
solution technique. 

The n-bishops example demonstrates one way of 
showing that the low probability criterion is met. If 
a CSP has the property that the domain size of each 
variable is at least comparable to the number of vari- 
ables, and the probability that any one value is in 
conflict is bounded away from 1, then resetting a sin- 
gle variable will generally suffice to eliminate one con- 
flict, in large problems. Actually, the condition on the 
probability can be relaxed somewhat: instead of be- 
ing bounded away from 1, it is enough to suppose it 
does not approach 1 too quickly. Recall that the cru- 
cial property used in the proof of Theorem 2 is that 
(1 + Xn)n tends to 1. It turns out that this will be 
true even if X increases with n provided at least that 
X<l-l/n”forsomeo<l. 

A further point to observe is that the constraints 
in the queens problem fall into two categories. Con- 
straints corresponding to diagonal attacks meet the 
low probability criterion discussed above. However, 
the column attack constraints do not have this felici- 
tous property. We will refer to constraints that do not 
meet the low probability criterion as tight constraints. 
The analysis in the queens problem shows that if the 
space is reformulated so that tight constraints are 
somehow “factored out ,” then hill-climbing can be 
made effective. We can draw an analogy to game- 
playing programs where search continues until a qui- 
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escent position is reached at which evaluation takes 
place. This may, for example, involve following down 
all possible sequences of captures. In the case of CSP 
solving using the techniques discussed here, quiescence 
would require that none of the tight constraints are 
violated. For example, in the QSl algorithm, a po- 
tential queen move must be accompanied by move- 
ment of a second queen so that a situation involving 
no column attacks is maintained. In terms of our ob- 
servation about hill-climbing with k-step lookahead, 
we remark that the lookahead need not involve a full- 
width search; instead, the search may be tailored to 
the structure of a particular problem. The queens 
problem also suggests that examining variant prob- 
lems that ignore one or more categories of constraints 
may provide a useful analysis tool for formulating the 
search strategy. 

The distinction between tight and non-tight con- 
straints suggests a piece of practical advice in organiz- 
ing an environment for scheduling or other activities 
requiring constraint satisfaction. It may be wise to 
allow a certain amount of slack in providing resources 
for the tasks. For example, we can predict from the 
analysis here that simple hill-climbing should be effec- 
tive, for large n, in placing n/2 queens without attack 
on an n x n board (because then the probability of 
both column and diagonal attacks would be bounded 
away from 1). Similarly, suppose n tasks requiring 
an exclusive resource of a particular type need to be 
performed within m time slots, so that at least n/m 
copies of the resource are required. The results here 
indicate that the allocation problem may be simplified 
if, say, en/m instances of the resource are available, 
where c > 1. 

An additional observation is that certain categories 
of constraints appear to be associated with basins of 
a definite size. For example, constraints associated 
with a fully subscribed resource (such as columns in 
the n-queens problem) tend to require swaps to make 
progress, i.e., they produce basins with a characteris- 
tic radius of 2. Similarly, equality constraints would 
generate basins of radius 2. Of course, basins result- 
ing from separate constraints may, by random coin- 
cidence, occur next to each other and coalesce into 
a basin of larger size. The Central Limit Theorem 
of probability theory suggests that for problems with 
sufficiently randomized constraints, the basin sizes 
should occur in a normal distribution with a mean 
that depends on the relative prevalence of constraints. 
Note that this does not necessarily increase in propor- 
tion to the size of the problem. 

This raises the possibility that for important classes 
of problems, hill-climbing with bounded lookahead 
might perform well. In [Morris, 19911, a hill-climbing 
algorithm is proposed that fills in basins as it goes 
along, so that it always reaches a solution if one exists. 
Roughly speaking, the algorithm simulates L-step hill- 
climbing for every k: at a cost bounded by V steps per 

simulated L-step. Here V is the “volume” of a basin 
of radius L, i.e., the number of steps required to fill it. 
This indicates that the algorithm should perform well 
in problems where the average basin size is small. 

Conchsion 
Using the n-queens problem as an illustrative exam- 
ple, we have shown that, under certain conditions, 
hill-climbing algorithms can enjoy the property that 
almost all equilibrium points will be solutions. The 
analysis explains the success of some algorithms pre- 
viously reported in the literature. Furthermore, it 
predicts circumstances under which more general con- 
straint problems may be amenable to similar ap- 
proaches. 
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