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Abstract 

Semantic hyper-linking [Plaisted et al., 1992, 
Chu and Plaisted, 1993, Chu and Plaisted, 
19921 has been proposed recently to use seman- 
tics with hyper-linking [Lee and Plaisted, 19921, 
an instance-based theorem proving technique. 
Ground instances are generated until an unsat- 
isfiable ground set is obtained; semantics is used 
to greatly reduce the search space. One disadvan- 
tage of semantic hyper-linking is,that large ground 
literals, if needed in the proofs, sometimes are 
hard to generate. In this paper we propose rough 
resolution, a refinement of resolution [Robinson, 
19651, to only resolve upon maximum liter&, that 
are potentially large in ground instances, and ob- 
tain rough resoluents. Rough resolvents can be 
used by semantic hyper-linking to avoid generat- 
ing large ground literals since maximum literals 
have been deleted. As an example, we will show 
how rou h resolution helps to prove bM3 [Bled- 
soe, 1990 , which cannot be proved using semantic 9 
hyper-linking only. We will also show other results 
in which rough resolution helps to find the proofs 
faster. Though incomplete, rough resolution can 
be used with other complete methods that prefer 
small clauses. 

Introduction 
Semantic hyper-linking has been recently pro- 
posed [Plaisted et al., 1992, Chu and Plsisted, 1992, 
Chu and Plaisted, 19931 to use semantics with hyper- 
linking [Lee and Plaisted, 19921. Some hard theorems 
like IMV [Bledsoe, 19831 and ExQ [Wang, 19651 prob- 
lems have been proved with user-provided semantics 
only. 

Semantic hyper-linking is a complete, instance-based 
refutational theorem proving technique. Ground in- 
stances of the input clauses are generated and a sat- 
isfiability check is applied to the ground instance set. 
Semantics is used to reduce the search space and keep 
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relevant ground instances. Size is measured based on 
the largest literal in the clause and smaller ground in- 
stances are generated first. Such an instance genera- 
tion strategy, however, imposes difficulties generating 
large ground instances of a literal since there might 
be many smaller (yet irrelevant) ones that need to be 
generated first. For example, for some LIMi- prob- 
lems [Bledsoe, 19901, a correct ground instance of the 
goal clause 

P < o)v-(lf(~s(~))-f(~>l+Ig(~s(D))-g(~)l L 4 - 
has to be generated by substituting variable D with 
min(dl(ha(eO)), d2(ha(eO))) to obtain the proof. The 
ground instance is large and, with normal seman- 
tics, semantic hyper-linking generates many irrelevant 
smaller instances and diverts the search. Similar prob- 
lems happen when large ground literals need to be gen- 
erated in axiom clauses. 

Rough resolution addresses this problem by resolv- 
ing upon (and deleting) literals that are potentially 
large. Thus large ground literals are not needed and 
proofs are easier to obtain by semantic hyper-linking. 
However, rough resolution is against the philosophy of 
hyper-linking, namely, not to combine literals from dif- 
ferent clauses. We set restrictions to reduce the num- 
ber of retained resolvents so duplication of search space 
is not a serious problem as in ordinary resolution. 

In this paper we first describe semantic hyper-linking 
in brief. Then we discuss in detail the rough resolution 
technique. An example (LIM3 problem) is given to 
help illustrate the ideas. Finally we give some more 
test results and then conclude the paper. 

yper-linking 
In this section we briefly describe semantic hyper- 
linking. For more detailed discussion, please refer 
to [Chu and Plaisted, 1992, Chu and Plaisted, 19931. 

A refutational theorem prover, instead of showing a 
theorem H logically follows from a set of axiom clauses 
A, proves A and -H is unsatisfiable by deriving con- 
tradiction from the input clauses set. Usually we can 
find semantics for the theorem (and the axioms) to 
be proved. S UC semantics can be represented by a h 
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structure which contains a domain of the objects and 
interpretations for constants, functions and predicates. 
A structure can be viewed as a (possibly infinite) set of 
all ground literals true in the semantics. A structure 1 
is decidable if for a first-order formula F it is decidable 
whether F is satisfied by I. 

According to Herbrand theorem, in the input clauses 
for a refutational theorem prover, there must be 
ground instances of some clauses (usually the nega- 
tion of the theorem) that are false in the semantics; 
otherwise the input clauses are satisfiable. In general, 
no matter what semantics is chosen, such false ground 
instances exist for the input set. This observation is 
the base of semantic hyper-linking. 

The idea of semantic hyper-linking is this: Initially a 
decidable input structure is given by the user, then the 
prover systematically changes the structure (seman- 
tics) by generating ground instances of input clauses 
that are false in the structure. We have a set U of 
ground instances, initially empty. Ground instances 
that are false in the current structure, are generated. 
User-provided semantics is used to help generate the 
new ground instances. These ground instances are 
added to U. Then the structure is changed, if possible, 
to satisfy U. This procedure is repeated with the new 
structure until U is unsatisfiable. For details, please 
see [Plaisted et aZ., 1992, Chu and Plaisted, 1992, 
Chu and Plaisted, 19931. 

Semantic hyper-linking has been shown to have 
great potential. Hard theorems like IMV (the inter- 
mediate value theorem in analysis) [Bledsoe, 1983, 
Ballantyne and Bledsoe, 19821 and ExQ (three ex- 
amples from quantification theory) [Wang, 19651 are 
proved with the user-provided semantics only. No 
other human control is needed. However, if large 
ground literals are needed for the proof, they often 
are difficult to generate because of the way the ground 
instances are generated (which is basically an enumer- 
ation of the Herbrand base). Many small irrelevant 
ground literals need to be generated before large ones 
are generated. This generates a lot of useless smaller 
ground instances to complicate the proof search and 
makes many theorems unable to be proved. Rough 
resolution is designed to address this problem. 

Rough Resolution 
The basic idea of rough resolution is simple: we only 
resolve on those literals that are potentially large in 
ground instances. Those literals- resolved ‘upon are 
deleted in the resolvents and their ground instances 
need not be generated. If such larffe ground liter- 
als are used in the proof, rough resoi&n can avoid 
generating them and help semantic hyper-linking find 
the proof faster. For example, consider the following 
clauses (x, y and z are variables): 

Cl = { v(2, Y, f(z)), +, 2) 1 
62 = { g(f(4, g(y), 4 -f(5 Y) 1 
If the following two ground instances are needed 

in the proof which needs no other instances of 
S(fWl s@(b)), f(4): 

G = i -s(fW, !7@(w~ f(c)), d(c, f(4) 1 
Ci = ( g( f (a), g(h(b)), f(c)), -f (a, h(b)) } 
We can resolve Cl and C2 upon the first literals and 

get 
c = { d(%, f (41, -f (2, Y) 1 
Then, instead of C; and Ci, a smaller ground in- 

stance 
c’ = { d(c, f(a)), -f 6% h(b)) 1 

can be used in the proof and avoids the use of larger 
g(f(a), g(h(b)), f(c)) which might be difficult to gener- 
ate by semantic hyper-linking. 

Maximum Eiterds 
Binary resolution on two clauses Cl and C2 chooses 
one literal L in Cl and one literal M in C2 such that 
LO = -MO, where 0 is a most general unifier of L and 
NM. A resolvent R=(Cl - L)B U (C2 - M)B is gener- 
ated. R is smooth if LOU is never larger than any literal 
in Ra for any a; R is rough if for some 6, L&T is larger 
than any literal in Ra. Smooth resolvents are not kept 
because they only remove small literals (the “smooth” 
parts of clauses); large literals (the “rough” parts of 
clauses) remain as a difficulty. Thus we are particu- 
larly interested in rough resolvents because they might 
remove large literals needed for the proof. Rough re- 
solvents can be obtained by resolving upon maximum 
literals. 

Definition 1 A literal L in a clause C is an absolute 
maximum literal if, for all u, the size of Lu is larger 
than or equal to that of any literal in Cu; L is a likely 
maximum literal if for some u, Lo is larger than or 
equal to any literal in Cu. 
A clause can only have one of those two 
imum literals. For example, in clause 

kinds of max- 

where ‘1~, 
absolute 

( d(v, k(w, u)), -d(u, u), -d(v, w) 1 
u and w are variables, d(v, k(w, u)) is the only 
maximum literal; in clause 

{ 4% dw, a --d(f b, 4, 4,4% 4 1 
both d(u, q(w, v)) and 4( f (u, v), 20) are absolute 
imum literals; clause 

1 d(u, v), -d(v, u> } 
has two absolute maximum literals; in clause 

max- 

j 4% wh-d(u, 4, -4% 4 1 
all three literals are likely maximum literals. 

efinition 2 A rough resolution step involves simul- 
taneously resolving upon maximum literals L1, . . . , L, 
of a clause C (called nuclei) with some absolute max- 
imum literals in other clauses Cl,. . . , C, (called elec- 
trons). A rough resolvent is obtained from a rough 
resolution step. 

16 Chu 



Nuclei can have absolute or likely maximum literals; 
electrons can only have absolute maximum literals. 
Absolute maximum literals in a nucleus are all resolved 
upon at the same time in one single rough resolution 
step. This is based on the observation that absolute 
maximum literals should be eventually all removed 
since they are always the largest in any instances, and 
intermediate resolvents might not be saved due to non- 
negative growths (to be discussed in next section). 

Resolving on likely maximum literals in a clause is 
difficult to handle because it might not delete large 
literals and, at the same time, could generate too many 
useless resolvents. For example, the transitivity axiom 

contains three likely maximum literals and often gener- 
ates too many clauses during a resolution proof. Their 
role is obscure in rough resolution. We have used two 
strategies to do rough resolution on likely maximum 
literals. 

The first is to apply the following heuristics to si- 
multaneously resolve on more than one likely maxi- 
mum literal: if there are two likely maximum literals 
in a clause, we resolve upon them one at a time; if 
there are more than two likely maximum literals, we 
also resolve upon each possible pair of two of them at 
the same time. This is based on the observation that 
usually only few likely maximum literals will become 
the largest in the ground instances. 

Another important strategy is to require that any 
likely maximum literal resolved upon should still be a 
likely (or absolute) maximum literal after the proper 
substitution is applied. Otherwise the resolvent is dis- 
carded because it introduces larger literals from those 
not resolved upon. 

For example, consider the clause 

where all literals are likely maximum literals. Suppose 
first two literals are resolved with p(z, Q) and ~(a, z) 
respectively with substitution 0 = { y + LX }. Such res- 
olution is not allowed since none of p(x, a) and p(a, z) 
are maximum literals in C0, and the literal not resolved 
upon, p(x, z), becomes an absolute maximum literal in 
ce. 

Retaining Resolvents 
Rough resolution only resolves upon maximum literals. 
Since usually there are not many absolute maximum 
literals in a clause, the number of resolvents are greatly 
reduced. However there are still too many resolvents 
if no further restriction is applied. In this section we 
discuss one strategy that we use to retain resolvents 
more selectively. 

From the rough resolvents, we prefer those smaller 
than the parents clauses. Ordering on clauses is needed 
here and we use ordering of the multisets of all literal 
sizes in a clause. 

Definition 3 ICI is the multiset of sizes of all literals 
in C. Difference ICll- l&l is cl - c2 where cl and c2 
are the largest elements (0 if the multiset is empty) in 
ICll and l&l respectively after common elements are 
deleted. 

For example, for clause C = { p(x),p(y), -Q(z, Y) }, 
ICI = {3,2,2); (3,2,2) - ($2) = (2) - {} = 2 
and {4}-{5,2)= -1. 

nition 4 Suppose in a rough resolution step, re- 
solvent R is obtained from clauses Cl, . . . , C,. The 
growth of R is IRI- maximumof (ICll, l&l, . . ., I&I). 

Such multiset idea is only used to compute growth of a 
rough resolvent. In other situations the size of a clause 
is still the largest literal size. 

Growth is a useful measurement to retain resolvents 
from resolving upon likely maximum literals. Intu- 
itively growth indicates the size growth of a rough re- 
solvent relative to the parent clauses before substitu- 
tion is applied. If growth is negative, the resolvent is 
smaller than the largest parents clause and “progress” 
has been made to reduce the number of large literals. 
On the other hand, if the growth is zero or positive, 
the resolvent is of the same length or larger than the 
largest parent clause. There is no progress from this 
rough resolution step and it is not useful to keep the 
resolvent . 

The algorithm of rough resolution is described in 
Fig. 1. I&solvents of non-negative growth are re- 
tained only when there are no resolvents with negative 
growth. The procedure repeats until a proof is found. 
The resolvents are used in semantic hyper-linking in a 
limited way because many resolvents could be gener- 
ated. Reasonable time bound is set on the use of rough 
resolvents in semantic hyper-linking. 

The collaboration of rough resolution and semantic 
hyper-linking is not explicitly shown in Fig. 1. Ba- 
sically rough resolution executes for some amount of 
time then stops, and new resolvents are used in later 
semantic hyper-linking; when executed again, rough 
resolution picks up from where it left off and contin- 
ues. 

The rough resolvents with negative growth are al- 
ways kept; among the rough resolvents with non- 
negative growth, only the smallest (in terms of the 
largest literal in the resolvent) are saved, if necessary. 
This allows the resolvents with non-negative growth to 
be used in a controlled manner. 

ith restrictions on how rough resolution is applied 
(by resolving upon maximum literals simultaneously) 
and how resolvents are retained (based on growth), 
much less resolvents are retained than those in other 
similar resolution strategy. And we have found the al- 
gorithm practical and useful when used with semantic 
hyper-linking. 
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Algorithm Rough Resolution 
begin 

loop 
for each clause C with absolute maximum literals 

Obtain a new rough resolvent R using C as nucleus 
if R has a negative growth 
then 

save R permanently as a new clause 
else 

save R temporarily 
until there are no new resolvents with growth < 0 
for each clause C having likely maximum literals 

loop 
Obtain a new rough resolvent R using C as nucleus 
if R has negative growth 
then 

save R permanently as a new clause 
else 

save R temporarily 
until no new rough resolvents can be generated 

if in last loop no rough resolvent was generated 
with negative growth 

then 
for each smallest temporarily saved rough 

resolvent R 
save R permanently as a new clause 

end 

Figure 1: Algorithm: Rough Resolution 

An Example 
Bledsoe gave LIM+ problems in [Bledsoe, 19901 as chal- 
lenge problems for automated theorem provers. Be- 
cause of the large search space they might generate, 
LIM+ problems are difficult for most theorem provers. 
However, they are not difficult for St&e [Hines, 19921 
which has built in inequality inference rules for densed 
linear ordering. 

In this section we will look at the proof of EIM3 using 
rough resolution. Intermediate results from semantic 
hyper-linking are omitted. 

As mentioned in the introduction, the correct ground 
instance of the goal clause has to be generated to ob- 
tain the proof. However, that ground instance contains 
a literal so large that semantic hyper-linking cannot 
generate it early enough in the search for the proof. As 
a result, the prover got lost even before correct goal in- 
stances are generated. Rough resolution helps to delete 
large literals by resolving upon them; smaller ground 
literals are generated by semantic hyper-linking. It is 
interesting to observe that the proof presented here 
does not need the term min(dl(ha(eO)), d2(ha(eO))) 
which is essential to human proofs. 

We only list clauses used in the proof; literals in 
boxes are maximum literal8 and only clauses 14 and 
15 (from the same transitivity axiom) have likely max- 
imum literals. Each rough resolution step is denoted by 

list of clause numbers. with nuclei in boxes. For exam- 
’ ple, @,3,17) d enotes a rough resolution step using 

clause 14 as nucleus and clauses 3 and 17 as electrons. 

The proof: 

,-Zt(aG), ha(Z)), 

-WW’), WW ) 

24: a,21) 

(I -Zt(ab(pZ(f (xs(D)), w(f W)), h4W) I 
--It(aW(g(x@)), ns(s(a)))), h+O)) Jt(D, 0)) 

s(D), w(a))), dl(h+W)]p 
--It(ab(p@(D), w(a))), d2(ha(eO))) y 
Zt(ha(eO), 4, WA 0)) 
97: (j-izJ,29,10) 

{I-Zt(ab(~Z(xs(D), rig(a))), d2(ha(eO))) 1, 
-Zt(D, dl(ha(eO))), Zt(ha(eO), o), Zt(D, o)} 

), w(a))), dl(ha(eO))) 1, 
-Zt(D, da(ha(eO))), Zt(ha(eO), o), Zt(D, 0)) 

139: (j-iEJ,97) 
{ 1 -Zt(d2(ha(eO)), dl(ha(eO))) 1, 
Zt(ha(eO), o), Zt(da(ha(eO)), o) } 

(w+o), 0) and Zt(d2(ha(eO)),o) are then unit 
deleted) 

y;, 
Zt(ha(eO), o), Zt(dl(ha(eO)), o) } 

(Wa(eO), 0) and Zt(dl(ha(eO)),o) are then unit 
deleted) 
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Y-9 13 ,139,141) 
is obtained and a proof is found. 

Unit { wZt(ha(eO), o) } is generated by model filter- 
ing [Chu and Plaisted, 19931 in semantic hyper-linking. 
Or it can be generated by UR resolution from clause 
4 and 7. It is then used with clause 5 to gener- 
ate { wZt(dl(ha(eO)), o) }; with clause 6 to generate 
{ -Zt(d2(ha(eO)), o) }. 

4: { wZt(e0, 0) } 
5: { Zt(X, o), -Zt(dl(X), o) } 
6: { Zt(X, o), -Zt(d2(X), o) } 
7: ( Zt(X, o), -Zt(ha(X), o) } 

None of the above three units can be generated 
by rough resolution. This shows the collaboration of 
rough resolution with semantic hyper-linking to find 
the proof. 

We have implemented a prover in Prolog. Experiment 
results show that rough resolution indeed improves 
the prover and often helps to find proofs faster. Ta- 
ble 1 lists some results (in seconds) that show rough 
resolution is in general a useful technique used with 
semantic hyper-linking. AMY is the attaining maxi- 
mum (or minimum) value theorem in analysis [Bled- 
soe, 19831; LIMl-3 are the first three LIM+ prob- 
lems proposed by Bledsoe [Bledsoe, 19901; IMV is 
the intermediate value theorem in analysis [Bledsoe, 
19831; 11, IPl, Pl and Sl are four problems in im- 
plicational propositional calculus [Lukasiewicz, 1948, 
Pfenning, 19881; 1~37 is the theorem that Vx E a ring 
R+*O= 0 where 0 is the additive identity; SAM’s 
lemma is a lemma presented in [Guard et al., 19691; 
wosl5 proves the closure property of subgroups; wosl9 
is the theorem that subgroups of index 2 are normal; 
wos20 is a variant of wosl9; wos2l is a variant of 1~37; 
and ExQ problems (including wos3 1) are three exam- 
ples from quantification theory [Wang, 19651. 

LIMl-3 are considered simpler in [Bledsoe, 19901. 
Prover STROVE, with built in inference rules for densed 
linear ordering, can easily prove all LIM+ problems. 
However, few other general-purpose theorem provers 
can prove LIMA-3 (especially LIM3). METEOR [As- 
trachan and Loveland, 19911 can prove all three by 
using special guidance. OTTER [McCune, 19901 and 
CLIN [Lee and Plaisted, 19921 could not prove any 
LIM+ problem. 

Conclusions 
Rough resolution is incomplete but it is useful when 
used with other complete methods that prefer small 
clauses. It helps to focus on removing “large” part 
of the proofs. In particular, we have found that se- 
mantic hyper-linking and rough resolution conceptu- 
ally work well together: semantic hyper-linking solves 
the “small” and “non-Horn” part of the proof; UR reso- 
lution [Chu and Plaisted, 19931 solves the “Horn” part 

Problem with rough without rough 
resolution resolution 

AMY 2127.3 -* 
LIMl 83.0 - 
LIM2 63.3 - 

I 

LIM3 534.8 - 
IMV 374.5 49.8 

SAM’s Lemma 146.5 95.5 
wos15 282.7 - 

*U - n indicates the run is aborted after either running 
over 20,000 seconds or using over 30 Megabyte memory 

Table 1: Proof results using rough resolution with se- 
mantic hyper-linking 

of the proof; and rough resolution solves the “large” 
part of the proof. 

Rough resolution is powerful enough to help seman- 
tic hyper-linking prove some hard theorems which can- 
not be obtained otherwise. However we have observed 
that likely maximum literals are the source of rapid 
search space expansion in some hard theorems like 
LIM4 and LIM5. Future research includes further in- 
vestigation of the role of likely maximum literals and 
avoid generating unnecessary resolvents from resolving 
upon likely maximum literals. One possible direction 
is applying rough resolution idea on paramodulation 
since equality axioms often contain likely maximum 
literals. Also, focusing on relevant resolvents should 
be another important issue to be addressed. 
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