
Walter C. Hamscher
Price Waterhouse Technology Centre, 6s Willow Road, Menlo Park, CA 94025

ha.mscher@tc.pw.com

Abstract
A domain model in SAVILE represents the steps

involved in producing and processing financial data
in a company, using an ontology appropriate for
several reasoning tasks in accounting and auditing.
SAVILE is an implemented program that demon-
strates the adequacy and appropriateness of this
ontology of financial data processing for evaluating
internal controls, designing tests, and other audit
planning related tasks. This paper discusses the
rationale, syntax, semantics, and implementation
of the ontology as it stands today.

Motivation
We wish to develop knowledge-based systems for au-
ditors. Auditors issue opinions on the fairness of the
financial statements of their clients. Although finan-
cial statements consist of numbers that are typically
summations of thousands of other numbers, auditors
need not worry about the numbers per se. An auditor
can instead think about the system that produced th.e
numbers: financial records, documentation, accounting
policies and procedures, accounting personnel training,
security and a host of other non-numeric information.
Hence, knowledge-based systems to support auditors
could benefit from a foundational representation for
data processing systems broadly construed to include
both manual and computerized processing steps, while
simultaneously suppressing details that are of no audit
significance.

Making these ontological commitments in a fresh do-
main and getting them right is always a difficult un-
dertaking; it is a distinct enterprise from selecting the
syntactic form of the knowledge. This paper presents
a case study of how these ontological commitments are
being made in a principled way for a domain alien to
most AI practitioners.

Approach and contributions
There are three key ideas behind the ontology and its
realization in the SAVILE implementation: supporting
simulation, exploiting existing ontologies, and trans-
forming models to perform multiple tasks.

Supporting simulation Auditing tasks are difficult
in part because auditors must understand the relation-
ship between a perturbation in an accounting system
and its effects, which can be highly indirect because ac-
counting systems are complex. Fortunately, accounting
systems are composed of many interacting processing
elements that from an audit standpoint are conceptu-
ally simple, and this decomposability suggests that a
model-based approach is appropriate: the user would
build a computational model of the client system to
automate the analysis of the effect of local perturba-
tions. Simulation is one of the fundamental analysis
techniques from which others can be derived. Thus an
analogy with digital circuits composed of many Boolean
elements and analyzed through simulation and other
techniques is valid, relevant, and useful to keep in mind.
Although a model-based approach has been proposed
for financial tasks before, the models have generally
been of relationships between variables representing fi-
nancial and microeconomic quantities [Bouwman, 1983,
Hart et uZ., 1986, Bailey et al., 1990, Bridgeland, 1990,
Hamscher, 1991a]. SAVILE is one of the first programs
to take this approach with an explicit model of data
processing systems.

Exploit iug exis tiug out ologies A formidable ob-
stacle in this enterprise has been to develop an ontol-
ogy of appropriate concepts. Indeed, formulating such
an ontology in any fresh domain creates a “chicken and
egg” problem: the tasks cannot be properly formulated
until a,n ontology exists, but the concepts of interest
and appropriate levels of detail in the ontology depend
on the tasks. Also, an effective model-based strategy
relies on the ability to acquire the models from domain
experts, so that it is crucial to use concepts natural
to potential model builders whose expertise lies in ac-
counting, not computer science. SAVILE contributes a
set of concepts that merges and extends three ontologies
for describing accounting systems developed
for) accountants and auditors themselves.

(and

Supporting multiple tasks As a practical matter
the effort involved in building a model like that in
SAVILE must be amortized over multiple tasks. The

Hamscher 519

From: AAAI-92 Proceedings. Copyright ©1992, AAAI (www.aaai.org). All rights reserved.

promise of reusable models is always implicit or ex-
plicit in model-based reasoning research, but experi-
ence has shown that for computational efficiency, dif-
ferent tasks require different models. For an exam-
ple, compare representations of digital circuit behav-
ior for diagnosis [Hamscher, 1991b] and for test genera-
tion [Shirley, 19861. SAVILE incorporates this lesson and
takes the approach of using one model for interacting
with model builders and users, while performing auto-
mated transformations from this model into more effi-
cient models prior to performing each task. SAVILE thus
demonstrates a practical approach to model reusabil-
ity grounded in the experience of previous model-based
reasoning efforts and this constitutes another contribu-
tion.

The SAVILE ontology is a moving target in an ongoing
project having a number of different goals. The basic
vocabulary is stable, having not changed in months,
and forms the majority of this report. There is cur-
rently a fully implemented approach to both the task
of evaluating internal controls [Hamscher, 19921 and to
the planning of audit tests. A model acquisition envi-
ronment has been defined, with an implementation in
progress and close to demonstration. Other tasks such
as risk assessment remain to be fleshed out. Each of
these tasks and its relationship to the representation
will be discussed later.

Representing accounting systems
Accounting systems process accounting data in the form
of paper and electronic records, through activities that
create, use, alter, and store those records. Examples
of records include an invoice, a receiving report, an en-
try in a database of receivables from customers, and a
weekly sales summary. The “trail” that is left behind in
the records by these activities is the raw material that
auditors work with when executing an audit at the end
of the year. A record will thus be a central concept
in an ontology for modeling accounting systems that is
meaningful to auditors.

There are two general properties of accounting sys-
tems that suggest other key concepts. First, they tend
to preserve information, in the sense that modification
or outright destruction of records is not nearly as com-
mon as copying and filing records to allow recovery. The
concept of a repository will refer to a set of records of
the same type, often all physically in the same place (a
basket, a folder, a receiving dock) but more generally to
mean a set of records all in the same processing state.

Second, records supporting separate economic trans-
actions do not generally interact with one another ex-
cept to be collected together into summaries and so
forth. Hence it is usually possible to understand the
behavior of the system by postulating a prototypical
transaction, following its processing in isolation, and
generalizing. Auditors seem to have no difficulty artic-
ulating the accounting processing steps that occur in
the course of executing and recording a normal trans-
action between two economic entities, such as ordering,

receiving, then paying for goods. The concept of an
action is something that a person or other agent does
to a record, such as creating it, copying it, compar-
ing it to another record, or putting it into a repository.
An activity is a sequence of related actions performed
by a group of related agents; for example, “cash dis-
bursements” is an activity in which invoices are both
examined for validity and paid by issuing checks.

Figure 1 shows the activities and repositories in a
model (P&Pl) of a typical “purchases and payables”
system. P&P1 processes purchases of goods from ven-
dors and ensures that the goods are received, payables
recorded, and vendors eventually paid. Records flow
downward through the diagram. Each gray boxed item
in the graph is an activity. Each other item is a reposi-
tory, with a nearby icon distinguishing paper from elec-
tronic media. The Stores activity, for example, has
two input and two output repositories, each a set of pa-
per purchase orders (On-Order-File, Filled-POs) and a
set of electronic receiving reports (Rr2 and Rr3). Each
repository is an input of at most one activity, and an
output of at most one.

Crucial steps in an accounting system are those that
credit and debit the accounts. The repositories in Fig-
ure 1 that are marked with “boxed T” icons repre-
sent collections of credits Cr and debits Dr. Different
systems interact, and the boundaries of a system are
roughly determined by a single principal account; in
this example the system P&P1 produces both credits
and debits to the Payables account; the “cash” system
would produce credits and debits to the Cash account,
and so forth.

This set of concepts and the others introduced be-
low merges and extends existing ontologies. It ab-
stracts away many details about the system imple-
mentation as computerized and manual steps, to make
explicit the information and steps that are relevant
for auditing. The primary source was an experimen-
tal program called TICOM designed to support a cer-
tain class of queries about actions [Bailey et al., 1985,
Bailey et al., 19891. A secondary source was guidance
materials called AGS written within Price Waterhouse
for the use of audit staff. A third ontology SEADOC
used by a different accounting firm has important simi-
larities [Elliott, 19831. Descriptions in accounting text-
books also use a similar level of description. All of this
provides evidence that the basic concepts are sound if
not universal.

Syntax
These concepts are embodied in a language SPLAT:
SAVILE Programming Language Attributed to TICOM.
Syntactically, this is a set of class definitions in a frame
language JOSIE [Nado et ul., 19911. Terms meant to de-
note classes in SPLAT will be written in this font. For ex-
ample, each of the basic concepts (record, action and so
forth) is a class. SPLAT provides nine record classes such
as invoice, order, purchase order, and check, each with
a set of fields such as amount, vendor, and payee. Bi-

520 Problem Solving: Search and Expert Systems

Purchasea And Payables
Purchase-Or&-s 1 $$$

I D ::=

On-Or&r-File f$$@)

Filled- - Payable11 0-s Pnventori&l-Drs

rs

Figure 1: A Purchases and Payables System (P&Pl).

nary relationships among classes and individuals, such
as the input and output repositories of activity stores,
are implemented as slot relations.

Semantics

The semantics of activities and the actions of which
they are composed are an elaboration of Petri nets,
supporting an interpreter that does event-driven sim-
ulation. Records arrive in repositories, and when all
of the input repositories of an activity have match-
ing records, the activity fires and executes a sequence
of actions. Typically the actions will have the effect
of putting records into output repositories, thus firing
other activities. This is an elaboration of Petri nets
in the sense that activities may consist of complex se-
quences of actions and the “tokens” are now structured
objects (records) that maintain their identity as they
change state (move from one repository to another).

Actions

Table 1 shows the current vocabulary of normal actions.
Seven of these are inherited from TICOM, the remain-
der are new. Action sequences are written as programs

. .�.
q :... ;:. :.., .:.:. .:.:.

�.....�..,.
q :.: :.:.: .�. :.. :. : . .

of an imperative programming language with all state-
ments of the form action argument”; the arguments are
dereferenced when the activity is fired. Dereferencing
is context sensitive, in the sense that a repository ar-
gument can specify eit,her the actual repository or the
type of record it contains. For example, here is the
action sequence of the Stores activity:

Wait-for Purchase-Order Receiving-Report
Ensure-Equal Purchase-Order Receiving-Report
Put Purchase-Order Filled-POs
Put Receiving-Report Rr3

First, a matching purchase order and receiving report
arrive at the input repositories (the Wait-for). Next,
each pair of fields that the two records have in common
is tested for equality, and if any discrepancy occurs it is
corrected (the Ensure-Equal). This represents the effect
of accounting personnel reviewing and correcting dis-
crepancies. An ensure-equal action is an example of an
internul control: an action that does not produce any
new information itself, but is only intended to detect
problems in exist,ing information. Then, the purchase
order is put into the repository Filled-POs and the re-
ceiving report put into Rr3.

amscher 521

assign (field destination-record) (field source-record)
Put the contents of the source record field into the
destination record field.

compute (field destination-record) &rest arguments
Assign to the destination record field a result that
depends in some way on the arguments.

create-empty record record-class &optional
source-record
Create a new record of a certain class and indicate
that it was derived in some way from the source
record.

create record record-class &optional source-record
Create a new record and assign all of the fields that it
has in common with the source record.

copy source-record record
Create a new record that is a copy of the source
record.

credit or debit record account
Use the “amount” field of the record to create a new
debit or credit record in the account.

post record debit-account credit-account
Perform both a credit and debit operation to the
appropriate accounts.

ensure-equal first-record second-record
Check that all of the fields that the two records have in
common agree, and repair the problem if they do not.

get record repository
Extract a record from the repository

put record reposit0 y
Move a record into the repository.

transfer record activity
Move a record to another activity by putting it into an
intermediate repository.

sequence &rest actions
Perform each of the actions.

wait-for-all &rest repositories
Get a matching set of records (that is, they have a
common source), one from each repository.

monitor-buildup repository &rest other-repositories
If there is a record in the repository, periodically check
the other repositories for matching records, and repair
the problem if they do not appear.

wait-for &rest repositories
Monitor the buildup of records in all repositories, and
wait for a match.

Table 1: SPLAT Action Vocabulary.

Some actions can be “macro expanded” into a se-
quence of other actions. For example, the action Copy
Rrl Rr2, meaning “make a copy called Rr2 of the record
Rrl,” expands into a sequence including a create and
several assign actions, one for each field in the record
Rrl. Actions that do not expand are primitive.

Potential mistakes in, omissions from, or deliberate
changes to accounting procedures play a key role in the
analysis of a system by an auditor. These are called
activity failures in SAVILE; specifically, each action is
associated with one or more possible failures. SAVILE
enumerates the set of possible failures in an activity
by local substitution in its action sequence; each action
is replaced in turn by each of its possible failures. For
non-primitive actions, expansion is performed first, and
then the failures are enumerated. SAVILE is thus able to
enumerate the potential failures in each activity based
only on the SPLAT behavior description. This is a good
and important property because it means that the au-
ditor does not have to enumerate the possible failures,
but need only provide a description of the correct be-
havior of the system.

Model acquisition

Part of standard audit methodology includes an annual
systems update in which the audit planner documents
the organization of the client accounting systems, or,
more typically, updates the documentation prepared
the previous year. Existing software to support this
includes a flow graphing program which allows the user
to draw pictures of repositories and activities and to
write narrative descriptions of the actions performed
in each activity. However, having produced this doc-
umentation, no existing software uses this information
about the way the client system is organized to assist in
the remaining task of analyzing its audit consequences.
The potential benefits of a SAVILE model are thus sub-
stantial.

The key difference between what audit planners al-
ready do and what SAVILE requires is the formalization
of the knowledge about repositories, the records they
contain, and the actions taken in each activity. There
are several reasons to believe that this additional cost
will not present an unacceptable burden. First, the level
of abstraction in SPLAT is very high and uses concepts
and terminology familiar to anyone with an undergrad-
uate accounting background. Second, SPLAT is highly
constrained. For example, given a fixed set of input and
output repositories for an activity, the set of meaning-
ful actions is restricted enough that an intelligent editor
might be able to construct a reasonable guess at an ap-
propriate action sequence. Third, it is rare to encounter
a novel accounting system involving novel record types
and activities; most are minor variations of standard
types and structures, and a client model could prob-
ably be produced substantially via copy and edit. A
graphical interactive model acquisition environment is
currently under development to see whether these intu-
itions are right.

522 Problem Solving: Search and Expert Systems

ary of the representation test for mistakes in previous processing steps; the prob-
lem is to establish whether a given failure is detected by
any control. In the P&P1 example, of the 28 significant
failures only 14 are undetected by controls.

SAVILE has a foundational representation for data pro-
cessing systems that exploits existing terminology and
uses a level of detail not substantially different from
what practitioners already provide. The ontology relies
on the fact that accounting systems are composed of
many interacting actions that are each simple from an
audit viewpoint. The user builds a model of the client
system to allow automation of the analysis of the effect
of local perturbations in the system, and graphical in-
teraction is always done with respect to this model no
matter what the task.

Tasks
SAVILE is oriented toward audit planning (hence the
name: detailed audit plans are, in audit jargon, “tai-
lored” to the client, as done by the pricey London hab-
erdashery Savile Row). A strategy for audit planning
can be formulated in SAVILE as the following series of
subt asks:

Assessing risk Some failures are more likely than
others, and the auditor must ensure that the plan ad-
dresses them. The risk of failure for a given action
depends on factors such as its complexity, whether
the data used change frequently, whether it is man-
ual or automated, and so forth. Factors that might
increase the risk of a given failure can already be
systematically generated from SPLAT. These factors
also have relationships to one another that are outside
the current SAVILE ontology; knowledge-based risk as-
sessment systems already exist to provide a basis for
this extension [Dhar et al., 1988, Boritz et al., 1989,
Peters, 19901.

Significance Failures vary in their audit significance.
Some have virtually no audit significance and can be
filtered out of further consideration; for example, pur-
chase orders that never get sent to a vendor do not
make the financial statements incorrect. Conversely,
a failure to post a credit to Payables would result in
the final balance being understated, which could have
audit significance depending on the total amount in-
volved. In the P&P1 example, there are 40 possible
failures but only 28 are significant under this criterion.
In the causal network derived for the control evalua-
tion task (discussed below) the impact on the financial
statements of each failure is found by examining the set
of repositories reachable from it in the causal network.
This is a useful qualitative filter, and including the re-
ported year end balance in each account would permit
fine grained judgements as to relative significance.

Evaluating controls Having focused on likely fail-
ures with audit significance, some can be filtered out of
consideration because they are detected by internal con-
trols. Every accounting system contains controls that

In SAVILE, a failure causes either a loss of records or
propagation of corrupted records; downstream control
actions such as ensure-equal and monitor-buildup detect
the failure by detecting a discrepancy between the lost
or corrupted record and other records. SAVILE enu-
merates the possible failures from the SPLAT model, in-
serts the failures, and simulates the movement of typical
records through the system. The simulation results are
abstracted on an activity-by-activity basis into a causal
network that (i) suppresses details about records, fields,
and normal execution order and data flow (ii) makes ex-
plicit the causal relationships between underlying fail-
ures and their symptoms in repositories downstream
and (iii) embeds the assumption that any single trans-
action can be affected by at most one non-control failure
(but any number of failing controls can still occur dur-
ing a single transaction, and many distinct failures may
each perturb different transactions). This abstraction
reduces the problem of finding the controls that detect
a given failure to that of finding a path in a directed
graph [Hamscher, 19921.

Design of substantive tests The final audit plan
should test the failures surviving the above filters. Each
substuntive test in the plan involves examination of a
sample of recorcls for evidence of failures. This is expen-
sive in staff time and should be minimized; however, all
testing must be completed within a short period after
the end of the year, so planning for coverage of potential
failures is equally important.

The initial problem is to design a substantive test ca-
pable of detecting instances of a particular failure. For
example, suppose that the failure no-put purchase-order
filled-pos is to be tested for. Intuitively, one way to
test for this is to examine a sample of records that were
each expected to be paired with a purchase order; in the
P&P1 example, a sample of receiving-reports extracted
from repository rr3. These receiving reports would then
be traced to their matching purchase orders in filled-
pos. To construct this test, SAVILE first transforms the
model into dependencies among the fields of records in
different repositories. For example, the action copy rrl
rr2 in the Receiving activity means that all of the fields
in the records of rr2 depend on the fields in records of
rrl. This transformation suppresses, among other in-
formation, the order of execution of actions. It makes
explicit the actions that need to have succeeded in order
for the test to succeed, hence it makes explicit the fail-
ures that the test could detect. SAVILE then performs a
kind of path sensitization [Bennetts, 19821 within these
dependencies. Iii path sensitization, the goal of test-
ing a particular action is decomposed into the subgoals
of sensitizing the failure (working upstream toward a
sample of records that were its “input”) and propagat-
ing the result (working downstream from a sample of

Hamscher 523

records that were its “output”).
Each test designed for each (unfiltered) failure covers

a small set of failures. Planning an audit then reduces
to finding a set of tests to cover them all. Finding a
minimal cover is intractable in principle, but probably
acceptable in practice because of the modularity of sys-
tems and the ability of path sensitization to produce
narrowly focused tests. Finally, many of the substan-
tive tests have steps in common, and for efficiency SAV-
ILE merges them where possible. In the P&P1 example,
there are 45 possible tests to cover 14 failures, but six of
the tests cover all the failures and SAVILE subsequently
merges these six into just two (complex) tests.

Conclusion
SAVILE demonstrates a new model-based approach to
support auditing tasks. The foundation of this ap-
proach is an ontology for modeling financial data pro-
cessing systems with ancestry in the literature of do-
main experts and supporting a plausible model acqui-
sition strategy. SAVILE also suggests a practical ap-
proach to reusable models, grounded in the observation
that each task may require transformation into an in-
termediate representation, substantiated by the use of
a single model both for control evaluation and audit
planning.

Acknowledgments
Maureen McGowan supplied domain expertise, includ-
ing detailed analysis of the rationale behind real audit
plans. Jim Peters and Andrew Bailey pointed me at
accounting research literature on internal control eval-
uation. Bob Nado supported JOSIE. Beau Sheil helped
refine many ideas in SAVILE. R. Michael Young imple-
mented the SAVILE user interface and helped bludgeon
a reluctant CLIM into producing PostScript output for
Figure 1.

References
[Bailey et al., 19851 A. D. Bailey, G. L. Duke, J. Ger-

lath, C. Ko, R. D. Meservy, and A. B. Whinston.
TICOM and the analysis of internal controls. The
Accounting Review, LX(2):186-201, April 1985.

[Bailey et al., 19891 A. D. Bailey, K. S. Han, R. D.
Stansifer, and A. B. Whinston. The advanced inter-
nal accounting control model using a logic program-
ming approach. Working Paper of 7/20/89, 1989.

[Bailey et al., 19901
A. D. Bailey, Y. Kiang, B. Kuipers, and A. B. Whin-
ston. Analytical review and qualitative and causal
reasoning in auditing. Draft of 4/15, 1990.

[Bennetts, 19821 R. Bennetts. Introduction to Digital
Board Testing. Crane Russak & Company, New York,
1982.

[Boritz et al., 19891 J. E. Boritz, R. G. Kielstra, and
A. M. Albuquerque. A prototype expert system for
the assessment of inherent risk and prior probability

of error. Report, School of Accountancy, University
of Waterloo, Waterloo, Ontario N2L 3G1, February
1989.

[Bouwman, 19831 M. J. Bouwman. Human diagnostic
reasoning by computer: An illustration from financial
analysis. Management Science, 29(6):653-672, June
1983.

[Bridgeland, 19901 D. M. Bridgeland. Three qualitative
simulation extensions for supporting economics mod-
els. In Proc. Gth IEEE Conf. on A.I. Applications,
pages 266-273, Santa Barbara, CA, March 1990.

[Dhar et a/., 1988] V. Dhar, B. Lewis, and J. Peters. A
knowledge-based model of audit risk. AI Magazine,
9(3):57-63, Fall 1988.

[Elliott, 19831 R. I<. Elliott. Unique audit methods:
Peat Marwick International. Auditing: A Journal
of Practice and Theory, 2(2):1-12, Spring 1983.

[Hamscher, 1991a] W. C. Hamscher. Model-based fi-
nancial data interpretation. In 1st In-t. Conf. on
AI Applications on Wall Street, New York, October
1991. IEEE Computer Society Press. Also in Working
Notes of the 2nd International Workshop on Princi-
ples of Diagnosis (Technical Report RT/DI/Sl-10-7,
Dipartimento cli Informatica, Universita di Torino,
1991).

[Hamscher, 1991b] W. C. Hamscher. Modeling digi-
tal circuits for troubleshooting. A rtijkiul Intelli-
gence, 51(1-3):223-271, October 1991. Also in J.
de Kleer and B. Williams (eds.) Qualitative Reason-
ing ubout Physicul Systems II (North-Holland, Ams-
terdam, 1991 / MIT Press, Cambridge, Mass., 1992)
and in W. C. Hamscher, J . de Kleer and L. Console
teds), Reudings in Alodel-bused Diagnosis (Morgan
Kaufmann, San Mateo, Calif., 1992).

[Hamscher, 19921 W. C. Hamscher. Analysis of ac-
counting systems via abstraction of simulation results
into causal networks. Technical Report 25, Price Wa-
terhouse Technology Centre, Menlo Park, CA 94025,
January 1992.

[Hart et al., 19861 P. E. Hart, A. Barzilay, and R. 0.
Duda. Q ua I a ive l’t t reasoning for financial assess-
ments: A prospectus. AI Magazine, 7(1):62-68, Win-
ter 1986.

[Nado et al., 1991) R. Nado, J. Van Baalen, and
R. Fikes. JOSIE: An integration of specialized repre-
sentation and reasoning tools. ACM Sigart Bulletin
special issue on implemented knowledge representa-
tion and reasoning systems, 2(3):101-107, June 1991.

[Peters, 1990] J. M. Peters. A cognitive computational
model of risk hypothesis generation. Journal of Ac-
counting Research, 28(Supplement):S3-103, 1990.

[Shirley, 19861 M. H. Shirley. Generating tests by ex-
ploiting designed behavior. In Proc. 5th National
Conf. on Artificiul Intelligence, Philadelphia, PA,
August 1986.

524 Problem Solving: Search and Expert Systems

