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Abstract 
What is the nature of expertise? This paper posits an 
answer to that question in the domain of geometry 
problem-solving. We present a computer program 
called POLYA which makes use of explicit planning 
knowledge to solve geometry proof problems, 
integrating the processes of parsing the diagram and 
writing the proof. 

Introduction 
This paper describes a computer program called POLYA 
that solves high school geometry proof problems. High 
school geometry first attracted our interest when the first 
author was student teaching geometry in a public high 
school as part of a teacher certification program. We were 
curious about what kinds of knowledge enabled him and 
other experienced mathematicians to solve geometry proof 
problems very quickly, in contrast to his students, who 
solved the same problems only with great effort. That 
knowledge had to involve more than the formal rules of 
geometry (the theorems, axioms, definitions), since, by 
virtue of their ability to solve the problems at all, the 
students clearly knew those rules. We conjectured that 
geometry expertise involves an ability to recognize when 
those rules should be used, in contrast to when the rules 
can be used. Such expertise generally arises from exposure 
to and experience with a large number of problems. The 
problem for us then was to define that knowledge 
concretely and to build a computer model of geometry 
problem-solving that made use of that knowledge. We call 
our computer program POLYA. 

Although POLYA’s task is to write geometry proofs, our 
desire to model human expertise led us away from some of 
the traditional concerns of automated theorem-proving. 
We are not concerned, for instance, with solving hard 

lThis research is supported by the Office of Naval 
Research under contract N00014-9 1 -J- 1185, by the 
Defense Advanced Research Projects Agency monitored by 
the Air Force Office of Scientific Research under contract 
F30602-91-C-0028, and by the University of Chicago 
School Mathematics Project Fund for Support of Research 
in Math Education. 

60 McDougal 

problems; rather, we are concerned with capturing the 
knowledge that allows experts to solve easy problems 
easily. 

Our research has led us to address a broad range of 
important AI issues: visual reasoning and the use of 
diagrams in problem-solvin g; representation of planning 
and problem-solving knowledge; how to store, efficiently 
retrieve, and apply plans; how to integrate planning and 
action; how to use the world as a memory aid; how to 
direct a limited focus of attention to gather information; 
and what it means to know how to solve a problem as 
distinct from knowing the solution. 

This paper describes our representation for geometry 
problem-solving knowledge and the computer program, 
POLYA, which uses that knowledge to write proofs. 

Recognizing when rules shoul 
Central to our model of human geometry theorem-proving 
expertise is a distinction between when a rule may be 
applied (as determined by its preconditions) and when a 
rule should be applied. A novice with complete 
understanding of the rules and their preconditions can still 
have trouble with a relatively easy problem. The novice 
may get lost in a large number of legitimate but useless 
inferences, or she may be reluctant to make a single 
inference without knowing how it will contribute to the 
final proof. The expert, on the other hand, shows a 
remarkable ability to make exactly those inferences 
relevant to the solution without knowing a priori what that 
solution is. [Koedinger & Anderson 19901 documents the 
tendency of geometry experts to make inferences from the 
given information without regard to the goal; [Lax-kin et al. 
19801 documents analogous forward reasoning by physics 
experts. 

We hold that most of the expert’s decision-making is 
based on cues in the diagram. This thesis, so broadly 
stated, is not new; [Koedinger & Anderson 19901 presented 
a model of geometry problem-solving called DC in which 
the diagram is parsed into configuration schema, each of 
which defines a restricted subset of applicable rules. Their 
model contrasts with earlier systems [Gelernter 1959, 
Nevins 1975, Green0 19831 which used the diagram 
primarily as a source of heuristic search control 
information. 
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We believe that our model addresses two shortcomings 
in the DC model. First, while the DC model makes a 
significant contribution in terms of knowledge 
representation for geometry problem-solving, it still says 
very little about the problem-solving process. The authors 
note that once the diagram has been parsed, finding the 
inference chain is trivial, which suggests that most, if not 
all, of the problem-solving task involves recognizing the 
relevant schema. Yet they consciously side-step the 
question of how people do this, with only a brief argument 
that perhaps the diagram parsing and schema search 
processes could be coordinated. 

We also disagree with DC’s model of schema 
application. Although DC’s configuration schema 
significantly reduce the rule space, the model still falls 
back on inference chaining to decide, for each schema, 
which rule or rules should apply. The problem is that DC’s 
schemas are overly general. Just as human experts are able 
to commit to specific inferences early in the problem- 
solving process, more specific schema would make it 
possible to decide exactly which rule should apply without 
a second phase of inference chaining. 

Figure 2: a triangle which appears isosceles. Angles 1 
and 2 are the base angles. Angles 3 and 4 are marked 
congruent, as are two pairs of segments. This 
represents the initial conditions for one problem 
POLYA can solve. 

The input 

In contrast, POLYA builds up the proof at the same time 
that it builds up its understanding of the diagram. It uses 
schema-like knowledge to parse the diagram on demand, 
and it recognizes highly specific configurations in the 
diagram which enable it to make concrete inferences likely 
to contribute to the final proof. The next sections provide 
an overview of POLYA’s operation and a detailed 
description of its geometry problem-solving knowledge. 

As in textbooks, a geometry proof problem for POLYA 
consists of givens, a goal, and a diagram. The givens and 
goal are predicates such as (congruent-segments (segment s 
x) (segment t y)). The diagram is a composite of lines and 
labelled points. Each line is defined by the coordinates of 
its endpoints, and labelled points are listed by their 
coordinate locations, as: (x y <label>), where <label> is a 
letter (A, B, etc.). The labels are irrelevant to the problem- 
solving process; they are used only to define the givens and 
the goal and to generate the proof in human-readable form. 

An overview of POLYA Simulated vision 

POLYA comprises three basic modules: a memory 
retriever, a plan interpreter, and a module for simulated 
vision (figure 1). The memory retriever takes a steady 
stream of features and uses them to trigger plans in 
memory. The plan interpreter selects a plan and executes 
the steps in the plan. The vision module computes features 
in response to the actions called for by the plan. The next 
sections discuss these modules in detail. 

POLYA accesses the diagram by way of a simulated visual 
system. The visual system provides over 120 operators by 
which POLYA can specify which object or objects in the 
diagram it wishes to inspect; the visual system returns a 
description of that object including its exact location and a 
list of aspects. 

The operator L 0 0 K-AT-LEFT-BASE-ANGLE, for 
example, takes as its argument the vertices of a triangle 
which appears isosceles* and returns a description of one 
of its base angles (e.g. angle 1 in figure 2). That 

description includes the (x, y) location of the vertex, 
the compass directions of the rays, a symbolic 
description of the approximate size of the angle (e.g. 
ACUTE>45), a symbolic description of the pattern of 
rays at the vertex (SIMPLE-ANGLE), a count of the 
number of rays interior to the angle (zero), and, if 
there are no interior rays, a description of the space 
unto which the angle opens (TRIANGLE). The 
description also includes whether the angle is 
marked (e.g. angles 3 and 4 in figure 2 are each 
marked with SINGLE-ARC congruency marks). 

POLYA can itself make annotations such as angle 
marks on the diagram. There are several benefits 
from such annotations. Looking at angles 3 and 4, it 

Plan memory Simulated 
vision 

Text & 
reter diagram 

actions & 
predictions 

Ggure 1: POLYA’s three modules. The plan interpreter sends 
commands to the vision module, which computes a description of 
some part of the problem and sends that description both to the 
memory module and back to the plan interpreter. *Based on euclidean distances between the vertices. 
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Figure 3: POLYA can look at Zs to see if the angles are 
congruent or the lines parallel. 

is apparent from the marks that the angles are congruent to 
each other. Thus POLYA, like a person, need not 
remember which angles are congruent, since it can always 
oet that information directly from the diagram. 
Furthermore, having a mark associated with an individual 
angle streamlines some inferencing. Looking at angles 3 
and 5, POLYA can guess that angle 5 is probably 
congruent to some other angle (angle 6). 

In addition to angles, POLYA can focus on and describe 
any of the visual objects involved in geometry proofs: 
points, segments, triangles, quadrilaterals. It can compare 
pairs of objects-two triangles, for example, or a segment 
and an angle-to see how they relate to each other 
spatially. When POLYA looks at a triangle, the visual 
system computes its shape (RIGHT, ISOSCELES, 
EQUILATERAL) and counts the number of sides and angles 
annotated with congruency marks. Thus marks on 
segments and angles are reflected in the descriptions of all 
larger objects which contain those segments or angles. So, 
for example, POLYA can recognize when all sides of a 
triangle are marked, suggesting the applicability of the 
side-side-side triangle congruency theorem. This is the 
other benefit of angle and segment annotations. 

POLYA can also look at composite shapes sometimes 
mentioned in textbooks but never mentioned in proofs. 
One textbook, for example, explicitly teaches students Z 
and F patterns involving parallel lines cut by a transversal 
[Rhoad, Whipple & Milauskas 19881. POLYA can look at 
Zs to see if the angles are marked congruent or if the lines 
are marked parallel (figure 3). 

Operators can sometimes fail. FIND-ADJACENT- 
MARKED-ANGLE, for instance, can fail if no such angle 
exists. Such operators are nonetheless useful for efficiently 
locating objects of interest. 

Geometry plans 
To parse the diagram and write a proof concurrently, 
POLYA needs to gather information in an organized way 
while still responding flexibly to what it sees. POLYA has 
a large memory of geometry plans which structure visual 
search and instantiate rules; plans are triggered and 
executed on the basis of configurations in the diagram. 

A geometry plan defines a sequence of actions which 
can be directly executed by the plan interpreter. A typical 
action looks like this: 

((COMPARE-TRIANGLES ?tril ?tri2) 
:predict (tri-pair (extents shared-side)) 
: unbind (?tril ?tri2) 
:bind ?tri-pair) 

Figure 4: Two triangles share a side, and each triangle 
has one side marked and one angle marked. This 
pattern triggers the P-SAS-SHARED-SIDE proof plan, 
which checks that the marked angle is between the 
marked side and the shared side. 
isosceles. 

The first item is an action for the visual system whose 
arguments are defined by local plan variables. The 
prediction partially specifies what the result of that action 
should look like; if the result fails to match the prediction, 
the plan aborts. A typical use of predictions is to check 
preconditions of a rule. Each step may bind the result of 
the action to a local plan variable and may unbind variables 
no longer needed. 

There are two types of plans: search plans and proof 
plans. Search plans direct the focus of attention to 
potentially relevant parts of the diagram, gathering 
information for the memory module. Proof plans 
instantiate formal rules of geometry and add them to the 
proof. Search and proof plans are structured and handled 
in the same way, except that POLYA runs proof plans 
preferentially. (See plan selection, below.) 

S-ISOSCELES3 is a typical search plan. It directs 
attention to the legs and base angles of a triangle which 
looks isosceles. This reflects knowledge that if the triangle 
is actually isosceles, the legs and base angles are more 
likely to provide useful information, and more likely to 
play a role in the proof, than the apex angle or the base 
side. P-SAS-SHARED-SIDE3 is a typical proof plan: if 
POLYA detects two triangles each of which has one angle 
marked and one side marked such that the triangles also 
share a side (figure 4), the plan verifies that the angle 
between the marked side and the shared side is marked, 
then adds to the proof a statement that the triangles are 
congruent. 

Search plans gather features which trigger proof plans 
and other search plans in an interacting cycle of plan 
selection and execution. To build a proof for an easy-to- 
moderate geometry problem, POLYA may make use of 12 
to 28 plans, causing between 50 to 120 actions to be 
performed. 

POLYA’s geometry plans define what it means to know 
how to solve geometry problems. Once a plan has been 
triggered, execution is straightforward. This is consistent 
with our view of geometry problem-solving as being 
primarily a task of recognizing when a rule or other piece 

3By convention, we use prefixes S- and P- to distinguish 
search and proof plans. 
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of knowledge should apply. Next we consider how 
POLYA recognizes which plans are relevant. 

Plan memory and retrieval 
We have said that plan execution generates visual results 
which in turn trigger other plans. In this section we 
describe specifically how plans are triggered. 

POLYA’s plan indexing scheme is based on the marker- 
passing scheme used in DMAP, a case-based natural 
language understanding system [Martin 19901. Each plan 
has a plan index havin g two parts: an index pattern and 
index constraints. An index pattern consists of a sequence 
of partially-specified visual results. A typical index pattern 
looks like this one for the P-SAS-SHARED-SIDE proof plan: 

( (triangle (angle-mark-count 1) 
(seg-mark-count 1)) 

(tri-pair (extents shared-side)) ) 
This pattern detects a triangle with one marked side and 

one marked angle, and a triangle pair sharing a side. The 
index constraints specify that the triangle must be part of 
the triangle pair: 

( ((?l) = (?2 triangle-l)) ) 
The memory module matches visual results against the 

index pattern using DMAP’s marker-passing scheme. A 
marker is placed on a node representing the first element of 
the pattern. When a visual result matches that node, the 
marker is advanced to the next element in the pattern. 
When the last element has been matched, the plan is 
triggered, posted to a list as eligible for execution. 

We wish to emphasize that a plan index should not be 
thought of as the antecedent of a rule. Relative to most 
rules, plan indices are both over- and under-specified: over- 
specified in the sense that they seek to recognize not only 
when a rule may be applied but when it shoulrl be applied; 
under-specified in that they do not always guarantee the 
applicability of the rule. In the case of the P-SAS-SHARED- 
SIDE proof plan, for instance, the marked angle must lie 
between the marked side and the shared side in each 
triangle, a constraint which is not easily captured by the 
raw descriptions of the triangle and the triangle pair. It 
would be possible to design the visual system to capture 
that information as one aspect of the triangle pair. That 
would subsume an important part of geometry knowledge 
in the vision module. We prefer, however, to represent 
explicitly as much geometry knowledge as possible in the 
plans. 

As stated earlier, an important part of geometry er pertise 
is the ability to make the inferences which are mosi likely 
to contribute to the final solution. POLYA makes an 
assumption which seems to work well for easy to medium 
problems: If some features in the diagram cause a search 
plan to focus attention on an object, then the object is likely 
to be relevant to the proof. For the P-SAS-SHARED-SIDE 
proof plan to be tri ggered, some other script must have 
directed POLYA’s attention to the triangles. This does not 
Ouarantee that it will be useful to prove the triangles D 
congruent, but it seems to be true most of the time. 

Plan selection 
When the plan interpreter module finishes a plan, POLYA 
chooses another from the list of triggered plans. Typically 
there are several search plans to choose from, and perhaps 
one proof plan. Proof plans are chosen ahead of search 
plans, since after all the task is to write a proof; and plans 
triggered more recently are chosen ahead of plans triggered 
less recently. This plan-selection algorithm is too simple to 
work in the long run, and we are experimenting with ways 
to incorporate knowledge about which plans should run 
first. In some cases one plan subsumes another; by 
annotating the larger plan we can ensure that POLYA runs 
it and not the other. 

Issues 
One of our objectives with POLYA was to integrate 
diagram parsing with the process of constructing a proof. 
In so doing, we have had to address issues associated more 
with planning, robotics, and vision than with traditional 
theorem-proving. 

laming and action 
POLYA treats planning as memory retrieval, in the spirit of 
case-based planning [Hammond 19891. Because feature 
extraction is a major part of POLYA’s task, POLYA 
cannot solve problems by retrieving and adapting a single 
case, as a prototypical CBR system does. Instead, POLYA 
accesses memory constantly, retrieving and using tens of 
plans over the course of a single problem. POLYA plans 
and re-plans in response to what it sees. 

This responsiveness to visual features is characteristic of 
situated activity [Chapman & Agre 1986, Agre 19881. Yet 
POLYA is not purely reactive; its behavior is better 
characterized as reactive planning [Firby 19891. It 
executes each plan to completion so long as its predictions 
are met. The plans provide necessary structure for 
apprehending complex relationships in the diagram and for 
writing a formal mathematical argument. POLYA strikes a 
balance between top-down memory-based planning and 
bottom-up reactivity. 

Active sensing 
In the computer vision community, researchers are 

acknowledging that it is both intractable and unnecessary to 
identify everything in an image [e.g. Ballard 1991, Clark & 
Ferrier 1988, Swain 19911. Particular tasks require 
attention to only particular aspects of the image. One may 
be interested only in the object at the center of the image, 
or one may be concerned only with detecting rapid motion. 
Similarly, a robot may have a ring of sonars, but for 
moving forward across mostly-empty space it makes sense 
to ignore the sonars pointing aft. 

Geometry diagrams are simpler and more constrained 
than an arbitrary image or a cluttered room, but the idea for 
POLYA is the same: different parts of the diagram are 
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relevant for different tasks, and some parts of the diagram 
can be ignored altogether. 

Furthermore, we suspect that POLYA’s problem of 
coordinating multiple sensing operations is relevant to 
vision and robotics as well, and that the solution of using 
short plans for information-gathering, with top-down 
predictions, may apply. 

Example 
Figure 2 above is one example of a problem POLYA can 
solve. Here we show the diagram with all given infor- 
mation already marked on the diagram; one of the first 
things POLYA does is annotate the diagram to reflect the 
given information. The goal in this problem is to prove 
that the large triangle is isosceles, i.e. that its left and right 
sides are congruent (have equal lengths). 

At startup, POLYA computes a general description of 
the diagram as a whole, capturing the left/right symmetry 
of the diagram and the basic shape: a triangle with corner 
triangles. Two search plans are immediately triggered 
based on this description: S-ISOSCELES, described above, 
and S-CORNER-TRIANGLES. 

After marking the given information, POLYA executes 
the S-CORNER-TRIANGLES search plan, which focuses 
attention on the corner triangles. The descriptions of those 
triangles triggers S-SIDE+SIDE, which looks at angles 5 & 
6 and at sides WX and YZ. The pattern of rays at the 
vertex of angle 5 triggers S-PIER, which compares angle 5 
with its adjacent angle, angle 3. Because angle 3 is 
marked, plan P-LINEAR-PAIR-PAIR is triggered, which 
proves that angles 5 and 6 are congruent. Shortly 
thereafter, POLYA proves the corner triangles congruent 
using P-SAS-SIMPLE, which instantiates the side-angle-side 
theorem. 

At this point POLYA makes the equivalent of a leap of 
reasoning. A very specialized plan, P-CORNER- 
TRIANGLES->ISOSCELES, is triggered by the combination 
of the shape of the diagram (isosceles with comer triangles) 
and the assertion that the triangles are congruent.4 Though 
POLYA has not yet read the goal statement, this plan 
represents the knowledge one might have from having seen 
this problem before: the large triangle is almost certainly 
isosceles, and, furthermore, that is probably a key 
conclusion (though not necessarily the goal) in this 
problem. The plan steps through the argument, adding 
inferences to the proof: because the corner triangles are 
congruent, the corner angles are congruent (1 and 2), and 
therefore the sides of the large triangle are congruent. 

Finally, POLYA reads the goal, discovering that the 
proof is complete. 

Discussion 
Theorem-proving is usually done from scratch, using a 
minimalist representation of the problem and the rules. In 

41nferences are passed to memory in the same way 
visual descriptions are, and can be used for indexing. 

that 

light of that tradition, what POLYA does in the problem 
above might seem like cheating. 

In the foregoing example, POLYA makes use of two 
very specialized plans: S-CORNER-TRIANGLES and P- 
CORNER-TRIANGLES->ISOSCELES. If we remove the P- 
CORNER-TRIANGLES->ISOSCELES proof plan from 
memory, POLYA is still able to solve the problem, though 
it takes longer. (It cannot solve it without S-CORNER- 
TRIANGLES.) But to remove that plan would be contrary 
to the main point of this research. 

The point is not to build a system which knows very 
little but can solve problems by working very hard. That 
has been done many times before. The point is to build a 
system which knows a lot and which can solve problems 
easily. The point is to model what an expert knows, 
including his memory of problems he has solved before. 
This is what POLYA’s plans represent. 

Conclusion 
At current writing, POLYA has 68 search and proof plans. 
These plans constitute POLYA’s knowledge about how to 
solve geometry proof problems, covering roughly one-fifth 
of the simple triangle congruence problems in a textbook 
and a very few examples involving parallel lines. 
Expanding POLYA’s knowledge to cover quadrilaterals, 
other parallel line examples, and other aspects of geometry 
will at least double or treble the number of plans. Rapid 
growth of plan memory is not a bad thing, provided that we 
can continue to index the plans efficiently. 

While many of POLYA’s plans correspond fairly 
directly to general rules, some of POLYA’s plans relate to 
specific problems in much the same way that a person 
might remember a specific problem. We believe that it is 
both necessary and appropriate that geometry expertise 
comprise knowledge at many levels of generality. When 
POLYA has a specific plan for a particular problem, fewer 
plans are needed and fewer actions are performed in 
solving that problem. Thus it is the case with POLYA, as 
with an expert, that the more knowledge it has, the more 
easily it can solve problems. 
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