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yve pl‘eVlOUSIy proposeﬂ Lne momng largel Searcn
/M'T'Q) aln‘nrlthm where the location of the goal may

change durmg the course of the search. MTS is the
first search algorithm concerned with problem solving
in a dynamically changing environment. However, since
we constructed the algorithm with the minimum oper-
ations necessary for guaranteeing its completeness, the
algorithm as proposed is neither efficient nor intelligent.

in this paper, we introduce innovative notions created
in the area of resource-bounded 'nlnrmmn into the formal
search algorithm, MTS. Our goal is to improve the ef-
ficiency of MTS, while retaining its completeness. No-
tions that are introduced are (1) commiimeni io goals,
and ('2\ deliberation for selecting nlrmc Evaliation re-
sults demonstrate that the mtelhgent MTS is 10 to 20
times more efficient than the original MTS in uncertain
situations.

1. Introduction

Existing search algorithms can be divided into two
classes: off-line search, which computes the entire so-
lution paih before executiing the first siep in the paih,
and realiime search, which always computes a plausi-

ble next move and physically executes that move in
constant time. However, all these algorithms assume
that the probiem is fixed and does not change over the

course of the search. On the other hand, in the area
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of planning, where search algorithms have been often
utilized, researchers are recently focusing on dynami-
cally changing environments, where the goal state and

tho nrahlam anacre chonea in run.time and thig aranta
viie Pl\)l}lclll oyabc \alla.llsb i1 L ULITUILIEC,y ﬂllu viiuo asclum

are resource-bounded in constructing plans. Therefore,
search algorithms capable of handling changing prob-
lems will provide a computational basis for resource-
bounded planning.

In this direction, we have already investigated the
case wherein the goal state changes during the course
of the search, and proposed the moving iargei search
(MTS) algorithm [Ishida and Korf, 1991]. Offline
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search seems infeasible for 1mplementmg MTS because
the search takes exponential time, and thus the target

Moving Target Search
(=] (=]
el Tond TV o o
WIULIEL 1 ll,eulge 1CE
Toru Ishida
NTT Communication Science Laboratories
Sanpeidani, Inuidani, Seika-cho, Soraku-gun, Kyoto 619-02
e e 5 WCAT 10, 2 ouily ANy v v
ishida@cslab.kecl.ntt.jp

gorlthm has been proved to be complete in the sense
that it will eventually reach the target, assuming a fi-
nite prgblpm space and that the speed of the problem
solver is faster than that of the target.

We originally implemented MTS with the minimum
operations necessary for guaranteeing its completeness.
The obtained algorithm consists of a nnn‘ nfefpnq which
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are repeatedly performed: the first step is mcremental
learning of the estimated distance between the prob-
lem solver and the target, and the second step moves

the problem solver in the problem space. As a result,
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MTS is reactive, i.e., capable of performing each move
in constant time, but it is neither efficient nor intelli-

gent. Various experiments showed that the efﬁciency
of the alo’nnfhm decreases rapidly as uncertainty in-

creases. Thxs is because, in uncertain situations, the
heuristic function does not return useful information

a.ﬁ(l b[le leal'lllﬂ.g cost, be(a(.f ]lgﬂ
ded nlnnnlnu‘ however,

agent architectures to cope w ith env1ronmental changes

have been studied [Georgeﬂ' et al, 1987] Cohen et

Fa ey

al’. [lvaj nave (lerll'le(l l.ne notion of commiimeni as
a nprequpnf una] Klrmv et al “QQﬂ nnanhfah\m]v

’

evaluated how the degree of commitment affects agents

performance.! The role of deliberation has been in-
vestigated by Bratman eif al [1988] Pollack et al.
[1000]1 nronnced the avnarimental nn\nr nment callad

O
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Tileworld and have been quantitatively evaluating the
tradeoff between deliberation and reactiveness. The
challenge of this paper is to introduce these notions into

farmal goanrsh nd ta imnrave the afficianey of MTQ
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while retaining its completeness. Introduced notions
are as follows:
Commitment to goals:

In MTS, the problem solver always knows the target’s
position, but can ignore some of its moves. Experi-

!'Durfee et al.[1988) performed a similar evaluation in
multi-agent environments.
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the anal cansag the nrah_
tne goal causes Lne prod

lem solver to start incremental learning over again
towa.rd the new goal Thus in uncertain situations,
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mance could be obtained by co‘mmlthmz to its goal

and not changing it even if the target moves.
Deliberation for selecting plans:

When the problem solver moves, MTS always selects
the neighboring position that offers the minimum es-
timated distance to the o‘nal However, ag the situa-

tion becomes uncertain, such a reactlve decision be-
comes inaccurate and often does not result in better
performance. Thus, deliberative invesiigation using
off-line search, thnnah it decreases the gnppd of the

problem solver, rmght improve overall performance
in uncertain situations.

2. Moving
L=]

We briefly characterize the moving target search prob-
lem [Ishida and Korf, 1991]. The problem space is rep-
resented as a connected graph. The graph is undirected,

allawinga matian of aithar tha nrohlam galvar ar the tar
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get along an edge in any direction. We assume that
all edges in the graph have unit cost. There is an ini-
tial position of the problem solver and an initial posi-

tion of the farmaf‘ The prnl’\lpm solver does not have
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a map of the problem space. We assume the problem
solver and the target move alternately, and can traverse

at mosi one e(lge ln eacn turn. We reduce the Spee(l
of the target by assuming that periodically the target

will make no move, and remain at its current, posmon.
The problem solver has no control over the movements
of the target, but arW“a_‘y'S knows the u,a.rgel. ] pumuuu
There also exists a heuristic function that returns an es-
timate of the distance between any pair of states. Note
that MTS must acquire heuristic information for each
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ble, meaning it never overestimates the actual distance
[Pearl, 1984]. The task is accomplished when the prob-

lem solver and the target occupy the same state.
Tha MTQ alearithm ig ac follows Ag tha initiahi
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tion of the algorithm, the current state of the problem
solver is assigned to z, and the current state of the
target to y. The heuristic function A(z,y) represents

the egtimatad distance hotwaoan » and 22 Tha fallowing
1€ estimalea Qlstance oeiween & and y. :nc ioudwing

steps are repeatedly performed until the task is accom-
plished.

When the problem solver moves:

1. Calculate h(z’,y) for each nelghbor z’ of z.
2. Update the value of h(z, y ) as follows:

h(z,y) — maz 4
\

3. Move to the neigh d
t
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broken randomly.
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f h(z,y) as follows:

( h(z,y) ]
h(z, y)*—mami h(z.y') — 1

3. Reflect the target’s move to the problem solver’s
goal, i.e., assign the value of 3’ to y.

The MTS algorithm is complete in the sense that the
problem solver executing M'TS is guaranteed to eventu-
all;y reach the target, assuming a finite problem space,
in which a path exists between every pair of nodes,
starting with non-negative admissible initial heuristic
values, and if the target periodica]iy skips moves.

Lllc &Ulllylctcllcoa Uf P'q 4O 1D lJlUVCu A LULIUVYY D, Deﬁll
the heuristic error as the sum over all pairs of states a
and b of h*(a,d) — h(a,b) where h*(a,b) is the length

of the shortest path between a and b, and h(a,b) is
Define the heuristic differ
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ence as h(z,y), the current heuristic value between the
current state of the problem solver, z, and the current
state of the target, y. Define the heurisiic dispariiy as

the sum of the heuristic error and the heuristic differ-
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ence. Proof was made by showing that the heuristic
disparity decreases by at least one unit when the prob-

lem solver moves, and increases by at most one unit
when the target moves nthda_ and Korf, lQQﬂ

Tha samn anaga o TCQ ia nraved as follaws:

tha eurrent heuristie value
ViU LUl LVIIL LIV 1I0uViILV valiuv.

3. Performance Bottleneck of MTS
Experiments

To examine MTS performance, we implemented 1t in a

roctancular orid nroblem snace (100 « 100) with ohsta
reclanguiar gria prosi:eim Spadce (1vv X 1vv) Wivh O0s5wa-

cles. We allow motion along the horizontal and vertical
dimensions, but not along the diagonal. To erase prob-
iem space boundaries, we formed a torus by connecting
the nnnnmh: ]'\nunr]anpq_ Note that the rprtano‘n]ar a’nd

represents one of the many problem spaces posmb]e, but
not a physical workspace. Though MTS is effective in
any type of problem space, we use the rectangular grid
as an PYnPI"Imthal environment clmnlv because it is

suitable for plotting on a Workstatlon chsplay, and it
helps humans to intuitively recognize what is going on
in the problem space. Though each state basically h
four neighbors, obstacles are generated by restric fm
the number of nelghbormg states.

The Manhattan distance is used as the initial heuris-

waliia

tic value.

J.hlb is Ucuauac hhc .I.Vld-lllldllbd»ll dlbbd;llbc IUP’
resents the actual distance if there is no obstacle, but
it does becomes inaccurate as the number of obstacles
Increases. Thus the combination of obstacles and the

Maoanhattan dictance can naturally nraduce anv deoree
Mannatian Gistance can naturauy proauce any acgree

of uncertainty. The problem solver and the target are
initially positioned as far apart as possible in the torus,
i.e., 100 units in Manhattan distance. Figure 1 ilius-
trates the sample track of MTS. In this ﬁn'nrn ohsta-
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cles were manually positioned, and the mOthl’l of the



Problem Solver

Figure 1 Sample Track of MTS

target was controlled by a human user to escape from
the problem solver.

Figure 2 shows the performance of MTS. In this eval-
uation, obstacles are randomly positioned. X-axis rep-
resents the ratio of obstacles: an obstacle ratio of 20%
means that 2000 junctions in the 100 x 100 grid are ran-
domly replaced by obstacles. With high obstacle ratios
{more than 20%), obstacles join up and form walls with
various shapes. The complexity of the maze rapidly in-
creases as the ratio increases from 25% to 35%. When
the ratio reaches 40%, the obstacles tend to discon-
nect the problem space, separating the target from the
problem solver. Y-axis represents the number of moves
taken by the problem solver to catch the target. Num-
bers in this figure are obtained by averaging 100 trials.
The speed of the target is set to 80% of the problem
solver: the target skips one in every five moves. The
motion of the target is controlled by programs with the
following four response modes.

Avoid: The target actively avoids the problem solver:
the target performs MTS to move toward the position
as far apart as possible from the problem solver in the
torus.

Meet: The target moves cooperatively to meet the
problem solver: the target performs MTS to decrease
the estimated distance from the problem solver.

Random: The target moves randomly.

Stationary: The target remains stationary. In this
case, MTS behaves exactly same as the realtime
search algorithm called Learning Real-Time A* [Korf,
1990].
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Figure 2 Performance of MTS

The results of experiments show that the perfor-
mance decreases as the situation becomes uncertain.
Though this phenomena is observed in all target’s be-
havior modes, the performance decreases more rapidly
when the target moves than when it remains station-
ary. In Meet, though both agents perform MTS to meet
each other, the effect appears to be negative. This is be-
cause, in uncertain situations, the agents tend to reach
the opposite sides of the same wall, and move back and
forth in confusion.

Heuristic Depression

Let us examine the MTS behavior in more detail to fig-
ure out why MTS becomes inefficient in uncertain sit-
uations. Figure 3 represents the behavior of the prob-
lem solver in a one dimensional problem space. X-axis
represents the positions of the problem solver and the
target, while Y-axis represents the estimated distance
between the problem solver and the target. The ini-
tial heuristic values are plotted with wide lines. Ar-
rows indicate moves of the problem solver. Incremental
updates of heuristic values performed by the problem
solver are indicated by dark boxes. In this figure, the
target is assumed not to move. As described in Fig-
ure 3, the problem solver performing MTS repeatedly
moves along the slope of heuristic values.

To explain the problem solver’s behavior, we define a
heuristic depression for each goal state as follows: Start
from a set with single state whose heuristic value is
equal to or less than those of the surrounding states.
Extend the set by adding any neighboring state while
keeping the heuristic values in the set equal to or less
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Position of Problem Solver and Target
The problem solver is initially positioned at "a," and the target at "q."
——> Moves of the problem solver

Figure 3 Behavior of MTS

than those of the states surrounding the extended set.
When no more state can be added, we call the result-
ing set a heuristic depression. For example, in Figure
3, positions from d to h form a heuristic depression.
Note that no depression exists in the actual distance.
However, as the situation becomes uncertain, heuristic
values differ significantly from the actual distances, and
so heuristic depressions tend to appear frequently in the
problem space.

When placed in a heuristic depression, the problem
solver has no way to decrease the heuristic difference,
and recognizes that its heuristic values are inaccurate.
The problem solver cannot reach the target without fill-
ing the depression by repeatedly updating the heuristic
values. Suppose the target moves during this learning
process. Since MTS must maintain heuristic values for
each goal location, the problem solver has to start the
learning process over again for the target’s new posi-
tion. This is why MTS performance rapidly decreases
in uncertain situations.

To summarize, the performance bottleneck of MTS
ezists in its inefficiency of filling the heuristic depres-
sion. Thus, in the following sections, we propose to
introduce two notions created in the area of resource-
bounded planning: (1) commitment {o goals to ignore
the target’s moves and to concentrate on filling the
heuristic depression, and (2) deliberation for selecting
plans in which off-line search is performed to find a di-
rection for getting out of the heuristic depression. The
effect of introducing these notions will be reported in
Section 6 using the same examples given in Figure 2.
In the following discussion, we distinguish the original
MTS algorithm as BMTS (Basic Moving Target Search)
and the improved algorithm as IMTS (Intelligent Mov-
ing Target Search).
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4. Introducing Commitment

In BMTS, the problem solver always knows the posi-
tion of the target. However, we can extend BMTS so
that the problem solver can ignore some of the tar-
get’s moves. The extended BMTS only requires that
the problem solver knows the position of the target at
some point before the problem solver reaches the last
known position of the target [Ishida and Korf, 1991].
The question is, when the problem solver should ignore
the target’s moves and when it should not.

In this paper, we propose that the problem solver re-
flects the target’s move in the problem solver’s goal only
when the heuristic difference decreases; otherwise (i.e.,
when placed in a heuristic depression) it commits to the
target’s previous position and does not change its goal
even if the targel moves. However, as shown in Fig-
ure 3, when filling a large heuristic depression, updat-
ing heuristic values creates small depressions, and thus
the heuristic difference may temporarily decrease (i.e.,
arrows are sometimes directed down). In such a situ-
ation, even if the heuristic difference decreases, retar-
getting still causes the learning process to be restarted
again. Therefore, we introduce the degree of commit-
ment (doc), which represents the strength of the prob-
lem solver’s commitment to its goal.

Let DOWN be the number of problem solver’s
moves for which the heuristic difference continuously
decreases. Let the problem solver reflect the target’s
move in its goal only when DOW N > doc. Obviously,
when doc = 0 the problem solver is most sensitive to the
target’s moves, and behaves exactly the same as BMTS.
On the other hand, when doc = oo, the problem solver
is least sensitive. Note that when the problem solver
reaches the committed goal (i.e., z = y), the problem
solver must always change its goal to the target’s new



The IMTS algorithm with commitment is as follows.

DOWN is set to 0 before execution.
When ihe probiem soiver moves:
Calculate h(z’,y) for each neighbor 2’ of .
T LS N~ frs..10 .\
. I h(z,y) > ming {h{z',y)},
DOWN — DOWN +1.
If h(z,y) < ming {h(z',y)}, DOWN 0.
3. Update the value of h(z,y) as follows:

h{z,y) — maz h(z,y) |
’ 1 ming {h(z',y) + 1} I
4 }' Ave ta the naichhar with tha minimum hl»! )
- Move to the neighbor with the minimum h{z', 3},
i.e., assign the value of z’ to . Ties are broken
randomly.

When the target moves:

When DOWN > doc or ¢ = y, perform the follow-

ing:

Calculate h(z,

. Update the
number o

) for the target’s new position y'.
1.

D =

vaiue€ O h( ,y} as follows
target’s moves from y to ¢

< &

h(z,y) — maz {
e

(29

. Reflect the target’s mov,

wanal 1 o accien tha valn
goau, 1.2., &SSigh e Vaiu

&
Q

current goal to the target’s new position
y’ 2 The completeness of the ab ove algonthm can be
easily obtained by extending th i n
Korf, lQQﬂ and thus we omit,

Bl

space limitations.

formance Thls
is beca,use, in off-line search, the problem solver does

not move back and forth, but extends its wave front
step by step even in uncertain situations. Qur expec-
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tation is that introducing off-line search enables MTS
to efficiently find the boundary of a heurlst.lc depres—

SiOii, and thus overcomes the penormance bottleneck.
The question is, when and how far the problem solver

2Though it is not discussed in this paper, it might be a
good idea to take account of the distance between y and ¢/,
when reflecting the target’s move in the problem solver’s
goal, i.e., if the target has moved far from the probiem
solver’s goal, it might be reasonable to change the goal to
the target’s new position.
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t
might run away if the problem solver inappropriately
performs off-line search.

Our idea is that the problem solver performs reallime
SEuT h while the heuristic uwerence GECTEASES, other-
wise (i.e., when placed in a heuristic depression) per-
forms oﬂ' line search. To consider the cost of off-line
search we assume that, in each turn, the problem
solver can cxpauu one state in off-line s€arci, instead
of moving one edge in realtime search. This allows
the target to move during the problem solver expands
states in off-line search.®> We then introduce the de-
gree o) f deliberation (uud) to restrict the range of off-line
search. Let CLOSE D be a set of expanded states and
OPEN be a set of visited but not yet expanded states.
States in a heuristic depression are to be collected in
CLOSED. The number of states in CLOSED is de-
noted by |CLOSED|. We allow the problem solver to
perform off-line search only when |[CLOSED) < dod.
Obviously, when dod = 0 and doc = 0, IMTS behaves
exactly the same as BMTS. However, as dod increases,
the problem solver tends to spend more time in delib-
eration.

The IMTS algorithm with deliberation is shown as
follows. CLOSED and OPEN are cleared before ex-
ecution. The algorithm starts in the realtime mode.
When the target moves, the same algorithm in Section

4 is applied.
When the problem solver moves:
[A] When in the realtime mode, perform the follow-
ing:

Calculate h(z’, y) for each neighbor z’ of .

. If h{z,y) > ming {h(z’,y)},

DOWN «— DOWN +1.

If h(z,y) < ming {h(z', y)} DOWN ~ 0.
3. If h(z,y) > ming{h(z',y)} or dod = 0, perform
the following:

3.1 Update the value of A(z,y) as follows:

DND b

o m,.a-I h(z, 1
Yy mazy mmz'{h(“c v+

3.2 Move to the neighbor with the minimum h(z’, y),
ie., assign the value of ¢’ to z. Ties are broken

hi>
z

L

randomly
4. If A{z,y) < ming{h{z',y)} and dod # U, shift to
the off-line mode and execute [B].
[B] When in the off-line mode, perform the following

3The lookahead mechanism has been introduced to re-
2 oAl Yt o Yat L T 10anl
Qucee L€ nNuUmpeEr Ol IMoOvVes 11 Icatuliine scarci ll\o[l, 1:’:10].
However, this mechanism is assumed to be completed in
constant time (i.e., in each problem solver’s turn), and thus
the tradeoff between deliberation and reactiveness has not
been discussed. In this paper, we introduce off-line search
into MTS, taking account of its overhead.
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The problem solver is initially positioned at "a," and the target at "q."
——3> Moves of the problem solver (Realtime Search)
<€-----3 Off-line Search
Figure 4 Behavior of IMTS with Deliberation
1. Calculate h(z’,y) for each neighbor &' ¢ (both in the realtime and off-line modes) can be pro-
CLOSED of . cessed in constant time. At each turn, the problem
2. If h(z,y) < ming{h(z',y)} and |CLOSED| < solver selects the realtime mode or the off-line mode.
dod, perform the following: When the off-line mode is selected, (1) the number of

2.1 Expand z: For each neighbor 2 ¢ CLOSED U
f)DF‘N nf z, add m' to ()DF’N ‘A‘dd > to
CLOSED.

22 Set z to Zopen € OPEN with the minimum
A(Zopen, y)-

3. If h{z,y) > miny{h(z’,y)} or |CLOSED| > dod,
perform the following.

3.1 For all z.105.4a € CLOSED, update the value of
h(zclosed, y) as follows:
h( Zelosed, "/) — h(.’l! U) +1

N

P4

and CLOSED.

v ol NS il as

realtime mode and execute [A].

Figure 4 illustrates the deliberation process of the
above algorithm using the same situation given in Fig-
ure 3. The problem solver starts in the realtime mode
When pld.u:u in a heuristic UE‘p‘fESSiOii, the p[UUlClll
solver commits to the target’s current position and
shifts to the off-line mode. The problem solver then per-
forms off-line search to find a boundary of the depres-

ateam Al

SiOii. ‘vxv’}icu bhc buuudcuy is fuuud, the PlUbl‘;lll sSGiver
updates the heuristic values of all states in CLOSED,
gets out of the depression, shifts to the realtime mode,
and continues to perform realtime search while the
heuristic difference decreases.

We briefly show the completeness of IMTS with de-
liberation. Since the number of states in CLOSED is

upper bounded by dod, each turn of the problem solver
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states in CLOSE D increases hv one. or (9\ the heuris-

states in CLOSE D increases 1€, Or he heuris
tic values of the states in CLOS ED are updated all at
once. In the former case, the heuristic disparity does
not decrease, but in the latter case the heuristic dispar-
ity decreases by |CLOSED| units. This is because, for

each state in CLOSED the heuristic error decreases
by h(m y+1- h(:cclo,ed, y) while heuristic difference
[‘l‘ﬂg‘ub increase uy u\.L y) —— n\.l.c(o,ed,y), and thus the
heuristic disparity decreases by one unit. Therefore, in
the combined sequence of the problem solver’s moves,
the heuristic disparity decreases by at least [CLOSE D]
RPN Vel e X8 70 5 1 I T T oren
Unis pcr |ULIV&JJJU' LVULIID.
disparity is decreased by at least one unit in each turn
in the off-line mode. In the realtime mode, since the
process is the same as BMTS, the heunstlc disparity
dasranana he at lanat ana nnit faor each turm On the
UTLLTadTDd U’ QUL ITaDL VIIU Ulliv 1ul Lvaoaull vulirill. AN/ uvuio
other hand, when the target moves, the heuristic dis-
parity increases by an average of at most one unit for
each turn. Since the target periodically skips moves,

the nrahlam solver wnill av
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6. Evaluation Results

We evaluated the effectiveness of IMTS in the same
situation described in Figure 2. Note that the problem
solver performs IMTS, while the targen performs BMTS
in Avoid, and IMTS in Meet. This is to more clearly
show the performance improvement possible with the
IMTS algorithms In Avoid, we compare the case of

TRAMO _ . + DAL <zrid L cmcn ~F MAAMMQ
iV L O pursuulg DIVl LD wiLll l;IlC Cade U1 DIiviiL O pulbu-
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Figure 5 Performance of IMTS with Commitment

mg BMTS (as in Figure 2), and in Meet, the coopera-
tive behavior of IMTS agents is compareu with that of

BMTS agents (as in Figure 2). The major results are
as follows:

Commitment to goals:

Figure 5 plots the evaluated IMTS performance un-
der the conditions of doc = 10 and doc = . Since
Figure 2 can be seen as the result of doc = 0, the ef-
fects of the degree of commitment to the overall per-
formance can be evaluated by comparing these three
figures.

When doc = 10, actually this value yields almost the
best performance for all doc values from 0 to oo, the
performance improvement is 12 times in Random, 6
times in Meet, and 4 times in Avoid. The reason
why the largest effect is obtained in Random is that
the target cannot deviate from the initial position
because of the random moves, and thus the problem
solver can safely ignore the target’s moves.

However, increasing the degree of commitment does
not always improve the performance. When doc = o0
in Avoid, the performance instead decreases when the
obstacle ratio is low. That is, in certain situations,
since the heuristic function returns a fairly good es-
timation, the problem solver had better be sensitive
to the target’s moves. In Meet, the performance also
decreases but for all obstacle ratios. This decrease
is considered to be caused by ignoring the target’s
cooperative behavior.

Deliberation for selecting plans:

Flgure 6 represents IMTS performance w1th deliber-
dluloll ullucl IJllC Vd.luﬁb Ul UUU = 0J dJIU UUU == 4\,,
which roughly mean off-line search is performed to
the depth of 2 and 4, respectively. The degree of
commitment (doc) is always set to 10. Compared
with Figure 5(a), when dod = 25, the performance is
further doubled in uncertain situations. These effects
are observed in all target behavior modes including
Stationary. This shows that deliberation is effective
not only in moving target problems, but also in real-
time search for fixed goals.

Unlike the introduction of commitment, the per-
formance does not decrease even when the degree
of deliberation further increases. This is because
|CLOSED]| cannot be too large in randomly gener-
ated maps, since the ranges of heuristic depressions
are naturally upper bounded. If [CLOSED)| is large,
increasing the degree of deliberation might decrease
IMTS performance.

To summarize, introducing commitment and deliber-
ation dramatically improves the efficiency of MTS. The
evaluation results clearly show that (1) MTS perfor-
mance i1s improved by 10 to 20 times in uncertain situ-
ations depending on the target’s behavior modes, and
(2) controlling the degree of commitment is essential to
produce the optimal performance.

7. Conclusion

MTS performance has been improved by introducing
notions created in the area of resource-bounded plan-
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wn

ning. Since only a few steps are added to the Q:_gl__a_!
MTS, the obtained mtelhgent MTS has not lost its sim-
plicity. However, the behaviors of the two algorithms as
plont,ea on a worxst,a.t,ion aibplay are SunSl.aul.ia,uy (.lil-
ferent. The intelligent MTS behaves like a predator: In
certain situations, “the problem solver is alwa.ys sensitive
to the target’s moves and reactively moves toward the
target current pOSiuuu, while in uncertain su.ua.biuus,
the problem solver ignores the target’s moves, commits
to its current goal, and deliberates to find a promising
direction to reach the goa.l.

Throughout this work, we have tried to bridge the
studies on conceptual modeling and algorithms con-
cerned with resource-bounded plannmg The results
suggest that combining innovative notions and compu-
tationally sound algorithms will provide robust and effi-
cient methodologies for problem solving in dynamically

CnL 11 OUOLOEICS 10L 111 SOLVIES 111 Aylialil

changing environments.
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