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Abstract 

We present the following results about IDA* and 
related algorithms: 

We show that IDA* is not asymptotically op- 
timal in all of the cases where it was thought 
to be so. In particular, there are trees satisfy- 
ing all of the conditions previously thought to 
guarantee asymptotic optimality for IDA*, such 
that IDA* will expand more than O(N) nodes, 
where N is the number of nodes eligible for ex- 
pansion by A*. 
We present a new set of necessary and suf- 
ficient conditions to guarantee that IDA* ex- 
pands O(N) nodes on trees. 
On trees not satisfying the above conditions, 
there is no best-first admissible tree search algo- 
rithm that runs in S = w?vq (where 1CIP) # 
0( 1)) memory and always expands O(N) nodes. 
There are acyclic graphs on which IDA* ex- 
pands $422N) nodes. 

Introduction 
Heuristic search is applicable to a wide range of combi- 
natorial optimization problems. The objective of many 
heuristic search algorithms is to find a minimum cost 
solution path in a directed graph G. A solution path 
is a path from the start node s to a goal node. To find 
such a path, many algorithms use a node evaluation 
function 

f(n) = g(n) + hW 
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where g(n) is the cost of a least-costly path currently 
known from s to n, and h(n) 2 0, the heuristic value of 
node n, is an estimate of h*(n). h is called the heuristic 
function and h*(n) is the cost of a minimum cost path 
from n to a goal node. A heuristic function h is called 
admissible if Vn E G, h(n) < h*(n). The function h is 
said to be monotone if ‘dp E G, h(p) 5 c(p, q) + h(q), 
where Q is a child of p. 

A* (Hart & Nilsson & Raphael 1968; Nilsson 1980) is 
a well-known heuristic search algorithm. A* has been 
shown to be very efficient in terms of number of node 
expansions (which is also a measure of its time com- 
plexity) in most cases (Dechter Sr; Pearl 1985). How- 
ever, one major problem with A* is that it requires 
exponential amount of memory to run. Due to this, 
A* runs out of memory even on problem instances of 
moderate size. 

To overcome the storage problem, a variant of A* 
called IDA* (Iterative Deepening A*) was introduced 
(Korf 1985; Korf 1988). IDA*‘s memory requirement 
is only linear in the depth of the search. This enables 
IDA* to solve much larger problems than that A* can 
solve in practice. 

One of IDA*% most important properties is that un- 
der certain conditions it is “asymptotically optimal in 
time and space over the class of best-first searches that 
find optimal solutions on a tree” (Korf 1988, p. 236). 

In this paper, we present the following results: 

1. We show that IDA* is not asymptotically optimal 
in all of the cases where it was thought to be so. In 
particular, there are trees satisfying all of asymptotic 
optimality conditions given in (Korf 1988)) such that 
IDA* will expand more than O(N) nodes, where N 
is the number of nodes eligible for expansion by A*.l 
In addition, we present necessary and sufficient con- 
ditions for the desired O(N) worst-case time com- 
plexity of IDA* for tree searches. 

‘Previous p a p ers have described trees on which IDA* 
expands more than O(N) nodes (Mahanti & Pal 1990; 
Patrick & Almulla & Newborn 1991), but the trees de- 
scribed in these papers did not satisfy Korf’s (1988) require- 
ments of finite precision and non-exponential node costs. 

Mahanti, et al. 539 

From: AAAI-92 Proceedings. Copyright ©1992, AAAI (www.aaai.org). All rights reserved. 



For exponential search spaces with maximum node- 
branching factor bounded by a constant and with 
admissible heuristic, there does not exist any best- 
first admissible tree search algorithm which when 
running with S = WW) (WV # Q(l)) memory 
7. have the O(N) worst-case time complexity like 

. 

When the heuristic is monotone, A* handles a graph 
like a tree and it never expands a node more than 
once. But for graphs, IDA* can not prevent the reex- 
pansion of a node through a costlier path. Thus, for 
graph search problems the performance of IDA* is 
bound to become worse than A*. We show that if we 
let the node-branching factor to grow with the prob- 
lem size, A* under monotone heuristic has Q(N) 
worst-case time complexity for general graphs, but 
IDA* under monotone heuristics has Q(22N) worst- 
case complexity for acyclic graphs. And, the total 
number of node expansions by IDA* can only in- 
crease in presence of cycles. There are many graph 
and tree search problems where the node-branching 
factor grows with the problem’size. Traveling sales- 
man, flow-shop scheduling, etc. are such examples. 

Due to space limitations, in this paper we omit the 
proofs of our theorems. For proofs, readers are referred 
to (Mahanti et al. 1992). 

DA* on Trees 
In this section we first define a set of basic symbols that 
will be used through out the paper, and then formally 
characterize the working of IDA*. Here we assume 
that the state space G is a tree, the maximum node- 
branching factor in G is bounded by a constant b > 0, 
and every arc of G has a cost 2 6, where 6 is a small 
constant. 

For each z > 0, we define WG(z) as follows: 

(i) P = (s) is in WG(z) if s is not a goal node and 
h(s) 5 z. 

(ii) For each path P = (s, nl , . . . , nk) in G, P is in 
WG (z) if the following conditions are satisfied: 

(a) nk is not a goal node, 
(b) The subpath P’ = (s, nl, . . . , ns-1) is 

in WG(z), and 
(c) cost(P) + h(nk) 5 z. 

We also define 

vG (4 = {mlm is a node in a path in WG(z)); 

JlfG (4 = lVG(%)l. 

Since by assumption the maximum node-branching 
factor b is a constant, and each arc (m, n) in G has 
a cost at least 6, it directly follows that for each z > 0, 
each of the entities defined above is finite. 

We define fi, i = 1,2, . . . , inductively as follows: 

fl = h(s); 
fi = mib{f(n)l n is a child of tip(P) and 

P is a maximal path in WG(fi-I)}, 

where by a maximal path P in WG(fi- I), we mean a 
path which is not a proper subpath of any other path 
in WG(fd-r). Al so, by tip(P) of a path P, we mean 
the last node on P. 

We let IG be the total number of iterations per- 
formed by IDA* on G, and 

ZG(l) < ZG(2) < . . . < ZG(IG) 

be the (distinct) threshold values used by IDA*. For 
j = 1,2,..., I, IDA*‘s j’th iteration is the set of all 
node expansion instants for which the threshold is z(j). 
By expansion of a node n in IDA*, we mean the gen- 
eration of at least one child of n. For each j, we define 

xG (8 = the set of nodes expanded by IDA* 
during iteration j; 

x”(j) = the number of nodes expanded by 
IDA* during iteration j; 

xnGew (3 = the set of new nodes expanded by 
IDA* during iteration j; 

xnGew (8 = the number of new nodes expanded 
by IDA* during iteration j; 

G 
xtot = the total number of node expansions 

done by IDA* on 6. 

In the terms defined above, we will usually omit the 
superscript G if the identity of G is clear. Alterna- 
tively, if we are discussing two state spaces G and G’, 
we will use X(j) for XG(j), X’(j) for X”‘(j), and so 
forth. 

From the above definitions, it follows immediately 
that 

X(l), . 
X,,,(j) = 1; 

X(j)-X(j-l), ;:2,3,...;(l) 
I I 

xtot = C x(j) = C IXW (2) 
j=l j=l 

Theorem 1 

43 = fj, j = 1,. . . , I; (3) 
X(j) = V(fj), j= l,... J-1; (4) 

43 = N(fi), j= l,... J-1; (5) 

Xnew (j) = C 
V(fl)> 
V(fj) - V(fj-I), j x ii: se.) I-li(6) 

xnew(j) = 
C 

Jqfl), 
./V(fj)-N(fj-I),: z f:. a., .s?-J.~(~) 

Furthermore, 

X(I) E V(f1); 
xnew(I) C V(f1) - V(fr-1); 
xnew(4 L N(f1) - N(f1-1); 

with equality in the worst case. 

Corollary 1 f1 z h*(s). 

(8) 
(9) 

(10) 
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In view of the above corollary, we make the following 
definitions: 

WG = Wfr); 

vG = Y(P,); 

NG = hf(fr); 
LG = 1 + PLUG the number of nodes in P. 

In the above, we will omit the superscript G when the 
identity of G is clear. For example, given a network 
G, by N we shall mean the total number of nodes in G 
which are eligible for expansion by A*. 

The heuristic branching factor is defined as the 
average, over j = 2,... , I, of the quantity 
znew(j)/xnew(j - 1). Intuitively, this is the average 
ratio of the number of nodes of each f-value (assum- 
ing that the heuristic is monotone) to the the number 
of nodes at the next smaller f-value (Korf 1988). 

Under the premise that G is a tree with maximum 
node-branching factor b, and with admissible heuris- 
tics, Korf (1988) h as shown that the worst-case asymp- 
totic time complexity of IDA* is O(N) if the following 
conditions (labeled as mandatory and secondary) are 
true: 

Mandatory Condition: 
Heuristic Branching Factor > I. 

Secondary Conditions: 
1. The search space must be exponential in the depth 
of the solution; 
2. Representation of costs must be with finite preci- 
sion; 
3. Cost values must not grow exponentially with 
depth. 

The first condition was used explicitly in the op- 
timality proof of IDA* (thus we call it a mandatory 
condition), and the other conditions appeared as pass- 
ing remarks (thus we call them secondary conditions). 
In the next section we show that these conditions are 
neither sufficient nor necessary to ensure the O(N) 
complexity of IDA*. We illustrate through examples 
that even when all of the above conditions are satis- 
fled, IDA* fails to achieve O(N) time complexity in 
the worst-case. 

IDA* on Example Trees 
In this section we illustrate through examples that the 
analysis of IDA* given in (Korf 1988) does not hold 
in general. We present constructions of example trees 
which satisfy the conditions stated in the previous sec- 
tion but yet IDA* fails to achieve O(N) worst-case time 
complexity while run on these trees. We also show that 
these conditions are not necessary either, i.e. IDA* can 
have O(N) complexity without satisfying these condi- 
tions. 

Example 1. In the search tree G given in Figure 1, 
each non-leaf node has a node-branching factor b = 2, 
and each arc has unit cost. G consists of two subtrees 
(called G1 and Gz) where each one is a full binary tree 
of height k. Gz is rooted at the right most node of 
G1. Every leaf node, except the one labeled as goal, 
is a non-terminal leaf node. For each node n in G, we 
assume h(n) = 0. Then h is monotone. The heuristic 
branching factor is 

2k+&i+2(k-1) =2+ I 
w 

1 M2 I_-- 
k2k k ’ 

Note that the goal node is at a depth of 2k = O(logN), 
where N is the total number of non-goal nodes in G. 
Therefore the search space is exponential. The maxi- 
mum cost value is 2k which grows only linearly with 
depth. The precision constraint is vacuously satisfied 
because the cost values are not fractions. Thus, all con- 
ditions (mandatory and secondary) are satisfied. Now 
we calculate the total number of node expansions by 
IDA* on the tree G. 

Clearly G1 and G2 each contain N’ = [N/21 nodes. 
The cost of the solution path is 2k = P[log,(N’+l)-11. 
Let 

No = bk + 2b”” + 3bk-2 + . . . + kb. 
Then the total number of node expansions by IDA* in 
the worst-case is 

xtot = No + kN’ + No 
2 kN’+N’=k(N’+l) 
= Q(Nlog N). 

In the example above, we have shown that the condi- 
tions stated in (Korf 1988) for the asymptotic optimal- 
ity of IDA* are not sufficient. In the following example 
we show that these conditions are not necessary either. 

Example 2. Consider the search tree G in Figure 2. 
G consists of two subtrees G1 and 62. Gr is a full 
binary tree with N’ nodes and G2 contains a constant 
c number of nodes in the form of a degenerate tree. 
Every leaf node in G is a non-terminal node except 
the rightmost one (pc), which is a goal node. Each arc 
has cost 1, h(s) = k and heuristic value at all other 
nodes is zero. G contains total N = N’ + c - 1 non- 
goal nodes and one goal node. All the nodes of G1 will 
be expanded by IDA* in the first iteration. Thereafter, 
in each iteration only one new node will be expanded. 
The heuristic branching factor is 

Since the total number oiiterations (c+l) is constant, 
IDA* will expand only O(N) nodes on trees of type 6. 
Note that the mandatory condition stated previously 
is not satisfied in this case. 

In the following section we derive a new set of (nec- 
essary and sufficient) conditions for asymptotic opti- 
mality of IDA*. 
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S = 720 

G2 +2 

Figure 1: IDA* SJ( N log N). 

Asymptotic Qptimality of IDA* 
Let bl > 1. Then IDA*‘s active iterations on G are the 
iterations iG iG 1 , 2 , . . . , izG defined inductively as follows: 

if = 1. 
For p = 2,...,u, ip” is the smallest integer such 

that x new(iG)/xnew(i~~~> L h. 
As usual, we omit the superscript G when the identity 
of G is obvious. 

Intuitively the active iterations are the iterations in 
which the number of new nodes expanded by IDA* 
grows exponentially. We call the remaining iterations 
dummy iterations. For each $,, let jPl, jP2,. . . , jPC, be 
the dummy iterations immediately following the active 
iteration iP. 

Dummy iterations can occur anywhere after the first 
active iteration il. For Q = 1,. . . , u, let cq be the num- 

1 ber of dummy iterations that occur between iterations 
i, and i,+l . Note that cq 2 0, and cl + c2 + . . . + c, = 
I - u. We define MG = maxP cq, i.e., iVG is the max- 
imum number of adjacent dummy iterations. 

The total number of node expansions by IDA* de- 
pends not only on the number of dummy iterations 
but also on their positions. In the following theorem 
we show that, keeping the total number of iterations I 
and the number of active iterations u fixed, the total 
number of node expansions by IDA* increases as the 
dummy iterations are moved to the right, i.e. a dummy 
iteration j is moved to k where k > j. In particular the 
theorem states that the total number of node expan- 
sions xtot attains its maximum when all the dummy 
iterations appear after the last active iteration. 

Theorem 2 For all positive integers No, us, lo, let 
G(Ne, us, 10) be the set of all trees G for which N = NO, 

S = no 

nk Pl P2 PC-1 PC 
a -4 A/ 

Gl G2 

Figure 2: IDA* O(N). 

U = ug, and I = le. Then for each N, u, 1, the maxi- 
mum value of zfot over all trees G E S(N, u, 1) occurs 
in a tree G for which all dummy iterations occur after 
the last active iteration, i.e., cl = c2 = . . . = c,-1 = 0. 

Theorem 3 provides a sufficient condition for asymp- 
totic optimality of IDA*. It states that IDA* expands 
O(N) nodes in every tree in which the maximum num- 
ber of adjacent dummy iterations is bounded by a con- 
stant. 
Theorem 3 Let G = (Gl, G2, . . .) be any arbitary 
sequence of trees such that M = O(1) in G. Then 
xtot = O(N) in S. 

Although the condition stated in Theorem 3 is suf- 
ficient for O(N) node expansions by IDA*, it is not a 
necessary condition. The necessary condition is stated 
in Theorem 4, which can be proved using Lemma 1 (see 
(Mahanti et a!. 1992) for details). The lemma shows 
that if a tree 6’ is constructed from G in such a way 
that 6’ is identical to G except that one node n in G’ 
has a higher f-value than in G, i.e. fG’(n) > fG(n), 
then the total number of node expansions by IDA* on 
G’ will be less than the number of node expansions by 
IDA* on G. What this means is that if a new prob- 
lem instance is created from an old problem instance of 
IDA* by pushing a new node of iteration j to the iter- 
ation k, such that k > j, then xtot in the new problem 
instance will be less than in the old problem instance. 
The lemma holds for the simple reason that the nodes 
in earlier iterations are expanded more number of times 
than nodes in later iterations. 
Lemma 1 Let G be any tree such that I _> 2, and let 
lsj<k<I.Ifx new(j) 
such that F = I - 1 and 

= 1, then let G’ be any tree 

4,,(i) = %3v(i), i = 1,. . .,j - 1; 
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3$,,(i) = %lew(i + l), i = j, . . . , k - 2; 

x;,,(k - 1) = xnew(k) + 1; 
x;,,(i) = GlevQ(~ + l), i= k,...,I-1. 

Otherwise, let G’ be any state space such that I’ = I 
and 

x;%Ji) =, %x?w(i), a’= l,...,j-1; 

x’,,,(j) = xnew(j) - 1; 
x&(i) = xrlew(~), i= j+l,...,k- 1; 

x’,,,(k) = xnew(k) + 1; 
x;,,(i) = xnew(i+ I), i= k+l,...,I. 

Then xiot < xtot. 

The following theorem says that IDA* achieves 
O(N) node expansions only if the number dummy it- 
erations after the last active iteration is bounded by a 
constant. 

Theorem 4 Let g = (Gl, G2,. . .) be any arbitary 
sequence of trees. Then in 9, xtot = O(N) only if 
c, = O(1). 

Limited-Memory Search on ees 
In this section, we show that in general, limited- 
memory best-first search algorithms can not always 
perform as well as A*, even on trees. 

Let G be a tree, and d be any search algorithm 
used to search G. A stores a node n if during the 
current state of d’s execution, A contains information 
about the identity of node n (plus possibly some other 
information about n). A properly stores node n if it 
stores not only n, but also at least one of the parents 
of n. A properly runs in storage S 2 0 if at all times 
during its operation, it properly stores no more than 
S nodes. 

Lemma 2 Let G be a b-ary tree that is complete to 
depth k for some k > 0, and A be a search algorithm 
that properly runs in storage S on 6. Let d be the 
smallest integer such that S 5 w. If d < k, then 

A properly stores no more than b” of the nodes at 
depth d + 1 of G. 

Let dbf be any limited-memory best-first tree search 
algorithm. An algorithm is said to perform a best-first 
search in limited memory on tree G if for each z > 0, it 
does not expand any node of VG(z) before expanding 
every node of VG (2’) at least once, for all z’ < Z. Note 
that IDA*, MA* (Chakrabarti et aZ. 1989), MREC 
(Sen & Bagchi 1989) are all limited-memory best-first 
tree search algorithms. The following theorem states 
that there exists no best-first tree search algorithm, 
which while using less than a constant fraction of the 
memory used by A*, can have the same worst-case time 
complexity as A* on all trees. Its proof uses the result 
of lemma 2. 

n5 

- 

Figure 3: IDA* is s2(22N). 

Theorem 5 There does not exist any best-first al- 
gorithm .Aaf such that for every sequence of trees 
G = (6 G2,. . .), daf has O(N) complexity and prop- 
erly runs in S = & memory, where $(N) is a func- 

tion that is # O(1). 

A* on Acyclic Graphs 
What happens if we run IDA* on directed acyclic 
graphs? For graphs with monotone heuristic, when a 
node n is expanded by A*, g(n) = g*(n) and A* does 
not expand a node more than once. Since IDA* runs 
in linear memory, it can not store all expanded nodes 
for future duplicate checking as in A*. Thus IDA* can 
expand a node several times due to both its limited- 
memory nature and unfolding of a graph into tree. It 
has been shown previously (Korf 1988) that depth-first 
search can expand exponential (in N) number of nodes 
on a directed acyclic graph with N nodes. We extend 
this result to IDA* and show that IDA* can expand 
Q(22N) nodes on directed acyclic graphs with N nodes. 
The following example demonstrates the worst-case be- 
havior of IDA* on directed acyclic graphs. 

Example. Consider the search graph G shown in 
Figure 3. We can generalize the graph with N = k + 1 
non-goal nodes and one goal node. Let no be the start 
node and nk+l be the goal node. The cost structure is 
defined as follows: 

c(no,ni) = 2i-1, l<isk; 
c(nl,nk+l) = 2’ - 1; 
c(ni,n;-1) = 26-2, l<i<k; 

c(ni,nj) = 2jw1, l<j<i, l<i<k; 
h(q) = 0, OQ<k+l. 

It can be easily seen that the unfolded tree of G will 
contain nodes of all f-values from 0 through 2N. 
Therefore the total number of node expansions will be 
O(N) for A*, and s2(22N) for IDA*. 

The following theorem gives 
total number of node expansions 
case on trees and graphs. 

upper bounds on the 
by IDA* in the worst- 
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Theorem 6 IDA* makes no more than N2 node ex- 
pansions on trees, and no more than 22N node expan- 
sions on acyclic graphs. 

Conclusion 
We have presented the following results about IDA* 
and related algorithms: 
1. The conditions stated by Korf (1988) are not suffi- 

cient to guarantee asymptotic optimality of IDA*; 
i.e., IDA* will perform badly in some of the trees on 
which it was thought to be asymptotically optimal. 

Pearl, J. 1984. Heuristics, Intelligent Search Strate- 
gies for Computer Problem Solving, Addison-Wesley. 
Sen, A., and Bagchi A. Fast Recursive Formulations 
for Best-First Search That Allow Controlled Use of 
Memory. 1989. In Proceedings of the Eleventh Inter- 
national Joint Conference on Artificial Intelligence, 
297-302. 

2. The above failing is not unique to IDA*, for in gen- 
eral, no best-first limited-memory heuristic search 
algorithm can be asymptotically optimal. 

3. We have presented necessary and sufficient condi- 
tions for IDA* to be asymptotically optimal. Our 
conditions show that IDA* is asymptotically opti- 
mal in a somewhat different range of problems than 
was originally believed. 

4. On graphs, with a monotone heuristic IDA* can per- 
form exponentially worse than A*. Thus, on graphs 
it may be preferable to use a graph search algorithm 
rather than using IDA*. 

References 
Chakrabarti, P.; Ghosh, S.; Acharya, A.; and De 
Sarkar, S. 1989. Heuristic Search in Restricted Mem- 
ory. AI Journal 41 (1): 197-221. 
Dechter, R.; and Pearl, J. 1985. Generalized Best- 
First Search Strategies and the Optimality of A*. 
JACM 32 (3): 505-536. 
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. 
A Formal Basis for the Heuristic Determination of 
Minimum Cost Paths. IEEE Trans. Syst. Cybern. 4 
(2): 100-107 
Korf, R. 1985. Depth First Iterative Deepening: An 
Optimal Admissible Tree Search. AI Journal 27 (1): 
97-109. 
Korf, R. 1988. Optimal Path Finding Algorithms, 
Search in AI. Edited by Kanal, L., and Kumar, V., 
Springer Verlag, Symbolic Computation: 200-222. 
Mahanti, A., and Pal, A. 1990. A Worst-cast Time 
Complexity of IDA*. In Proceedings of SCCC-10 In- 
ternational Conference in Computer Science, 35-45. 
Santiago de Chile. 
Mahanti. A., Ghosh, S., Nau, D. S., Pal, A. K., Kanal, 
L. 1992. On the Asymptotic Optimality of IDA*, 
Technical Report, CS-TR-2852. Dept. of Computer 
Science, University of Maryland. 
Patrick, B. G.; Almulla, M.; and Newborn, M. 
M. 1991. An Upper Bound on the Complexity of 
Iterative-Deepening-A *. Annals of Mathematics and 
Artificial Intelligence. Forthcoming. 
Nilsson, N. J. 1980. Principles of Artificial Intelli- 
gence, Tioga Publications Co., Palo Alto, CA. 

544 Problem Solving: Search and Expert Systems 


