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Ahtract 

This paper discusses discovery of mathemati- 
cal models from engineering data sets. KEDS, 
a Knowledge-based Equation Discovery System, 
identifies several potentially overlapping regions in 
the problem space, each associated with an equa- 
tion of different complexity and accuracy. The 
minimum description length principle, together 
with the KEDS algorithm, is used to guide the 
partitioning of the problem space. The KEDS- 
MDL algorithm has been tested on discovering 
models for predicting the performance efficiencies 
of an internal combustion engine. 

that the phenomenon being modeled is homogeneous, 
and are unsuitable for engineering problems. KEDS, 
in addition to being a model-driven empirical discov- 
ery system, can also be viewed as a coatceptzsal clus- 
teting system, which pastitions the data into regions 
based upon the mathematical relationships that it dii- 
covers between the domain variables. The intertwining 
of the discovery and partitioning phases enables KEDS 
to overcome many of the problems involved in learning 
relationships from engineering data. 

It is well known that to achieve the objective of 
best classifying unseen data, it is not always best to 
construct a perfect model, which predicts every sin- 
gle data point in the training set without any error. 
Greater accuracy in the prediction of new data is of- 
ten achieved by using an imperfect, smaller model 
[Breiman et al., 19841, rather than one that may be 
over sensitive to statistical irregularities and noise in 
the training set. While cross-validation techniques 
may help to avoid over-fitting, they are fairly expen- 
sive. The minimum description length (MDL) priuci- 
ple [Bissanen, 19851 is an elegant and powerful the- 
ory, that balances model complexity with model er- 
ror. In combination with KEDS, the Knowledge- 
based Equation Discovery System [Rao and Eu, 1992; 
Rao et al., 19911, the KEDS-MDL algorithm is able to 
discover accurate and comprehensible models in engi- 
neering domains. 

Engineering phenomena are often non-homogeneous, 
namely, the relationship between the domain vari- 
ables varies across the problem space. IIowever, many 
discovery techniques make the underlying assumption 
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The output of KEDS is a single region IQ, which is 
associated with a mathematical equation bi that de- 
scribes the behavior of the variables within the region. 
Iu earlier research [Rao and Eu, 19921, KEDS was in- 
voked multiple times until all available resources were 
exhausted to produce a collection of overlapping re- 
gions. These regions were then combined to obtain 
a model that covered the entire problem space. This 
approach was very wasteful of resources. It is more 
efficient to run KEDS for a limited time, select a sin- 
gle region-equation pair from the available candidates, 
run KEDS on the remainder of the problem space, and 
so on. Bowever, while a number of metrics can be 
used to select a (l&J;) p air, many metrics (for exam- 
ple, accuracy or comprehensibility) are unsatisfactory 
because the result of evaluating a candidate (IQ,fi) 
pair provides a local, rather than a global measure 
of how well the candidate models the entire data set. 
The chosen metric should be able to select between 
two (l&J;) pairs, where the regions are of different 
sizes and cover distinct (potentially overlapping) re- 
gions within the problem space, and the equations have 
different complexity and accuracy. The MDL princi- 
ple is an ideal metric for discriminating between al- 
ternate candidates. The selection of the next region 
in the problem space is made globally by choosing the 
candidate (from those created by running KEDS for a 
limited period of time) that minimizes the description 
length of the entire data set, rather than selecting a 
candidate that optimizes a local metric (for example, 
selecting the most accurate (R, f) pair). As empirically 
demonstrated in this paper, the models discovered by 
using MDE as an evaluation metric with KEDS, out- 
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Figure 1: KEDS: (a) Sampling the data set, (b) Computing covers, & (c) Partitioning the problem space 

perform those created by KEDS with other metrics. 
The KEDS-MDL algorithm presented in this paper is 
a multi-dimensional extension of the MDL surface re- 
construction algorithm presented in [Pednault, 19891 
(which applied to functions of a single variable). 

A variety of tools have been applied to form engi- 
neering models (see [Finger and Dixon, 19891). Sta- 
tistical techniques like CART [Breiman et ol., 19841 
and MARS [Friedman, 19911, and machine learning 
techniques like ID3 [Quinlan, 19861 and PLS [Ren- 
dell, 19831, may be characterized as split-and-fit sys- 
tems, which first partition (split) the problem space 
and then successively model (fit) each region. KEDS 
is a fit-and-split system which builds up hypotheses 
in a bottom-up fashion and partitions the problem 
space to find the enclosing region. Techniques like 
those in [Kadie, 19901 can be used to combine multi- 
ple overlapping hypotheses. Some traditional empirical 
discovery systems [Langley et oz., 1987; Falkenhainer 
and Michalski, 19861 perform well when the equations 
that best describe the data have relatively small inte- 
ger coefficients and the problem space does not have 
to be partitioned into several regions. AIMS (Adap 
tive and Interactive Modeling System [Lu and Tcheng, 
1991]), integrates machine learning and optimization 
techniques to aid engineering decision making. Con- 
ceptual clustering programs [Stepp, 1984; Fisher, 1985; 
Cheeseman et al., 19881 produce partitions superior 
in comprehensibility to those discovered via numeri- 
cal clusterings. However, the mathematical relation- 
ships that exist between attributes of the events are 
not used to partition the events. The MDL princi- 
ple has been used to infer decision trees [Quinlan and 
Rivest, 19891, for image processing [Pednault, 1989; 
Pentland, 1989; Leclerc, 19891, and for learning con- 
cepts from relational data [Derthick, 19911. 

The KEDS System 
Given : A training data set with n data points, E = 

(el,e2,... , err). Each data point e has a response (or de- 
pendent) attribute y, and P predictor (or independent) 
attributes, 2” = x1,x2,...,xp. All of y and 2; are real- 
valued and continuous variables (although nominal vari- 
ables are acceptable as well). . 

Goal : From E , build a model Q that predicts the value 

of v from any given set of values of 3: & = Q (Zi). 

In addition to the above data set, KEDS is pro- 
vided with some generalized knowledge about the re- 
lationships that we expect to find in engineering do- 
mains. KEDS generates models of the form g = F(Z), 
where F is a model chosen from a collection of pa- 
rameterized polynomial models provided to, KEDS. For 
the experiments in this paper we have considered five 
different families of parameterized models: y = a, 
Y =ax+-b, y = ax2 + bx + c, y = axI + bx2 + c, and 
Y = ax1 + bx2 + cx3 + d, where the x’s are the nominal 
parameters of F (the names of the real-valued predic- 
tor variables pi that are assigned to F), and a b . . . 
are the real-valued parameters (coefficients discovered 
by KEDS). The equation templates provided to KEDS 
correspond to the basis functions used in statistical 
methods like linear regression. Since the domain can be 
non-homogeneous, the underlying function that gener- 
ated the data is assumed to be of the form {RI 3 y = 
J%(x) + p(m), R2 SJ y = h(x) + p(m) . . .) where 
p(u) represents a O-mean Gaussian process, and & is 
a region in predictor space. 

The KEDS algorithm consists of two-phases: discov- 
ery and partitioning. The partitioning is model driven 
and is based upon the relationships that are discovered 
from the data, while the discovery process is restricted 
within the boundaries of the regions created by the 
partitioning. In the initial discovery phase, an equa- 
tion template F is chosen and the data set E is sampled 
to determine the coefficients of a candidate equation, 
f. This is illustrated in Figure l(a) for the template 
Y = ax + b, where two separate candidate equations 
are created (based on two distinct instantiations of the 
initial discovery phase). Note that the horizontal axis 
in Figure 1 is multi-dimensional, representing the P- 
dimensional space of predictor variables. 

In the partitioning phase, the deviation Ayi between 
the actual and predicted value for each data point ei, 
is converted into a positivity score via a score function. 
This is illustrated in Figure l(b) for a very simple score 
function, where all data points with deviation Ay; 5 E 
are assumed to be positive examples of fwith a score 
of 1, and all other data points are negative examples 
with a score of 0. The training data set E is partitioned 
over the space of predictor variables to isolate regions 
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1. For a template F with k unknowns, repeat Step 2 below, 
N(F, k, S) (see Equation 1) times. 

2. Initialize S to k random samples from the data set E a 
3. Discovery: determine the k coefficients of f from S. 
4. Partitioning: (a) For all examples in E , compute 

positivity-score( f , e;) = exp( -( Ay;)2/2u2). 
(b) Partition E to return regions Rwith high score. 
(c) for crll R; (subject t o m): set S to events e E Ri. 

5. Return to Step 3 and refine f, until f ceases to improve. 

Figure 2: The KEDS algorithm 

with a low error (Ce., high score), as in Figure l(c). 
The score for a region is the average of the scores of 
the data points in the region. The discovery phase 
is then invoked in each region to refine the candidate 
equation. Since we are using polynomial equations, we 
can perform multi-variable regression over the events 
in the region to improve the values of the coefficients. 
The KEDS algorithm is summarized in Figure 2. 

KEDS uses three parameters to control its search 
for formulae. The accuracy parameter, is a score func- 
tion that converts the deviation into a positivity score. 
The score function creates a transformation of the 
data set, wherein the score associated with each data 
point measures the likelihood that the data point is 
correctly predicted by the candidate equation. The 
sim le score function shown in Figure l(b) was used 
in Rao et al., 19911. The score function used here, P 
eXp(-(Ay@/2u2), is the normalized probability den- 
sity function for a normal distribution (see Figure 2). 

The size parameter, m, is the minimum fraction of 
the events in the data set that must be described by a 
equation. For the two regions A and B found in Fig- 
ure l(c), region B is rejected because it covers fewer 
events than permitted by m. The cover of the formula 
f is modified to (the set of events in) region A. Note 
that the regions A and B are hypercubes in the P- 
dimensional predictor space. The choice of PM [Ren- 
dell, 19831 as the partitioning algorithm imposes the 
constraint that these regions be defined by conjunctive 
concepts over the discriminant attributes. 

The confidence parameter, 5, controls the number 
of times N(F), that the KEDS algorithm is called for 
a given template F. If all 6;: data points are chosen 
from a region associated with an equation, experiments 
with synthetic data sets with added Gaussian noise 
have shown that KEDS quickly converges to the correct 
equation and region. KEDS find regions that cover m 
fraction of the events with a (high) probability (1 - a). 
If a given template F has I% unknown coefficients, then 
it follows that the total number of times N(F), that 
the KEDS algorithm needs to be instantiated for F 
(Step 1 in Figure 2), is: 

N(F) 2 
log 6 

log(1 - mk) 

According to the Minimum Description Length priu- 
ciple [Rissanen, 19831, the theory that best accounts 
for a collection of observations E = {el, e2, . . . , e,) is 
the one that yields the shortest description [Bissanen, 
1985; Barron, 19841. Therefore, the best theory to in- 
duce from a set of data will be the one that minimizes 
the sum of the length of the theory and the length of 
the data when encoded using the theory as a predic- 
tor for the data. Let Q be a model created from the 
region-equation pairs discovered by KEDS. Then the 
model that will be the best predictor of yet unseen data 
will be the model & , that minimizes the length: 

~(Q,E)=C(&)+d:(EIQ) (2) 

where C (& ) is th e number of bits required to encode 
the model & , and t (E ]Q ) is the number of bits 
needed to encode the &#erence between the training 
data set and the values predicted for the events in 

by Q . The L (Q ) term in Equation 2 corresponds 
to a complexity penalty (increasingly complex models 
will require a greater number of bits to encode) and the 
C (E ] & ) term corresponds to an error penalty. These 
two terms create a balance between modeling the data 
accurately and overfitting the data. 

There are different encoding techniques that can be 
used to encode the total code length L: (Q , E ). It 
is important that these coding techniques be efficient. 
An inefficient method of coding the model will penal- 
ize larger models too heavily, and will result in the 
selection of smaller models with large error. Similarly, 
an inefficient method for coding the difference term 
C (E 1 Q ), will result in complex, overly large models 
being selected. 

Encoding the Model - L (Q ) Consider the sim- 
ple case where the model is composed of exactly one 
equation f (i.e., Q = f ). As we are working with a 
fixed family of models, such that the description of the 
family does not depend upon E or the parameters used 
in the models, L (f) is the cost of encoding the fam- 
ily F of f, plus the cost of encoding the values of the 
parameters in d. For the experiments in this paper, 
we have considered five families of models (Section 2). 
Therefore, the cost of encoding F is log 5 bits (all loga- 
rithms in this paper are base 2). If F takes w predictor 
variables and all the P predictor variables can be as- 
signed to F with equal probability, then encoding the 
nominal parameters off costs log (f) bits. Each of the 
u real-valued coefficients off requires i log 7~ bits [Ris- 
sanen, 19831 to encode. An additional $logn bits are 
needed to encode u2, the value of the variance used 
later in Equation 5 to calculate the difference term. 

c (f) =log5+log(,B)+ y- (u+ ‘)logn (3) 

As the domain is non-homogeneous, & is a 
piecewise-continuous model that is a collection of 
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region-equation pairs. If Q is divided into T regions 
[RI,... R,.] and a unique equation fj is associated with 
each region Ri, then the cost of encoding & is 

7 ? 

j=l 
? 

j=l 

= Wr) + xlL tRj) + L (fj)l (4) 
j=l 

where X(T) is the number of bits require to encode the 
integer T. According to the Elias-Cover-Rissanen prior 
for integers, the number of bits needed to encode T is 
log*(P+1)+4J l ssanen9 19831. Mowever, this encod- 
ing is optimal only for relatively large integers, and is 
inefficient for the small number of regions that occur 
in & . It is more efficient to use a fixed number of bits 
to encode T. Note that when comparing two models, 
the A(V) term cancels out and can be dropped from 
Equation 4. 

A region R is a hypercube in the space of the pre- 
dictor variables Z9 and is defined by a collection of I 
intervals on some, none, or all of the l? predictor vari- 
ables. Instead of using the Elias-Cover-Rissanen prior 
to encode I, it is more efficient (for small P) to use 
P bits to indicate the presence or absence of each of 
the predictor variables. An interval over the variable 
zj can be written as [loj < zj < hij]. While it is pos- 
sible to encode both the interval end points loj and 
hii, we note that for an arbitrary interval either loj 
or hij could be the boundary value for variable zj. 
We can take advantage of this and significantly reduce 
the code length for intervals that begin or end at a 
boundary value, while increasing it slightly for other 
intervals. To encode the three different possibilities 
(i.e., either loj or hij is a boundary value or neither is) 
costs log3 bits. If L is the number of bits to encode 
an interval end-point that is not a boundary value, an 
additional L or 2L bits are needed to encode the inter- 
val completely. Encoding the interval end-points with 
full precision costs log n bits, but this is obviously too 
costly as we only use i log n bits to encode the param- 
eters for f. Encoding with reduced precision is used to 
get a smaller cost for L. 

Encoding the Difference Term - L (E IQ ) 
Again, consider the case when Q is composed of a 
single function f. To encode the data points in E 9 
the difference between the actual value of the response 
variable y and the value jj predicted by the model Q is 
analyzed statistically by viewing the difference as a 
random process. This random process along with the 
model Q induces a probability distribution p on the 
data points, where p is the maximum likelihood func- 
tion. From the Shannon coding measure in information 
theory [Gallager, 1968]9 we can encode the data points 
using a number of bits equal to the negative log likeli- 
hood (- log p(E )). When Q is a collection of regions, 
Equation 5 (below) is applied to each region. 

C (E IQ) = AYZ % 10g(2?ra2) + log e x s (5) 
e;EE 

Encoding the Exce An individual (R, f) 
pair can be encoded by ns 4 and 5. Our goal is 
to evaluate the entire model, and yet somehow select 
equations one at a time rather than having to evaluate 
the model only after it is completely formed. We do 
this by dividing Q into two models: Qeqn, consisting 
of all the equations chosen in & 9 and Qeze, 
of all the exceptions in Q (i.e., the events in 
not covered by the equations in Qepn). Qezcls enco 
by fitting the exceptions to an averaging model (the 
mean value of the exceptions). The code length of the 
averaging model is computed using Equation 4, while 
Equation 5 is used to calculate the difference term for 
the exceptions. The code length L (QcZc) is a measure 
of the randomness of the exceptions. 

e Variance The nearest neighbor 
alculated by using the nearest neigh- 

bor of a point in a normalized predictor variable 
space as the best estimate $. The true variance 
of Eis assumed to be CY~ = u&J2 [Stone, 1977; 
Cover, 19681. Note that u must be estimated sepa- 
rately for each region (the only assumption made is 
that the variance is constant within a region). Encod- 
ing the value of u accounts for the extra !J log n bits in 
Equation 3. 

Once a region has been modeled by an equation 
f 9 the deviation from f itself can be used to calcu- 
late u. Then the cost of encoding the difference term 
for a region (from Equation 5) reduces to L (R ] fi) = 
ni log(&%). This seems counter-intuitive at first; 
for low values of u, the code length L (& ] fi) is nega- 
tive. Mowever, the t~-~ term in Equation 5 should actu- 
ally be a a2/lJ2 term, where l? is the precision used in 
representing the data. Obviously I’ < u and log(u/r) 
will always be positive. Note that when comparing two 
candidate equations, the log(l/y) term cancels out, 
and therefore, can be ignored. The value for the code 
length t (E IQ ) is simply a relative rather than an 
absolute value. 

L Algorithm The KEDS-MDL al- 
gorithm (summarized in Figure 3) calls KEDS itera- 
tively and uses MDL as an evaluation metric to select 
the best candidate at the end of each loop. The to- 
tal available resources, N(F) for each template F are 
calculated via Equation 1, and are divided among I 
iterations. At the end of each iteration the candidate 
that minimizes the description length L (Q ) of the 
data set, is added to Qeqn, and the data points within 
the region are removed from Qezc. This continues until 
no exceptions remain or the description length cannot 
be reduced. For the purposes of this paper, the avail- 
able resources N(F) are divided equally among the I 
iterations. 
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1. 
2. 
3. 

4. 
5. 

Table 1: Predictor 8c Response variables in OTTONET (IC engine simulator) 

Q eqn = (), &em = (E}, determine Mi(F), i 5 I. 
For each F, call KEDS iVi(F) times. 
For each R, f : Qesc = Qeac - R, Qeqn = Qeqn + f . 
Compute d: (Q ). 
Select R, J that minimizes L (& ). 
Return to (2) unless Qezc = () OP I iterations done. 

Figure 3: The MEDS 

Ottonet [Assanis, 19901, a simulator for an internal 
combustion engine, was used to provide the data for 
KEDS. The predictor (input) and response (output) 
variables for the internal combustion engine domain 
are shown in Table 1. The input variables were ran- 
domly varied over the ranges shown in Table 1, to gen- 
erate 300 events, 50 of which were randomly set aside 
to create a test set. The remaining 250 events were 
used as a training data set for the two sets of experi- 
ments described below. 
Experirment : In the first series of experiments, the 
parameters were set at 1pz = 0.3 and 6 = 0.1. Three 
separate experiments were run. (a) KEDS was run in 
a breadth first fashion and the results were combined 
at the end to produce a model. (b) KEDS-MDL was 
run with the same resources as in La. (c) KEDS-MDL 
was run again with the available resources reduced by 
a factor of 10. In the KEDS-MDL experiments (Lb 
and I.c), the available resources were divided equally 
among four iterations (i.e., Ni(F) = N(P)/4,i <, 4). 

The models were used to predict the attribute val- 
ues of the test events (the test events were not part 
of the data set seen by KEDS). The models were eval- 
uated in terms of the predictive error and the model 
creation time (in seconds on a DECStation 5000). The 
results are summarized in Table 2. Note that even 
with the same available resources, KEDS-MDL (Ex- 
periment Lb) took less time than in Experiment La. 
This is because the limitation of available resources 
refers to the maximum number of times M(F) that 
the KEDS algorithm may be called. On the surface, 
although the KEDS algorithm appears to be indepen- 
dent of the number of data points n, the discovery and 
partitioning steps (Steps 3 and 4 in Table 2) depend 
heavily on n. As KEDS-MDL discovers regions and 
adds them to Qeqn, n decreases on each iteration. 

What is also very interesting is that even when 
provided with limited resources (one-tenth that avail- 
able in La and Lb), KEDS-MDL learned models that 

were extremely competitive with those that had been 
learned using full resources. This indicates that the 
MDL metric, is effective even with extremely limited 
resources. 

xperiment : These series of experiments were de- 
signed to compare the performance of different metrics 
for model discovery. Using the same limited amount of 
resources available in 1.c above, a second series of ex- 
periments were run with the following four metrics for 
model selection: (a) MDL (identical to I.c), (b) UCCU- 
rcacy, the most accurate equation was chosen, (c) gize, 
the region that covered the maximum number of events 
was chosen, and (d) goodness (= accuracy * size). In 
each iment the appropriate metric was used in 
place DL in Steps 3 and 4 in Figure 3, to choose 
a region-equation pair in each iteration. 

The generated models were evaluated for predictive 
error for all the response variables. The results are 
presented in Table 3. As can be seen KEDS-MDL out- 
performed the KEDS algorithm using other metrics. 
Below is the model created for the response variable 
qVOr in Experiment IIc (using KEDS-MDL with lim- 
ited resources). 

[CR > 7.21 [IPI > 0.5731 * 
?&lo1 = 0.63 CR + 18.78 PI + 75.3 

ELSE [PI < 0.5731 q 
%I 01 = 1.88 CR + 50.03 PI - 1.68 @ + 48.88 

Csnclusions 
In this paper, we have defined an encoding schema 
for the models discovered by KEDS, and demonstrated 
that MDL can be used as an evaluation metric to effi- 
ciently acquire models from complex non-homogeneous 
domains. In the future we intend to apply KEDS- 
MDL to other engineering domains, such as modeling 
the delay of a VLSI circuit. KEDS will be enhanced 
so as to consider domain knowledge other than equa- 
tion templates (for example, analyzing the topology of 
a VLSI circuit to determine various possible critical 
paths). The KEDS-MDL algorithm was motivated by 
our overall goal of developing a methodology to sup- 
port engineering decision making. Under this method- 
ology, called inverse engineering, the models discovered 
by KEDS-MDL will be used to directly support synthe- 
sis activities in engineering decision-making. This will 
greatly reduce design iterations and take advantage 
of the design expertise already captured in computer- 
based analysis tools. 
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Var (a) Breadth-first (b) KEDS-MD& (c) KEDS-MDL:( I/IO) 
Error RunTnne (s) Error RunTune (s) Error RunTIme s 

V9T 0.00639 4701 0.00312 1411 0.00685 89 . 
rlrcet 0.00765 1956 0.00724 572 0.00838 237 
TV01 0.00511 5151 0.00365 1222 0.00395 168 _ 

Table 2: Experiment I: Comparing KEDS (breadth-first) with KEDS-MDL 

0 Metric 11 Error: qfl 1 Error: Get 1 Error: qvor 1 

Table 3: Expt II: Predictive Error for different Metrics 
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