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Abstract 

We previously proposed the moving target search 
(MTS) algorithm, where the location of the goal may 
change during the course of the search. MTS is the 
first search algorithm concerned with problem solving 
in a dynamically changing environment. However, since 
we constructed the algorithm with the minimum oper- 
ations necessary for guaranteeing its completeness, the 
algorithm as proposed is neither efficient nor intelligent. 

In this paper, we introduce innovative notions created 
in the area of resource- bounded planning into the formal 
search algorithm, MTS. Our goal is to improve the ef- 
ficiency of MTS, while retaining its completeness. No- 
tions that are introduced are (1) commitment to goals, 
and (2) deliberation for selecting plans. Evaluation re- 
sults demonstrate that the intelligent MTS is 10 to 20 
times more efficient than the original MTS in uncertain 
situations. 

Existing search algorithms can be divided into two 
classes: o$-line search, which computes the entire so- 
lution path before executing the first step in the path, 
and realtime search, which always computes a plausi- 
ble next move and physically executes that move in 
constant time. However, all these algorithms assume 
that the problem is fixed and does not change over the 
course of the search. On the other hand, in the area 
of planning, where search algorithms have been often 
utilized, researchers are recently focusing on dynami- 
cally changing environments, where the goal state and 
the problem space change in run-time, and thus agents 
are resoume-bounded in constructing plans. Therefore, 
search algorithms capable of handling changing prob- 
lems will provide a computational basis for resource- 
bounded planning. 

In this direction, we have already investigated the 
case wherein the goal state changes during the course 
of the search, and proposed the moving target search 
(MT’S) algorithm [Ishida and Korf, 19911. Off-line 
search seems infeasible for implementing MTS because 
the search takes exponential time, and thus the target 

would have moved to a new position by the time a path 
was found. Therefore, we started from realtime search 
[Korf, 19901, and extended it to MTS. The MTS al- 
gorithm has been proved to be complete in the sense 
that it will eventually reach the target, assuming a fi- 
nite problem space and that the speed of the problem 
solver is faster than that of the target. 

We originally implemented MTS with the minimum 
operations necessary for guaranteeing its completeness. 
The obtained algorithm consists of a pair of steps, which 
are repeatedly performed: the first step is incremental 
learning of the estimated distance between the prob- 
lem solver and the target, and the second step moves 
the problem solver in the problem space. As a result, 
MTS is reactive, i.e., capable of performing each move 
in constant time, but it is neither efficient nor intelli- 
gent. Various experiments showed that the efficiency 
of the algorithm decreases rapidly as uncertainty in- 
creases. This is because, in uncertain situations, the 
heuristic function does not return useful information 
and the learning cost becomes high. 

In the area of resource-bounded planning, however, 
agent architectures to cope with environmental changes 
have been studied [Georgeff et al., 1987]. Cohen et 
al. [1990] have defined the notion of commitment as 
a persistent goal. Kinny et al. [1991] quantitatively 
evaluated how the degree of commitment affects agents’ 
performance. ’ The role of deliberation has been in- 
vestigated by Bratman et al. [1988]. Pollack et al. 
[1990] proposed the experimental environment called 
Tileworld and have been quantitatively evaluating the 
trade08 between deliberation and reactiveness. The 
challenge of this paper is to introduce these notions into 
formal search, and to improve the efficiency of MTS 
while retaining its completeness. Introduced notions 
are as follows: 

Commitment to goals: 

In MTS, the problem solver always knows the target’s 
position, but can ignore some of its moves. Experi- 

TDurfee et CI 1. 1988] [ performed 

multi-agent environments. 

a similar evaluation in 
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When the problem solver moves: 

1. Calculate h(x’, y) for each neighbor x’ of x. 
2. Update the value of h(x, y) as follows: 

h(x, Y) - max 
h(xc, Y) 
minzl(h(xf, y) + 1) 

3. Move to the neighbor x’ with the minimum 
h(x’, y), i.e., assign the value of x’ to x. Ties are 
broken randomly. 

526 Problem Solving: Search and Expert Systems 

ments show that changing the goal causes the prob- 
lem solver to start incremental learning over again 
toward the new goal. Thus, in uncertain situations, 
where the learning cost is significant, better perfor- 
mance could be obtained by committing to its goal 
and not changing it even if the target moves. 

Deliberation for selecting plans: 

When the problem solver moves, MTS always selects 
the neighboring position that offers the minimum es- 
timated distance to the goal. However, as the situa 
tion becomes uncertain, such a reactive decision be- 
comes inaccurate and often does not result in better 
performance. Thus, deliberative investigation using 
off-line search, though it decreases the speed of the 
problem solver, might improve overall performance 
in uncertain situations. 

2. Moving Target Search 
We briefly characterize the moving target search prob- 
lem pshida and Korf, 19911. The problem space is rep- 
resented as a connected graph. The graph is undirected, 
allowing motion of either the problem solver or the tar- 
get along an edge in any direction. We assume that 
all edges in the graph have unit cost. There is an ini- 
tial position of the problem solver and an initial posi- 
tion of the target. The problem solver does not have 
a map of the problem space. We assume the problem 
solver and the target move alternately, and can traverse 
at most one edge in each turn. We reduce the speed 
of the target by assuming that periodically the target 
will make no move, and remain at its current position. 
The problem solver has no control over the movements 
of the target, but always knows the target’s position. 
There also exists a heuristic function that returns an es- 
timate of the distance between any pair of states. Note 
that MTS must acquire heuristic information for each 
goal location. The heuristic function must be admissk 
ble, meaning it never overestimates the actual distance 
[Pearl, 19841. Th e as is accomplished when the prob- t k 
lem solver and the target occupy the same state. 

The MTS algorithm is as follows. As the initializa- 
tion of the algorithm, the current state of the problem 
solver is assigned to 2, and the current state of the 
target to y. The heuristic function h(z, y) represents 
the estimated distance between z and y. The following 
steps are repeatedly performed until the task is accom- 
plished. 

When the target moves: 

1. Calculate h(x, y’) for the target’s new position y’. 
2. Update the value of h(x, y) as follows: 

h(x, Y) t max 

3. Reflect the target’s move to the problem solver’s 
goal, i.e., assign the value of y’ to y. 

The MTS algorithm is complete in the sense that the 
problem solver executing MTS is guaranteed to eventu- 
ally reach the target, assuming a finite problem space, 
in which a path exists between every pair of nodes, 
starting with non-negative admissible initial heuristic 
values, and if the target periodically skips moves. 

The completeness of MTS is proved as follows: Define 
the heuristic error as the sum over all pairs of states a 
and b of h*(a, b) - h(a,b) where h*(a,b) is the length 
of the shortest path between a and b, and h(a, b) is 
the current heuristic value. Define the heuristic di$er- 
ence as h(x, y), the current heuristic value between the 
current state of the problem solver, x, and the current 
state of the target, y. Define the heuristic disparity as 
the sum of the heuristic error and the heuristic differ- 
ence. Proof was made by showing that the heuristic 
disparity decreases by at least one unit when the prob- 
lem solver moves, and increases by at most one unit 
when the target moves [Ishida and Korf, 19911. 

3. Performance ottleneck of MTS 
Experiments 
To examine MTS performance, we implemented it in a 
rectangular grid problem space (100 x 100) with obsta- 
cles. We allow motion along the horizontal and vertical 
dimensions, but not along the diagonal. To erase prob- 
lem space boundaries, we formed a torus by connecting 
the opposite boundaries. Note that the rectangular grid 
represents one of the many problem spaces possible, but 
not a physical workspace. Though MTS is effective in 
any type of problem space, we use the rectangular grid 
as an experimental environment simply because it is 
suitable for plotting on a workstation display, and it 
helps humans to intuitively recognize what is going on 
in the problem space. Though each state basically has 
four neighbors, obstacles are generated by restricting 
the number of neighboring states. 

The Manhattan distance is used as the initial heuris- 
tic value. This is because the Manhattan distance rep- 
resents the actual distance if there is no obstacle, but 
it does becomes inaccurate as the number of obstacles 
increases. Thus the combination of obstacles and the 
Manhattan distance can naturally produce any degree 
of uncertainty. The problem solver and the target are 
initially positioned as far apart as possible in the torus, 
i.e., 100 units in Manhattan distance. Figure 1 illus- 
trates the sample track of MTS. In this figure, obsta 
cles were manually positioned, and the motion of the 
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target was controlled by a human user to escape from 
the problem solver. 

Figure 2 shows the performance of MTS. In this eval- 
uation, obstacles are randomly positioned. X-axis rep- 
resents the ratio of obstacles: an obstacle ratio of 20% 
means that 2000 junctions in the 100 x 100 grid are ran- 
domly replaced by obstacles. With high obstacle ratios 
(more than 20%), obstacles join up and form walls with 
various shapes. The complexity of the maze rapidly in- 
creases as the ratio increases from 25% to 35%. When 
the ratio reaches 40%, the obstacles tend to discon- 
nect the problem space, separating the target from the 
problem solver. Y-axis represents the number of moves 
taken by the problem solver to catch the target. Num- 
bers in this figure are obtained by averaging 100 trials. 
The speed of the target is set to 80% of the problem 
solver: the target skips one in every five moves. The 
motion of the target is controlled by programs with the 
following four response modes. 

Avoid: The target actively avoids the problem solver: 
the target performs MTS to move toward the position 
as far apart as possible from the problem solver in the 
torus. 

Meet: The target moves cooperatively to meet the 
problem solver: the target performs MTS to decrease 
the estimated distance from the problem solver. 

Random: The target moves randomly. 

S&ztionary: The target remains stationary. In this 
case, MTS behaves exactly same as the realtime 
search algorithm called Learning Real- Time A * [Korf, 
19901. 

The results of experiments show that the perfor- 
mance decreases as the situation becomes uncertain. 

Figure 2 Performance of MTS 

Though this phenomena is observed in all target’s be- 
havior modes, the performance decreases more rapidly 
when the target moves than when it remains station- 
ary. In Meet, though both agents perform MTS to meet 
each other, the effect appears to be negative. This is be- 
cause, in uncertain situations, the agents tend to reach 
the opposite sides of the same wall, and move back and 
forth in confusion. 

Neurist ic epression 

Let us examine the MTS behavior in more detail to fig- 
ure out why MTS becomes inefficient in uncertain sit- 
uations. Figure 3 represents the behavior of the prob- 
lem solver in a one dimensional problem space. X-axis 
represents the positions of the problem solver and the 
target, while Y-axis represents the estimated distance 
between the problem solver and the target. The ini- 
tial heuristic values are plotted with wide lines. Ar- 
rows indicate moves of the problem solver. Incremental 
updates of heuristic values performed by the problem 
solver are indicated by dark boxes. In this figure, the 
target is assumed not to move. As described in Fig- 
ure 3, the problem solver performing MTS repeatedly 
moves along the slope of heuristic values. 

To explain the problem solver’s behavior, we define a 
heuristic depression for each goal state as follows: Start 
from a set with single state whose heuristic value is 
equal to or less than those of the surrounding states. 
Extend the set by adding any neighboring state while 
keeping the heuristic values in the set equal to or less 
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Figure 3 Behavior of MTS 

than those of the states surrounding the extended set. 
When no more state can be added, we call the result- 
ing set a heuristic depression. For example, in Figure 
3, positions from d to h form a heuristic depression. 
Note that no depression exists in the actual distance. 
However, as the situation becomes uncertain, heuristic 
values differ significantly from the actual distances, and 
so heuristic depressions tend to appear frequently in the 
problem space. 

When placed in a heuristic depression, the problem 
solver has no way to decrease the heuristic difference, 
and recognizes that its heuristic values are inaccurate. 
The problem solver cannot reach the target without fill- 
ing the depression by repeatedly updating the heuristic 
values. Suppose the target moves during this learning 
process. Since MTS must maintain heuristic values for 
each goal location, the problem solver has to start the 
learning process over again for the target’s new posi- 
tion. This is why MTS performance rapidly decreases 
in uncertain situations. 

To summarize, the performance bottleneck of MTS 
exists in its ineficiency of filling the heuristic depres- 
sion. Thus, in the following sections, we propose to 
introduce two notions created in the area of resource- 
bounded planning: (1) commitment to goals to ignore 
the target’s moves and to concentrate on filling the 
heuristic depression, and (2) deliberation for selecting 
plans in which off-line search is performed to find a di- 
rection for getting out of the heuristic depression. The 
effect of introducing these notions will be reported in 
Section 6 using the same examples given in Figure 2. 
In the following discussion, we distinguish the original 
MTS algorithm as BMTS (Basic Moving Target Search) 
and the improved algorithm as IMTS (Intelligent Mov- 
ing Target Search). 

4. Introducing Commitment 

In BMTS, the problem solver always knows the posi- 
tion of the target. However, we can extend BMTS so 
that the problem solver can ignore some of the tar- 
get’s moves. The extended BMTS only requires that 
the problem solver knows the position of the target at 
some point before the problem solver reaches the last 
known position of the target [Ishida and Korf, 19911. 
The question is, when the problem solver should ignore 
the target’s moves and when it should not. 

In this paper, we propose that the problem solver re- 
fleets the target’s move in the problem solver’s goal only 
when the heuristic diflerence decreases; otherwise (i.e., 
when placed in a heuristic depression) it commits to the 
target’s previous position and does not change its goal 
even if the target moves. However, as shown in Fig- 
ure 3, when filling a large heuristic depression, updat- 
ing heuristic values creates small depressions, and thus 
the heuristic difference may temporarily decrease (i.e., 
arrows are sometimes directed down). In such a situ- 
ation, even if the heuristic difference decreases, retar- 
getting still causes the learning process to be restarted 
again. Therefore, we introduce the degree of commit- 
ment (dot), which represents the strength of the prob- 
lem solver’s commitment to its goal. 

Let DOWN be the number of problem solver’s 
moves for which the heuristic difference continuously 
decreases. Let the problem solver reflect the target’s 
move in its goal only when DOWN 2 dot. Obviously, 
when dot = 0 the problem solver is most sensitive to the 
target’s moves, and behaves exactly the same as BMTS. 
On the other hand, when dot = 00, the problem solver 
is least sensitive. Note that when the problem solver 
reaches the committed goal (i.e., x = y), the problem 
solver must always change its goal to the target’s new 
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position . The problem solver thus changes its goal only 
when it reaches the last committed position of the tar- 
get. 

The IMTS algorithm with commitment is as follows. 
DOWN is set to 0 before execution. 

When the problem solver moves: 

1. Calculate h(x’, y) for each neighbor x’ of x. 

2. If h(x, y) > min,l(h(x’, y)}, 
DOWN + DOWN + 1. 
If h(x, y) 5 min,t(h(x’, y)), DOWN + 0. 

3. Update the value of h(x, y) as follows: 

h(x, Y) + mcax 
h(x, Y) 
min21(h(xf, y) + 1) > 

4. Move to the neighbor with the minimum h(x’, y), 
i.e ., assign the value of x’ to 31:. Ties are broken 
randomly. 

When the target moves: 
When DOWN 1 dot or x = y, perform the follow- 
ing: 

1. Calculate h(x, y’) for the target’s new position y’. 

2. Update the value of h(x, y) as follows (let t be the 
number of target’s moves from y to y’): 

h(x1 Y) + max h(x, Y) 
h(x, y’) -t > 

3. Reflect the target’s move in the problem 
goal, i.e., assign the value of yt to y. 

solver’s 

In the above algorithm, the constant t is used to rep- 
resent the number of the target’s moves from the prob- 
lem solver’s current goal y to the target’s new position 
d.2 The completeness of the above algorithm can be 
easily obtained by extending the proof in [Ishida and 
Korf, 19911, and thus we omit it from this paper due to 
space limitations. 

5. Introducing Deliberation 
Realtime search is not always more efficient than off-line 
search. From our experience, in uncertain situations, 
off-line search often results in better performance. This 
is because, in off-line search, the problem solver does 
not move back and forth, but extends its wave front 
step by step even in uncertain situations. Our expec- 
tation is that introducing off-line search enables MTS 
to efficiently find the boundary of a heuristic depres- 
sion, and thus overcomes the performance bottleneck. 
The question is, when and how far the problem solver 

2Though it is not discussed in this paper, it might be a 
good idea to take account of the distance between y and I’, 
when reflecting the target’s move in the problem solver’s 
goal, i.e., if the target has moved far from the problem 
solver’s goal, it might be reasonable to change the goal to 
the target’s new position. 

should perform off-line search. Note that the target 
might run away if the problem solver inappropriately 
performs off-line search. 

Our idea is that the problem solver performs realtime 
search while the h euristic difference decreases; other- 
wise (i.e., when placed in a heuristic depression) per- 
forms o$-line search. To consider the cost of off-line 
search, we assume that, in each turn, the problem 
solver can expand one state in off-line search, instead 
of moving one edge in realtime search. This allows 
the target to move during the problem solver expands 
states in off-line search.3 We then introduce the de- 
gree of deliberation (dod) to restrict the range of off-line 
search. Let CLOSED be a set of expanded states and 
OPEN be a set of visited but not yet expanded states. 
States in a heuristic depression are to be collected in 
CLOSED. The number of states in CLOSED is de- 
noted by ICLOSEDI. We allow the problem solver to 
perform off-line search only when lCLOSEDl < dod. 
Obviously, when dod = 0 and dot = 0, IMTS behaves 
exactly the same as BMTS. However, as dod increases, 
the problem solver tends to spend more time in delib- 
eration. 

The IMTS algorithm with deliberation is shown as 
follows. CLOSED and OPEN are cleared before ex- 
ecution. The algorithm starts in the realtime mode. 
When the target moves, the same algorithm in Section 
4 is applied. 

When the problem solver moves: 
[A] When in the realtime mode, perform the follow- 
ing: 

1. Calculate h(x’, y) for each neighbor z’ of x. 

2. If h(x, y) > min,l(h(x’, y)}, 
DOWN + DOWN + 1. 
If h(x, y) 5 min,l{h(x’, y)}, DOWN + 0. 

3. If h(x, y) > min,l{h(x’, y)) or dod = 0, perform 
the following: 

3.1 Update the value of h(x, y) as follows: 

h(x, Y) + max 
h(x, Y) 
min,l{ h(x’, y) + 1) 

3.2 Move to the neighbor with the minimum h(x’, y), 
i.e., assign the value of x’ to x. Ties are broken 
randomly. 

4. If h(x, y) 5 min,l{h(x’, y)} and dod # 0, shift to 
the off-line mode and execute [B]. 

[B] When in the off-line mode, perform the following: 

3The lookahead mechanism has been introduced to re- 
duce the number of moves in realtime search [Korf, 19901. 
However, this mechanism is assumed to be completed in 
constant time (i.e., in each problem solver’s turn), and thus 
the tradeoff between deliberation and reactiveness has not 
been discussed. In this paper, we introduce off-line search 
into MTS, taking account of its overhead. 
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Figure 4 Behavior of IMTS with Deliberation 

1. Calculate h( x’ , y) for each neighbor 2’ 4 
CLOSED of x. 

2. If h(x, y) 5 min,l(h(x’, y)) and lCLOSEDl < 
dod, perform the following: 

2.1 Expand x: For each neighbor x’ $8 CLOSED U 
OPEN of x, add x’ to OPEN. Add x to 
CLOSED. 

2.2 Set x to topen E OPEN with the minimum 

h(x )* open Y Y 
3. If h(x, y) > mins~{h(x’, y)} or lCLOSEDI 2 dod, 

perform the following. 

3.1 For all x closed E CLOSED, update the value of 
h(Xelosed,Y) a~ fOUOWS: 

h(xtAosed, Y) + h(x, Y) + 1 

3.2 Clear OPEN and CLOSED. 
3.3 Shift to the realtime mode and execute [A]. 

Figure 4 illustrates the deliberation process of the 
above algorithm using the same situation given in Fig- 
ure 3. The problem solver starts in the realtime mode. 
When placed in a heuristic depression, the problem 
solver commits to the target’s current position and 
shifts to the off-line mode. The problem solver then per- 
forms off-line search to find a boundary of the depres- 
sion. When the boundary is found, the problem solver 
updates the heuristic values of all states in CLOSED, 
gets out of the depression, shifts to the realtime mode, 
and continues to perform realtime search while the 
heuristic difference decreases. 

We briefly show the completeness of IMTS with de- 
liberation. Since the number of states in CLOSED is 
upper bounded by dod, each turn of the problem solver 
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(both in the realtime and off-line modes) can be pro- 
cessed in constant time. At each turn, the problem 
solver selects the realtime mode or the off-line mode. 
When the off-line mode is selected, (1) the number of 
states in CLOSED increases by one, or (2) the heuris- 
tic values of the states in CLOSED are updated all at 
once. In the former case, the heuristic disparity does 
not decrease, but in the latter case the heuristic dispar- 
ity decreases by jCLOSEDI units. This is because, for 
each state in CLOSED, the heuristic error decreases 
byh(x,y)+l--( x,-losed, y), while heuristic difference 
might increase by h(z, y) - h(Xclosed, y), and thus the 
heuristic disparity decreases by one unit. Therefore, in 
the combined sequence of the problem solver’s moves, 
the heuristic disparity decreases by at least lCLOSEDl 
units per lCLOSEDI turns. On average, the heuristic 
disparity is decreased by at least one unit in each turn 
in the off-line mode. In the realtime mode, since the 
process is the same as BMTS, the heuristic disparity 
decreases by at least one unit for each turn. On the 
other hand, when the target moves, the heuristic dis- 
parity increases by an average of at most one unit for 
each turn. Since the target periodically skips moves, 
the problem solver will eventually reach the target. 

6. Evaluation Results 

We evaluated the effectiveness of IMTS in the same 
situation described in Figure 2. Note that the problem 
solver performs IMTS, while the target performs BMTS 
in Avoid, and IMTS in Mee-t. This is to more clearly 
show the performance improvement possible with the 
IMTS algorithms: In Avoid, we compare the case of 
IMTS pursuing BMTS with the case of BMTS pursu- 
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Figure 5 Performance of IMTS with Commitment 

ing BMTS ( as in Figure 2), and in Meed, the coopera- 
tive behavior of IMTS agents is compared with that of 
BMTS agents (as in Figure 2). The major results are 
as follows: 

Commitment to goals: 

Figure 5 plots the evaluated IMTS performance un- 
der the conditions of dot = 10 and dot = 00. Since 
Figure 2 can be seen as the result of dot = 0, the ef- 
fects of the degree of commitment to the overall per- 
formance can be evaluated by comparing these three 
figures. 
When dot = 10, actually this value yields almost the 
best performance for all dot values from 0 to 00, the 
performance improvement is 12 times in Random, 6 
times in Meet, and 4 times in Avoid. The reason 
why the largest effect is obtained in Random is that 
the target cannot deviate from the initial position 
because of the random moves, and thus the problem 
solver can safely ignore the target’s moves. 
However, increasing the degree of commitment does 
not always improve the performance. When dot = 00, 
in Avoid, the performance instead decreases when the 
obstacle ratio is low. That is, in certain situations, 
since the heuristic function returns a fairly good es- 
timation, the problem solver had better be sensitive 
to the target’s moves. In Meet, the performance also 
decreases but for all obstacle ratios. This decrease 
is considered to be caused by ignoring the target’s 
cooper at ive behavior. 

Deliberation for selecting plans: 

Figure 6 represents IMTS performance with deliber- 
ation under the values of dod = 5 and dod = 25, 
which roughly mean off-line search is performed to 
the depth of 2 and 4, respectively. The degree of 
commitment (dot) is always set to 10. Compared 
with Figure 5(a), when dod = 25, the performance is 
further doubled in uncertain situations. These effects 
are observed in all target behavior modes including 
Stationary. This shows that deliberation is effective 
not only in moving target problems, but also in real- 
time search for fixed goals. 
Unlike the introduction of commitment, the per- 
formance does not decrease even when the degree 
of deliberation further increases. This is because 
lCLOSEDl cannot be too large in randomly gener- 
ated maps, since the ranges of heuristic depressions 
are naturally upper bounded. If ICLOSEDI is large, 
increasing the degree of deliberation might decrease 
IMTS performance. 

To summarize, introducing commitment and deliber- 
ation dramatically improves the efficiency of MTS. The 
evaluation results clearly show that (1) MTS perfor- 
mance is improved by 10 to 20 times in uncertain situ- 
ations depending on the target’s behavior modes, and 
(2) controlling the degree of commitment is essential to 
produce the optimal performance. 

a. Conclusion 

MTS performance has been improved by introducing 
notions created in the area of resource-bounded plan- 
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ning. Since only a few steps are added to the original 
MTS, the obtained intelligent MTS has not lost its sim- 
plicity. However, the behaviors of the two algorithms as 
plotted on a workstation display are substantially dif- 
ferent. The intelligent MTS behaves like a predator: In 
certain situations, the problem solver is always sensitive 
to the target’s moves and reactively moves toward the 
target current position, while in uncertain situations, 
the problem solver ignores the target’s moves, commits 
to its current goal, and deliberates to find a promising 
direction to reach the goal. 

Throughout this work, we have tried to bridge the 
studies on conceptual modeling and algorithms con- 
cerned with resource-bounded planning. The results 
suggest that combining innovative notions and compu- 
tationally sound algorithms will provide robust and effi- 
cient methodologies for problem solving in dynamically 
changing environments. 

Acknowledgments 

The author wishes to thank Kiyoshi Nishikawa and 
Ryohei Nakano for their support during this work at 
NTT Laboratories, and Richard Korf, Jun-ichi Aka 
hani, Kazuhiro Kuwabara and Makoto Yokoo for their 
helpful discussions. 

References 

[Bratman et al., 19881 M. E. Bratman, D. J. Israel and 
M. Pollack, “Plans and Resource Bounded Practi- 

cal Reasoning,” Computational Intelligence, 4(4), pp. 
349-355, 1988. 

[Cohen e2 al., 19901 P. R. Cohen and H. J. Levesque, 
“Intention is Choice with Commitment ,” Atiificial 
Intelligence, 42(3), 1990. 

[Durfee et al., 19881 E. H. Durfee and V. R. Lesser, 
“Predictability versus Responsiveness: Coordinating 
Problem Solvers in Dynamic Domains,” AAAI-88, 
pp. 66-71, 1988. 

[Georgeff et al., 19871 M. P. Georgeff and A. L. Lansky, 
“Reactive Reasoning and Planning,” AAAI-87, pp. 
677-682, 1987. 

[Ishida and Korf, 19911 T. Ishida and R. E. Korf, 
“Moving Target Search,” IJCAI-91, pp. 204-210, 
1991. 

[Kinny et al., 19911 D. N. Kinny and M. P. Georgeff, 
“Commitment and Effectiveness of Situated Agents,” 
IJCAI-91, pp. 82-88, 1991. 

[Korf, 19901 R. E. Korf, “Real-Time Heuristic Search”, 
Artificial Intelligence, Vol. 42, No. 2-3, March 1990, 
pp. 189-211. 1990. 

[Pearl, 19841 J. Pearl, Heuristics: Intelligent Search 
Strategies for Computer Problem Solving, Addison- 
Wesley, Reading, Mass., 1984. 

[Pollack et al., 19901 M. E. Pollack and M. Ringuette, 
“Introducing the Tileworld: Experimentally Evalu- 
ating Agent Architectures,” AAAI-90, pp. 183-189, 
1990. 

532 Problem Solving: Search and Expert Systems 


