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Abstract 
Autoepistemic (AE) logic is a formal system character- 
izing agents that have complete introspective access to 
their own beliefs. AE logic relies on a fixed point defini- 
tion that has two significant parts. The first part is a set 
of assumptions or hypotheses about the contents of the 
fixed point. The second part is a set of reflection prin- 
ciples that link sentences with statements about their 
provability. We characterize a family of ideal AE rea- 
soners in terms of the minimal hypotheses that they can 
make, and the weakest and strongest reflection prin- 
ciples that they can have, while still maintaining the 
interpretation of AE logic as self-belief. These results 
can help in analyzing metatheoretic systems in logic 
programming. 

Introduction 
Wha,t kind of introspective capability can we expect an 
ideal agent to have ? This question is not easily an- 
swered, since it depends on what kind of model we take 
for the agent’s representation of his own beliefs. Au- 
toepistemic logic (Moore [lo]) uses a sentential or list 
semantics, which looks like this: 

derivations 

cl 
. . . 
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The beliefs of the agent are represented by sentences in 
a formal language. For simplicity, we consider just a 
propositional language LO, and a modal extension Cl 
which has modal atoms of the form L$, where 4 is a 
sentence of LO. 

The arrow indicates that the intended semantics of 
the beliefs from LO is given by the real world, e.g., the 
belief CJ is the agent’s judgment that Q is true in the real 
world. Of course an agent’s beliefs may be false, so that 
in fact q may not hold in the world. On the other hand, 
beliefs of the form Ltp refer to the agent’s knowledge of 
his own beliefs, so the semantics is just the belief set 
itself. 

An agent starts with an initial set of beliefs, the 
premises. Through assumptions and derivations, he ac- 
cumulates further beliefs, arriving finally at a belief set 
that is based on the premises. In order for an agent 
to be ideally introspective, the belief set I’ must satisfy 
the following equations: 

The premises are in I’. 
4 E r and 4 E LO - L$ E r (1) 
4 6 l? and 4 E & --+ lL4 E I’ 

Any set I’ from Cl that satisfies these conditions, and 
is closed under tautological consequence, will be called 
Cl-stable (or simply stable) for the premises I’. The 
definition and term “stable set” are from Stalnaker [13]. 
The beliefs are stable in the sense that an agent has 
perfect knowledge of his own beliefs according to the 
intended semantics of L, and cannot infer any more 
atoms of the form L4 or 1Ltj. 

Although an idea.1 agent’s beliefs will be a stable set 
containing his beliefs, not just any such set will do. 
For example, if the premises are {p V q), one stable 
set is {p V q, p, Lp, L(p V q), . . s}. This set contains the 
belief p, which is unwarranted by the premises. The 
constraint of making the belief set stable guarantees 
that the beliefs will be introspectively complete, but it 
does not constrain them to be soundly based on the 
premises. Moore recognized this situation in formu- 
lated autoepistemic logic; his solution was to ground 
the belief set by making every element derivable from 
the premises and some assumptions about beliefs. The 
reason he needed a set of assumptions is that negative 
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introspective atoms (of the form ~Lc$) are not soundly 
derivable from the premises alone. For example, con- 
sider the premise set {lLp > q,p V q}. We would like 
to conclude ‘Lp, since there is no reasonable way of 
coming to believe p. But an inference rule that would 
allow us to conclude 1Lp would have to take into ac- 
count all possible derivations, including the results of its 
own conclusion. This type of circular reasoning can be 
dealt with by adding a set of assumptions about what 
we expect not to believe, and checking at the end of all 
derivations that these assumptions are still valid. 

In autoepistemic logic, a belief set T is called 
grounded in premises A if all of its members are tauto- 
logical consequences of A U LTo U 1 L??o, where LTo = 
(L4 I+ E Tnto}, and 1LTo = (lL4 14 E LO and 4 4 
T}. This concept of groundedness is fairly weak, since it 
relies not only on assumptions about what isn’t believed 
(lLTo), but also about what is (LTo). In this paper we 
consider belief sets that use only assumptions 1LTo in 
forming the belief set T. Everything else in the belief 
set will follow deductively (and monotonically) from the 
premises A and the assumptions 1LTo. In some sense 
lLT0 is the minimal set of assumptions that we can use 
in this manner; for every smaller set, we have to resort 
to nonmonotonic rules, such as negation-as-failure [6], 
in order to form a stable set. For this reason we call a 
belief set grounded in A and 1LTo ideally grounded. 

Ideally grounded logics are similar to the modal non- 
monotonic logics defined in [S, 12, 71, but allow an agent 
to make fewer assumptions about his own beliefs. The 
main difference is that ideally grounded logics are more 
grounded in the premises than modal nonmonotonic 
logics, and in general will have fewer unmotivated ex- 
tensions (see Section ). 

In the rest of this paper we explore ideally grounded 
belief sets from the perspective of introspective reflec- 
tion principles. We are able to characterize the minimal 
set of principles that will yield a stable set of beliefs, 
and also (once nested belief operators are introduced) 
the maximal ones. The resultant family of introspective 
logics fill in a hierarchy between strongly and moder- 
ately grounded autoepistemic logic [53, and suggest that 
the moderately grounded fixed-point is the best system 
for an ideal agent with perfect awareness of his beliefs. 

Minimal ideal introspection 
In this and the following section we restrict the language 
to Cl, containing no nesting of the belief operator. This 
presents a simple system to explore the consequences of 
idea.1 introspection. In Section we relax this restriction 
and consider the fully nested modal language C. 

An ideally grounded introspective agent determines 
his belief set using the following fixed-point equation: 

T={~jAu~LTot-s$}, (2) 

where S is some system of inference rules. Any set 
T that satisfies this equation will be called an ideally 

grounded extension of A. The set TO = T n CO is the 
kernel of T. 

In the remainder of this section we consider the min- 
imal set of rules S that guarantees a stable belief set 
for T. Because a stable set is closed under tautological 
consequence, the rules S must contain a complete set 
of propositional rules. In addition, whenever C$ is in the 
belief set, we want to infer L4. The following two rules 
fulfill these conditions. 
Rule Taut. From the finite set of sentences X infer 4, 

if # is a tautological consequence of X. 
Rule Reflective Up. From 4 infer L$, if 4 E LO. 

Proposition 1 Let RN be the rules Taut and Reflec- 
tive Up. Every RN-extension of A is a ,CO stable set 
containing A. 

Proof. Every extension is closed under tautological con- 
sequence by rule Taut, and the premises must be in it, 
by the properties of I-. The condition 4 E I? and 4 E 
LO --+ LC#J E I’ holds because of rule Reflective Up. 
The condition # @ I’ and C#J E LO --+ lL$ E I’ holds 
since any proposition 4 not in T will be part of the 
assumptions 1LTo. 

Proposition 2 If for every set A E Cl, the S- 
extension of A is an ..Cl stable set containing A, then 
Taut and Reflective Up are admissible rules of S. 

Proof. If Taut is not an admissible rule for some exten- 
sion T, then it cannot be closed under tautological 
consequence, and is not a stable set. Similarly, if Re- 
flective Up is not admissible, T will contai 
will not contain L4 for some proposition f$. 
These two propositions show that the rules RN form 

the minimal logic for ideally grounded agents, in the 
sense that RN extensions produce stable belief sets, and 
they must be included in any system that produces such 
sets. Further, every RN extension of A is minimal for A: 
there is no stable set S containing A such that So c To. 

Proposition 3 Every RN extension of A is a minimal 
stable set for A. 

Proof. Suppose there is a stable set U for A whose ker- 
nel is a proper subset of T’s. Then U must a.lso satisfy 
the fixed-point condition, since the rules Reflective 
Up and Taut are admissible for stable sets (Proposi- 
tion 2). By hypothesis the set 1Lro contains ALTO, 
and so Uo ust contain every element of TO, a con- 
tra.diction. 
The proof of this proposition points to a more generaJ 

result for any class of rules that are sound with respect 
to the stable set conditions. An inference rule is sound 
with respect to stable sets if, whenever its antecedents 
are contained in a. stable set, its consequent a.lso must 
be (e.g., Reflective Up is sound because if 4 is in a. sta.ble 
set, L$J must be also). 

Proposition 4 If the rules S are sound, then any S- 
extension of A is a minimal stable set for A. 
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Proof. Suppose there is a stable set U for A whose ker- 
nel is a proper subset of T’s. Then U must also satisfy 
the fixed-point condition, since the rules S are admis- 
sible for stable sets. By hypothesis the set 1Lg0 con- 
tains ~L??o, and so Uo must contain every element of 
To, a contradiction. 

Groundedness, autoe 
default logic 

In this section we relate ideally grounded extensions 
to their close relatives, default logic and AE exten- 
sions. Ideal groundedness is somewhat weaker than de- 
fault logic and strongly grounded AE extensions, but 
stronger than moderately grounded ones. 

Simple as it is, the system RN is almost equivalent to 
default logic [ll]. It is not quite as strongly grounded as 
the latter; for while there exists a translation from DL 
to RN that preserves extensions, the inverse translation 
fails in a few cases. 

We will assume that the reader is familiar with DL. 
A default theory (TV, 0) consists of a set of first-order 
sentences W and a set of defaults D of the form 

Here only the propositiorml case will be considered, but 
extending the results to first-order languages is straight- 
forward (as long as no quantifying-in is allowed, e.g., 
sentences of the form Qx.L$(x)). 

To get a translation to RN, simply take W and add 
a translation of each default, rule, as follows: 

(3) 
Note the form of the first modal atom: L(a A CY), rather 
than La. Since the beliefs of an agent are closed under 
tautological consequence, this a,mounts to the same con- 
straint on beliefs; however, the difference is important 
for finding extensions, a.s will be made clear shortly. 

Proposition 5 U is th.e kernel o.f an RN extension of 
A i@ it is a DL extension of (T/v, b) . 

Proof. Let A = TV U { L(a A a) r\ ~Llp1 > 
P1,- e/y E D} . We will show that, the set 

r(U) = (4, E Lo 1 AU lLi7 I-RN 4) 

is the least set satisfying the properties: 
w c I?(U). 

Z I’(U) is closed under ta.utologica.1 consequence. 
3 For LU : PI, - - . /-y E D, if cy E I’(U) and lp # U, 

then y E r(U). 

The first two properties follow directly from the defi- 
nition of r(U). The tl lird property follows by simple 
propositional inference, given the form of A. 
To show I’(li) is minima.1, not,e tl1a.t it is the set of 
tautological consequences of TV and some set yi of 
conclusions of defaults. To make it smaller, we would 
have to eliminate some of the yi. But it is clear from 

the discussion below that the only way a pi could be 
present is if the third condition defining I’(U) holds; 
thus all 3;’ must be present, and I’(U) is minimal. 
We can reduce the definition of extensions (2) to use 
only the kernel: 

This gives a fixed-point condition defining extensions 
as 

u = r(u) 
which is the same as for default logic. 
This is a simple translation of DL into a minimal AE 

logic. It is the same as the translation in [5] (except for 
the use of a A Q instead of a), but there it was neces- 
sary to limit the extensions of the AE logic to strongly 
grounded ones, a syntactic method based on the form 
of the premises. No such method is needed here. 

The stipulation on the form of L(o A a) is necessary 
to prevent derivations that arise from the interaction of 
modal atoms. Consider the two theories: 

(TLP 1 P, LP 1 PI 
(TLP 3 P, L(P A P) 1 PI 

The first one has an RN extension Cn(p), because p is a 
tautological consequence of the initial constraints. On 
the other hand, it is not a consequence of the second set 
of constraints, because 1Lp and L(p A p) are consistent 
from the view of propositional logic. Since there is no 
way to derive p by any of the rules, h(p) cannot be 
an extension; yet assuming 1Lp leads to the derivation 
of p and a contradiction. So the second set has no 
extensions. 

To get autoepistemic logic, we need to include more 
assumptions about beliefs in the fixed point equation 
2. Let us define open RN extensions as solutions of the 
equation 

(4) 
where LTo is the set { L~!J I C$ E To}. Actually, the 
presence of the Up rule is redundant here. From results 
in [5], it is easy to show the following proposition. 
Proposition 6 T is an open RN extension of A ifl it 
is the kernel of an AE extension of A. 

The kernel of an AE extension is just the part of the 
extension from ,CO. The kernel completel3; determines 
the extension. 

So the basic difference between AE and default logic 
is based on the groundedness of the extensions, that is, 
AE logic lets an agent assume belief in a. proposition 
a, and use that assumption to derive the very same 
proposition as part of the filial set of beliefs. In default 
logic, all derivatious must be ideally grounded, so that, 
assumptions a.re of the form lL+. 

The circu1a.r reasoning possible in AE logic was noted 
in [5], and two increasingly stronger notions, moder- 
ate and strong groundedness, were defined as a means 
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of throwing out extensions that exhibit such reason- 
ing. Moderately grounded extensions of A are defined 
as those AE extensions are also minimal stable sets con- 
taining A. Strongly grounded extensions use a syntactic 
method to eliminate all inferences from facts to belief 
propositions, e.g., even with the premise set 

A = (La 3 a, TLa ZI a) (5) 

there is no derivation of a, because La and -1La are not 
allowed to interact. This means that different sets A, 
even if they are propositionally equivalent, can generate 
different extensions. Strongly grounded extensions are 
equivalent to default logic extensions under the simple 
translation of default rules: 

a : Pl, * * A/Y H LwI~~~~A--A~L~~ 3 y. (6) 

Note the difference with the translation of (3): Lo in- 
stead of L(a A a). 

Here, rather than defining restrictions on extensions, 
we have taken the approach of trying to find the min- 
imal reflective principles that will allow an agent full 
knowledge of his beliefs, at the same time trying to 
make them as grounded as possible. The result is a logic 
that is somewhere between moderately and strongly 
grounded AE extensions, and which can imitate the 
groundedness conditions of default logic. 

Let us define one fixed point logic Sl to be included 
in another S2 (Sl -+ S2) if for any premise set the 
extensions of Sl are always extensions of S2, and for 
some premise set there is an extension of S2 that is not 
an extension of Sl. Sl is the stronger nonmonotonic 
logic if we define C#I as a consequence of a premise set 
just in case 4 is in every extension of the premises. 
The relationship among the various AE logics can be 
diagrammed as follows: 

(7) 

Nested belief 
So far we have preferred to forego the complications of 
beliefs about beliefs, using the language ll that con- 
tains no nesting of modal operators. This language and 
its semantics can be extended in a straightforward way. 
Let ,C be the propositional modal language formed from 
,!ZO by the recursive addition of atoms of the form Lp, 
with p E l. 

The semantic equations for a sta.ble set (1) are mod- 
ified to ta.ke a.wa.y the restriction of beliefs being in ,&: 

The premises a,re in I?. 
4u jLdEr 
+@r j1L4-5r (8) 

Any set from L that satisfies these conditions, and is 
closed under tautological consequence, will be called a 
stable set for A (in contrast to ,Ci-stable, which does 
not consider nested modal atoms). 

Consider a premise set A that is drawn from iGr, as 
before. In every RN extension of A there is complete 
knowledge of what facts are believed or disbelieved, i.e., 
Lq5 or lLq5 is present for every nonmodal 4. The ad- 
dition of the nested modal atoms should make no dif- 
ference to this picture, except to reflect the presence of 
the belief atoms in the correct way. So, for example, 
if La is in an RN extension S, then LLa should be in 
the extension when we consider Is; and similarly LlLa 
should be present if TLa is not in S. This much is easily 
accomplished by removing the restriction on Reflective 
Up, and giving it its usual name from modal logic. 
Rule Necessitation. From 4 infer Lq5. 

This rule will add positive modal atoms; but we need 
also to add negative ones. For example, if La is in an 
extension, and the extension is consistent, then -La 
is not in it, and this fact should be reflected in the 
presence of 1LlLw. In fact we want to infer 1Lp for 
every sentence ~1 that will not be in the extension, given 
that we have full knowledge of the belief atoms from ,Cr. 
Suppose that there is a sentence La V 1LbV c that is not 
in S, where c is a nonmodal sentence. This implies that, 
for stable S, 1Lw E S, Lb E S, and TLC E S. So from 
these latter sentences we should infer lL( La V TLb V c). 
This is what the following rule does. 

l 

Rule FIB. From LCQ, TLflj, SLY, and /L > (Vi Lai V 
Vj ILpj V r), infer ‘L/J. 

The system NRN consists of the rules Taut, Neces- 
sitation, and Fill. The basic properties of NRN exten- 
sions are that they are minimal stable sets, the rules 
are essential, and they are conservative extensions of 
RN fixed points. 

Proposition 7 If for every set A C_ ic, the S-extension 
of A is a stable set containing A, then Taut, Necessita- 
tion, and Fz’ll are admissible rules of S. 

Proof. Taut and Net are the same as for Proposition 2. 
For Fill, note that every consistent stable set contain- 
ing the premises to the rule cannot contain ,Q, and so 
must contain 1 Lp. 

Proposition 8 Every NRN extension of A is a stable 
set for A. 

Proof. Assume tl1a.t T is a consistent NRN extension of 
A. By rule Nestsed Reflective Up, the first part of the 
semantic definition is satisfied. For negative modal 
atoms, we proceed by induction on the level of nesting 
of L. By definition and the rule Nested Reflective 
Up, either LC#I or lLq5 is in T for every nonmodal 4. 
Suppose a sentence S = (Vi LcVi V Vj lL/3j V 7) E ic1 
is not in T. Then each of ~Lcyi, L/3j and 1 Ly is in 
T. By rule Fill, 1 Lp is in T for any p 1 s. Hence for 
every sentence 11 E ,C 1, the negative semantic rule is 
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satisfied, and either LZJ or 1Lv is in T. By induction, 
it can be shown that the semantic rule is satisfied for 
all levels of nesting. 
Extensions that are able sets are also minimal, as 

for the nonnested language. 
Proposition 9 If the rules S are sound with respect 
to stable sets, and the S-extension of A is a stable set, 
then it is a minimal stable set for A. 

Proof. Same as for Proposition 4. 

Proposition 10 If A C_ L1, then the kernel of every 
RN extension is the kernel of an NRN extension, and 
conversely, the kernel of every NRN extension is the 
kernel of an RN extension. 

Proof. The converse is obvious, since the rules NRN 
include RN. For the original direction, assume we 
have an RN extension S, which contains Lg5 or lL$ 
for every 4 E &. From the proof of Proposition 8, it 
is clear that the set T = {p 1 S I-NRN p} is a stable 
set for A, and further it is an NRN extension, since 
all elements of its kernel are derivable from A and 

we can show that the Fill rule is redundant 
if the schema Ir’ ([L+ A L(+ ZI $J)] 1 L$) is present. 

Proposition 11 The rule Fill is admissible in any sys- 
tem containing Ii, Taut and Necessitation. 

Proof. Suppose each of ~Laa, L@j and 1Ly is in A, 
together with Ii and all instances of K. Let p = 
l\ilLCri AAj L@j. By Taut and Up, L[/JA(~ > 7) II 
r] is derivable, and from schema Ii and ‘Ly we have 
-4P A (P 2 r)l* s ince we also have Lp by Up, this 
gives (using Ii) 1 L(p > 7). Again by Ii’ and Taut, 
we could derive ~Lv for any v such that v > (p > y) 
is a tautology. 
Because nested modal atoms are propositionally dis- 

tinct from nonnested ones, it is possible to derive new 
translations from default logic to sentences of L such 
that all extensions are strongly grounded and hence 
equivalent to default logic extensions. There are ma,ny 
ways to do this; all that is required is to translate from 
(Y : P/r to a sentence in which CY and ,0 are put under 
different nestings of modal operators that correspond to 
the single nesting semantics. For example, three such 
translations are: 

a) L.h A d+’ z) y 
b) La A 7LL+ 3 y (9) 
c) La A Ld+ 3 y 

Reflective reasoning principles 
The systems RN and NRN are minimal rules tha.t might 
be used by an agent reasoning a,bout its own beliefs. 
They have the nice characteristic of giving minimal sta- 
ble sets, and so are somewhere between strongly and 
moderately grounded. But are there other reflective 
reasoning principles that could be incorporated? In this 

section we will give a partial answer to this question by 
examining several standard modal axiomatic schemata, 
and showing how some of them are appropriate as gen- 
eral reasoning principles, while others must be regarded 
as specific assumptions about the relation of beliefs to 
the world. 

The most well-known modal schemata are the follow- 
ing. 

Ii-. L(4 3 Icl) > (L4 > Lti) 
T. L4 14 
D. L$ > lL+ (10) 
4. L4 3 LL4 
5. 7L4 > L-L4 

The first question we could ask is: which of these 
schemata are sound with respect to the semantics of 
amalgamated belief sets. ? It should be clear that Ii’, 4 
and 5 are all sound, since if their antecedents are true of 
a stable set, then so are their consequents. The schema 
D is true only of consistent stable sets, as we might 
expect, since it says that a sentence can be in a belief 
set only if its negation is not. 

The schema T, on the other hand, is not semantically 
valid. It is possible for an agent to believe a fact 4, but 
that fact may not be true in the real world. Asserting T 
for a particular fact 4 says something about the agent’s 
knowledge of how his beliefs are related to the world, 
and causes different reasoning patterns to appear in an 
agent’s inferences about his own beliefs. 

Here is a short example of how the sentence Lp 3 p 
could be used by an agent. Consider the propositions: 

p = The copier repairman has arrived 
Q = The copier is ok 

Suppose an agent believes that if he has no knowledge 
that the repairman has arrived, the copier must be ok. 
Further he believes that the copier is broken. We rep- 
resent this as: 

A=(-q,TLp>q). (11) 
The premises A do not have any NRN or AE extension, 
because while Lp is derivable, p is not. One solution is 
t(o give the a.gent confidence in his own beliefs, e.g., 

A’=(~q,lLp>q,Lp>p). (12) 
Now there is an NRN-extension in which p is true, since 
from Lp the agent can derive p. It is as if the a.gent says, 
“I believe tl1a.t p, therefore p must be the case.” 

Although one might not want to use this type of rea- 
soning in a particula,r a.gent design, the point is that T 
saactions a. certain type of reasoning about the connec- 
tion of beliefs to the world, and is thus a “nonlogical” 
a.xiom, similar to 7Lp > q. 

Different modal systems can be constructed by com- 
bining the different, modal schemata with the inference 
rules Ta.ut and Necessitation. Using our previous defini- 
tion of inclusion, we show the following relations a.mong 
the different, versions of S-extensions. 
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Proposition 12 The following diagram gives all the 
inclusion relations of ideally grounded extensions based 
on the modal systems formed from the schemas K, T, 
D, 4, and 5. 

the world. These systems do not respect sound au- 
toepistemic reasoning, and are not included in AE logic: 
the extensions generated using instances of T can dif- 
fer significantly from AE extensions. In fact, if the 
AE fixed-point equation (4) is supplied with the ax- 
iom schema T, then it degenerates into monotonic S5 

SG - NR 0 ----PK,KD 
[9, lo]. This is because it interacts with the positive 

---P AE assumptions LTo, producing arbitrary ungrounded be- 

a 

liefs. In ideally grounded logic, the T schema can serve 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . a useful representational purpose, and all modal sys- 

tems, including S5, produce nonmonotonic fixed points. 
T - s4 _o s5 

Modal nonmonotonic logics 
Proof. We will sketch the technique for two exam- 

ples. The basic idea is to consider a theory con- 
taining variations of the pair of sentences Lp 1 p, 
-Lp 1 p. This theory has the single extension with 
kernel Cn(p). For the system Ii’, consider the pair 
Lp 3 p, lL(p A p) 3 p. This theory has no RN ex- 
tensions. But it does have a I<-extension, since in the 
system Ir’ one infers p. Hence K extensions and RN 
extensions are distinct. For the schema 4, consider 
the pair of sentences LLp 3 p, -L(p A p) > p. No I< 
or RN extensions exist; but there is a 1<4 extension, 
since in K4 the pair infers p. Similar pairs can be 
found for the other systems. I 
The top half are systems whose extensions are all 

subsets of AE logic. SG sta.nds for strongly grounded 
AE extensions, and MG for moderately grounded. The 
minimal ideally grounded system is NRN, and the max- 
imum is K45 or KD45, which is equivalent to MC (see 
[5]). An ideal introspective agent would use KD45 ex- 
tensions, which we call ideal extensions. Note that the 
schema D does not make any difference as far as ide- 
ally grounded extensions are concerned; in effect, the 
agent cannot use reasoning about self-belief to detect 
an incoherence in his beliefs. 

In fact all of the systems from NRN to KD45 are very 
similar. Their only difference comes from premise sets 
that contain sentences of the form 

‘LPIP 
cu>P, 

where a > Lp is a theorem of the modal system. For 
example, in li’ we have L(p A p) > Lp, and a premise 
set as above with a = L(p A p) would distinguish Ii’ 
from NRN, in that the former would have an extension 
containing p. Similarly, a = 1LlLp could be used for 
1<5. But the sentence ‘Lp 1 p is generally not one that 
captures a useful introspective reasoning pattern, and 
would probably not occur by design in an application. 
There thus seems to be no practical difference between 
NRN and KD45, since the additi0na.l axioms do not 
result in potentially interesting reasoning patterns. 

The second tier is present, for forma,1 completeness. 
The axiom schema T, we have argued, is a useful wa.y 
of characterizing a domain-dependent and proposition- 
dependent connection between the agent’s beliefs and 

Modal nonmonotonic 
fixed point equation: 

logics are based on the following 

where S is a modal system. McDermott [8] analyzed 
this equation for the systems T, S4, and S5. Subsequent 
investigations [12, 7] considered many other modal sys- 
tems, including most of those mentioned in this paper. 
The difference with ideally grounded extensions is the 
presence of assumptions containing nested atoms, e.g., 
-L- Lp. For an ideal agent, this amounts to an as- 
sumption of Lp, since any stable set not containing -Lp 
must contain Lp. In fact, modal nonmonotonic logics 
whose underlying modal system contains the schema 5 
are all equivalent to AE logic. And as with AE logic, 
the schemas 5 and T combine to collapse the fixed point 
to monotonic S5. 

From the point of view of ideally grounded exten- 
sions, the assumption set -LT is too “la.rge.” The 
schema 5, which in ideally grounded extensions is just 
a principle of reasoning about derived beliefs, in modal 
nonmonotonic logic also interacts with nested negative 
assumptions to produce positive ones. The inclusion 
diagram for ideally grounded extensions is almost the 
same as that for the normal modal systems serving as 
a deductive base (see [2]), except for the schema D. 
But all modal nonmonotonic logics containing the I( 
and 5 schemas (but not T) are equivalent to weakly 
grounded AE logic because of their large assumption 
set, collapsing systems that are distinct in the ideally 
grounded case. Because of this, modal nonmonotonic 
logic misses the moderately grounded endpoint. In 
fact, no modal nonmonotonic logic produces only min- 
imal stable sets: in the simplest system N, containing 
only the necessitation rule and no logical axioms, the 
premises (Lp 3 p, 7LlLp > p) have two extensions, 
Cn() and Cn(p). Only the first of these is minimal. 

Conclusion 
We have presentecl the minima.1 logic (NRN) that an 
ideal introspective agent shoulcl use. It is minima.1 in 
the sense tha.t the agent ma.kes a. minimal set of assump- 
tions about his own beliefs, a.ncl employs a minima.1 set 
of rules necessary to gua.rantee that, his beliefs are sta- 
ble. An ideal introspective rea.soner may enjoy more 
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powerful rules of introspection, for example the modal 
schemas 4 and 5, but he should keep the assumptions 
about his beliefs to a minimum. The schema T is not 
a sound axiom for an introspective agent, but can be 
used to characterize a contingent connection between 
beliefs and the world. 

The concept of ideally grounded extensions first ap- 
peared in [5], where the system KD45 was presented 
and proven equivalent to moderately grounded AE 
extensions.’ Fixpoints of the systems T, S4 and S5 were 
introduced under the name of nonmonotonic ground 
logics in [14], and it was shown that the S5 logic was 
nondegenerate and consistent, i.e., does not reduce to 
monotonic S5, and always has an extension. 

Ideally grounded logic might be employed in an anal- 
ysis of metatheoretic systems, such as the DEMO and 
SOLVE predicates in logic programming [l, 33. Using a 
predicate to represent provability can cause problems 
with syntax and consistency (see [4] for some com- 
ments). Instead, this research suggests using a modal 
operator, and defining a theory by the fixed point def- 
inition (2). Some appropriate notion of negation-as- 
failure would be used to generate the assumptions, and 
the rest of the fixed point could be calculated using the 
reflection rules. 
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