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Abstract

Temporal reasoning is widely used in Al, especially for
natural language processing. Existing methods for
temporal reasoning are extremely expensive in time
and space, because complete graphs are used. We pre-
sent an approach of temporal reasoning for expert sy-
stems in technical applications that reduces the amount
of time and space by using sequence graphs. A sequence
graph consists of one or more sequence chains and
other intervals that are connected only loosely with
these chains. Sequence chains are based on the observa-
tion that in technical applications many events occur
sequentially. The uninterrupted execution of technical
processes for a long time is characteristic for technical
applications. To relate the first intervals in the applica-
tion with the last ones makes no sense. In sequence
graphs only these relations are stored that are needed
for further propagation. In contrast to other algorithms
which use incomplete graphs, no information is lost
and the reduction of complexity is significant. Additio-
nally, the representation is more transparent, because
the “flow” of time is modelled.

Introduction

In many Al applications reasoning about time is essential
and therefore several techniques for the explicit representa-
tion and processing of time have been developed. Most of
these techniques use graph theoretic models, with time
entities as nodes and temporal relations as edges. The ap-
plication area we have in view is the control of technical
processes which involves planning, scheduling, monito-
ring, and diagnosis. In contrast to areas like NLP, special
characteristics exist in this domain that require appropria-
te techniques, but may be used also to improve the pro-
cessing.

Existing methods for temporal reasoning are extremely
expensive in time and space, because general constraint
propagation techniques are applied. In our approach, the
characteristic of most real-time applications is considered.
In these applications programs run for a very long time
without interruption. A controlling program loops for-
ever and some temporal constraints are used seldom and

others more often. Moreover, in scheduling and planning
we have to tackle uncertainty about the future, which im-
plies the necessity to represent this uncertainty effi-
ciently.

Before introducing the representation and the propaga-
tion based on this model, we show why temporal reaso-
ning is useful in this application area and which objecti-
ves should be achieved with a new technique. Additio-
nally, we discuss other approaches that have similar ob-
jectives.

Temporal reasoning is used to assure or to prove con-
sistency between a set of temporal qualified propositions.
If a proposition is added that is not consistent with the
existing knowledge base, either the new proposition is
invalid or some of the old propositions are wrong. This
decision cannot be supported by temporal reasoning. It
has to be decided with causal reasoning of some kind.

The temporal consistency mechanism is used for diffe-
rent tasks. In planning (Allen 1991) the inconsistency in-
dicates that a chosen action is not appropriate for a given
goal. Either the action is inconsistent with the goals or
the set of propositions describing other actions and facts
in the planning environment is inconsistent with the cho-
sen action. It is also possible that a new goal is inconsi-
stent with the knowledge base. This states that it is im-
possible to achieve this goal and replanning is needed.

In scheduling of production processes (Dorn 1991)
temporal reasoning is used to represent temporal con-
straints like delivery dates, durations of operations, slack
times, and the temporal description of process plans.
Usually the inconsistency indicates that a resource needed
is used by another operation at the same time.

In process control and diagnosis (Nokel 1989) temporal
reasoning can be used to recognize deviations between the
expected course of the process and that course that ac-
tually happens.

Another purpose of temporal reasoning is the computa-
tion of new knowledge. New knowledge about temporal
constraints can be deduced with intersection and transitive
conclusions. In planning, the sequence of actions can be
deduced and the start times for actions can be computed.
In diagnosis, a new hypothesis may be concluded or time-
outs for supervision can be computed through temporal
constraints.
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One of the first described applications that has used
some kind temporal reasoning was that of (Kahn & Gorry
1977). The system was not based on a graph theoretic
model and was therefore more transparent for a user of
this system, but was also restricted to a small application
area. A concept called before/after-chains was used, that
influenced our idea for the propagation of intervals.

Most popular and also a basis for our representation is

the model of (Allen 1983). Unfortunately, this model is
not very transparent and does not show the “flow” of
time, because every interval in the interval graph is uni-
form and all intervals are connected with each other. Mo-
reover, the space requirements for the representation of
the complete graphs and the time needed for the propaga-
tion is very high.

Often time point calculus instead of interval calculus is
proposed to reduce the amount of work to achieve a con-
sistent graph. In (Vilain, Kautz, & van Beek 1990) it was
shown that the global consistency for the time point con-
sistency is achievable in polynomial time, but this ad-
vantage must be paid by a lower expressiveness. In plan-
ning and scheduling a usual constraint is to rule out that
two intervals overlap. In Allens model this is expressed
by I1 {<, m, mi, >} Ip, but in the time point calculus
such a constraint cannot be expressed.

In order to reduce time and space requirements, in
(Allen 1983) reference intervals were proposed. Since he
has not given any rules on the generation of reference in-
tervals, information may be lost in this model. Hence, in
(Koomen 1989) rules were given to construct reference
intervals automatically by a program. Here, a reference
interval must contain its intervals and therefore no infor-
mation is lost and the computation of the relation bet-
ween two intervals that are part of different reference in-
tervals is easier. However, for applications that we have
in view, reference intervals are not the adequate represen-
tation, because a hierarchical representation is used spar-
sely.

In (Dechter & Pearl 1988) heuristic ordering for con-
straint graphs was proposed, to improve the general con-
straint satisfaction problem. Such a kind of ordering
could be the “flow” of time. In (Ghallab & Alaoui 1989)
an algorithm was proposed to order intervals temporally
and they have detected that the propagation process can be
sped up with this technique. Their model consists of two
graphs: one graph with all intervals which can be ordered
definitely and one graph with intervals that can not be or-
dered, because their relations are uncertain.

We will now present a model of representation and pro-
pagation that uses some of these ideas. We use the con-
cept of “flow” of time in a graph theoretic model and ob-
tain thus a kind of an ordered constraint graph.

Sequence Graphs

We have mentioned that the uninterrupted execution of
technical processes for a long time is typical for our ap-
plications. A controlling program loops forever but the
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involved intervals and their constraints may differ. Arran-
ging intervals of the process along a time axis we obtain
a figure that is stretched along a hypothetical time axis.
The parallelism in the process is comparatively few in
contrast to the amount of intervals over the whole lifeti-
me of the process.

The following example is typical for a technical pro-
cess. It is a simplification of a set of intervals from a
scheduling expert system in a flow shop (Dorn & Shams
1991). The different processes described by intervals is a
simplification of the treatments for one charge. The set of
intervals and their temporal constraints can be interpreted
as a process plan. In the following discussion we use
only this process plan, but the reader should have in mind
that a lot of process plans must be combined in order to
get one schedule. Important temporal constraints will be
between intervals of different process plans and therefore
it would not make much sense to use a reference interval
for a charge. The scheduling expert system has to com-
bine approximately 200 process plans for one week.
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Figure 1: Process Plan described by Intervals

These intervals and their relations can be represented in a
complete graph with 21 edges. Sequence graphs are ba-
sed on the observation that a complete interval graph con-
tains a path, where all intervals are constrained to occur
one after another. This path is called sequence chain.
Obviously, several chains may exist in one sequence
graph. Applying sequence graphs, not every constraint is
represented, because the transitivity property of the se-
quence chain is used. The complete graph of the process
plan can be reduced to the following graph:

Figure 2: A Sequence Graph

One of the sequence chains emphasized by a bold line
consists of the intervals ig, i3, i4, i5, and ig. It is is a
special subgraph with uniform edges. We can deduce, that
ip is before iy, because iy is before i3 and i3 is before ig.
No explicit transitivity rule is needed, because the rela-
tion is obtained from the position of both intervals in the
chain.

The other intervals have to be connected explicitly to
the sequence chain. But only relations to intervals which
occur simultaneously have to be represented. The advan-
tage of transitive chains is the reduction of edges in the
graph and by that the amount of work and space. But we



have to show that no information about the interval con-
straint is lost and every inconsistency is found.

In (Hrycej 1987) it was described how transitivity
chains may be used to reduce the complexity of interval
algebra. He has used Allen's algorithm for transitive
closure, but has changed the procedure “comparable”. Af-
ter the insertion of a new edge, superfluous edges are dele-
ted. We improve this algorithm by deleting edges earlier.
Thaus, our algorithm is faster than that described by Hry-
cej. Furthermore, we use a stronger citerion to eliminate
edges. Thus, we obtain also graphs with less edges.

Representation

We represent temporal knowledge by intervals and con-
straints between these intervals. Sequence graphs are in-
tegrated into a tool called TIMEX (Domn 1990) that uses
Allen's relations. These are 13 mutually exclusive simple
relations between intervals that are abbreviated by follo-
wing symbols: =, <, >, m, mi, o, oi, d, di, s, si, f, fi.

Through disjunction of simple relations more complex
relations can be formulated. These are interpreted as edges
of an interval graph and they are represented as triples: R
= (11, C, Ip). To simplify theorems later on, we introduce
predicates for some complex relations.

unknown(C) <
C= (=, <,> m, mi,o,0id, di,s,si, f, fi} A
unknown(Iy,I2) & R = (I1, C, I2) A unknown(R)

sequence(C) & C = {<, m} A sequence(I, I2) <
R = (11, C, In) A sequence(R)

starts-before(C) & C = {<, m, 0, di, fi} A
starts-before(I1, I) <> R = (13, C, I2) A sequence(R)

finishes-after(C) «» C = {>, mi, di, si, 0i} A
finishes-after(Iy, I2) <> R = (I3, C, I2) A sequence(R)

Definition 1: Complex Interval Relations

A transitive relation can be defined in a table as introdu-
ced by Allen. We use the function “trans(Cj, Cp))” to
denote transitive relations. The “unknown”-relation will
be represented in graphs, but we can not generate further
knowledge out of them. By truth tables it can be shown
that the transitive relation of two relations is the “un-
known”-relation, in case that one of them is unknown.

unknown(C1) v unknown(Csp) — .
unknown(trans(C1, C2))

Theorem 1: Transitivity of “unknown”-relation

An interval graph is a pair (3, R) consisting of a finite
set of intervals § and a finite set of interval relations R.
All intervals of such a graph must be connected.

intervalGraph({S, R)) » V{(I1,C,I) e R
[l1e SAalbe 1AV, Iz e 3 [connected(]y, I2)]

Definition 2: Interval Graph

Two intervals are connected if a path exists between
them in the interval graph. Such a path may contain also
“unknown”-relations.

connected(I;,I2) <> (3, R)A 11, e S
3(1},C,Ip)e Rv(I),CLI})e Rv
3 I3 [connected(I1, I3) A connected(I3, I2)]]

Definition 3: Connection of Intervals

A sequence graph is an incomplete interval graph, be-
cause the properties of a sequence chain are used to reduce
the number of edges in the graph. A sequence chain is a
subgraph where all constraints are sequence constraints.

sequenceChain((3, R)) «
V {1, C, I2) € R A sequence(C)

Definition 4: Sequence Chain

If an edge between two intervals I; and Ip exists, then
there is no knowledge about an interval I3 that occurs
between both intervals. Or with other words, there is no
interval between two explicit connected intervals.

sequenceGraph((3, R)) »> VI, Ihe I A
(I,C1, h)e R—-T13e 3
[sequence(ly, I3) A sequence(I, I7)]

Axiom 1: Sequence Graph

Query for interval constraints

Since sequence chains are used the query for interval con-
straints is not so easy as in complete graphs. If the rela-
tion between two intervals that are not connected expli-
citly is asked, we must search for a path in the graph bet-
ween the two intervals. However, this graph search is
straightforward, because it must be searched only in one
direction of the sequence chain. The relation could be
only before or after.

Suppose we are looking for the constraint between the
intervals Ij and I5. If there is no explicit edge between
the two corresponding nodes in the graph we have two
possibilities — I is before I3 or vice versa. If we have de-
cided on one direction and this direction is right we never
backtrack. The asked interval must be part of the sequence
chain or it is connected explicitly to another interval in
the sequence chain.

before-in-sequence-chain(I, Ip) <>
-3, C1,I2)A3 I3
[before(I1, I3) A 3 (I3,C, I2) v
before-in-sequence-chain(ls, I2))]

Theorem 2: Searching Interval Relation

For planning or scheduling applications it seems to be a
good heuristic to search into the future, because we sup-
pose that the sequence chain into the past is longer for
real-time application.
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Monotony in Sequence Chains

Some transitivity computations are not needed in se-
quence graphs, because no stronger constraint can be de-
duced. This property is called monotony.

monotone(Ciy, C2) & V C3
trans(Cy, trans(Cp, C3)) < trans(trans(C1, C2), C3) A
trans(trans(C3, C1), C2) < trans(C3, trans(Cy, C2))

Definition 5: Monotony in Sequence Chains

In (Hrycej 1987) it was shown that two “sequence”-relati-
ons are monotone, The monotony states that the con-
straint via the two relations is always less constraining
than successive constraint propagation via them. If a new
constraint C3 is added to a sequence chain {(C1, Cp), it is
not necessary to use the transitive computation via the
sequence chain.

We formulate a stronger criterion, that will be used to
reduce the edges in a sequence graph further. We only de-
mand for a theoretical point instead of an interval to be
between two intervals to make an edge between them su-
perfluous. Suppose an interval I; is during an interval I
and it is known that interval I3 is after I3. Our theorem
says that we must not represent the edge between the in-
tervals I and I3.

Ci=mAaCr=m)v (Ci€ {<,m,0,s,di} ACy=<)
v(Cae {<,m,o0,s,di} ACj=<)—>
monotone(Cy, Cp)

Theorem 3: Strong Monotony in Sequence Chains

The theorem is provable by truth tables and it captures
the property that was described in (Koomen 1989) that an
interval that is during a reference interval must not be
connected explicitly with another interval that is before or
after its reference interval.

Propagation in Sequence Graphs

The basic algorithm for propagation is similar to the al-
gorithm for transitive closure in graphs described in
(Allen 1983). A relation between two intervals is added to
a graph and also to an agenda. All tasks of the agenda are
performed in a loop. In the process of executing these
tasks other tasks may be produced.

If a constraint is added to the graph we distinguish
whether the new constraint is a sequence constraint or
not. If it is one, some constraints are deleted and some are
inserted. Otherwise, normal propagation is done.

For a task (an edge in the graph) a set of “comparable”
intervals is generated. For every such interval the transi-
tivity rule is applied in two directions. If the new compu-
ted interval constraint is stronger than the old one, the
new constraint is added to the graph and results in a new
task. The propagation algorithm terminates if no further
task exists. The termination is safe, because tasks are
only added when stronger constraints are added.
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In the next subsection we describe how the set of com-
parable intervals is computed in sequence graphs. In the
second subsection we suppose that an existing edge will
be constrained stronger so that other edges can be deleted.
In the last subsection the case is described that an edge to
a new interval is added.

Comparable Intervals

The function “comparable” computes all intervals for
which the transitivity rule is applied. In the general case,
these are all intervals that are connected explicitly with
one of the intervals of the new edge. All intervals that are
connected via an “unknown”-relation can be suppressed.

If the new constraint C1 and the constraint Co that
connects an interval I3 with the new edge are monotone,
then for I3 the transitivity rule must not be applied.

comparable({ I, Cy, Ip), Set) <>
Set = {I31(13,C2, I1) v (12, C2, I3) A
— monotone(Cy, C2)}

Theorem 4: Comparable Intervals in Sequence Graphs

Constraining two Intervals stronger

If the relation between two intervals is constrained stron-
ger and the new constraint C1 is a sequence constraint,
two sets are generated. One set 31 (“before-set”) includes
all intervals connected explicitly thru sequence constraints
with 1y so that they are before Iy and the other set 37
(“after-set”) includes all intervals connected explicitly
with I thru sequence constraints so that they are after I,
Suppose we have the following constellation:
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Figure 3: Constraining two Intervals stronger

The explicit constraints between these intervals are des-
cribed in the following graph.
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Figure 4: Sequence Graph



Suppose we constrain i3 to be before ig. Then 3 con-
sists of i) and iz and the 32 of is. Now all edges bet-

ween members of 31 and 87 and edges between i3 and

members of 7 and between ig and members of 31 are
deleted.
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Figure 5: Reduced Graph

Insertion of new Intervals

Now the case is described that a new interval is inserted
and therefore new constraints are inserted. Suppose the
followino sequence granh exist:

AQLOWALE SUQUCIRC giaphr LA
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.

If the interval i7 is inserted and the interval i3 is con-
strained to meet the new interval. Between ij resp. ig and
i7 no edges have to be added. But between i7 and iy, i5
and ig “starts-before”-relations have to be established sta-
ting that these intervals starts after i7. This interval con-
straint may be added without generation of new tasks, be-
cause we know that the interval constraints between the
intervals iy, i5, and ig do not change. We get following

graph:
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Figure 6: Insertion of a new Interval
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Figure 7: Insertion of a new Interval

If the new constraint would be a “before”-constraint no-
thing about the relations between i7 and the other inter-
valg could be concluded and therefore no further edges

have to be added.

Complexity

The complexity reduction thru sequence graphs is hard to
define for the general case, but we assume special charac-
teristics for our applications. In the next section we create
a theoretical framework to estimate the reduction of com-
plexity. In the second section we show the advantage on a
more complex example.

Theoretical Consideration

To examine the complexity of our new technique we de-
fine some new properties of sequence graphs. The width
of a graph is the maximal number of concurrent intervals
in the graph and correlates with the concept in (Dechter
and Pearl 1988).

The length of a sequence graph is the length of the lon-
gest possible sequence chain. The length of a sequence
chain is the number of intervals in the chain.

seauenceGranh (X CR\\ —

QULVAATIQIN\~ 3 v 3/ )

max(l R 1) < width((3, RY)2 * length((3, RY) - 1

This formula is nice but the reduction depends heavily on
the application. The width of a sequence graph can not be
determined so easyly. Suppose all intervals of an applica-
tion are arranged in an “overlaps”-chain, then all intervals
could be concurrent.

Practical Considerations

To get a feeling for the reduction of complexity in tech-
nical applications we take a scheduling example from the
application described in (Dorn & Shams 1991). The first
digit of the intervals indicate the number of a charge.

The constraints for one charge are: ix1 m ix2 m ix3 m
ix4 m ix5 m iyg A ix7 m ix5. The following constraints
can be deduced by propagation with sequence graphs: fi-
nishes-after(ix7, ix1) A finishes-after(ix7, ix2) A finishes-
after(ix7, ix3) A ix7 {=, f, fi} ix4. These are ten con-
straints. In a complete graph we would have 21 con-
straints for one process plan.

One important constraint connecting process plans de-
mands that two charges that use in the first treatment the
same resource are scheduled after another. We introduce
the interval ixg which describes the delay between two
charges. Furthermore, we assume that the last treatment
must be again sequential. So we constrain i15 < iz5 <
i35 < ig5.

Now we have 31 intervals connected in one sequence
graph. We have inserted 30 constraints. The propagation
algorithm deduces 143 constraints. The amount of con-
straints in a complete graph would be 32 * (31-1) /2 =
496.

Figure 8 describes the intervals of four charges.
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Figure 8: Practical Example
Conclusions References

We have presented an improved technique for temporal
reasoning that is less complex in time and space than
other known techniques. In contrast to other algorithms
no information is lost and in contrast to time point calcu-
lus the expressiveness of Allen’s interval calculus is pre-
served.

The amount of reduction in our model depends heavily
on the application, so that we can not make an universal-
ly valid estimation. But if we suppose that the average of
concurrent intervals is 1 and the length of the longest
chain is k intervals we estimate 21k edges. For a com-
plete graph it would be n * (n - 1) / 2 edges for n inter-
vals. Unfortunately, if all constraints given are “over-
laps”-relations, we will obtain no reduction of space.

Our method has one disadvantage. If there is a query for
a constraint we have to search for a path between both in-
tervals. In the complete graph we would find this con-
straint immediately as a constraint.

‘We have tested our representation with a number of ex-
amples from real world scheduling problems and in most
cases a significant reduction of time and space require-
ments were determined in comparison with pure interval
calculus. The reduction occurs preferably with large
amounts of intervals.

Nevertheless, for most technical applications the pre-
sented model is insufficient, because also quantitative re-
presentation and propagation of time is needed. Further-
more, concepts for inexact reasoning with quantitative
time is necessary and this reasoning must be combined
with the qualitative reasoning. In (Dorn 1990) we have
integrated both, and the reasoning from qualitative to the
quantitative representation is quite easy and can be per-
formed with linear effort. Unfortunately, we have not yet
found good algorithms to conclude from quantitative to
qualitative representation.
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