
aphic Limitations 
se Logic Programs 

William W. Cohen 
AT&T Bell Laboratories 

600 Mountain Avenue Murray Hill, NJ 07974 
wcohen@research.att.com 

Abstract 
An active area of research in machine learning is learn- 
ing logic programs from examples. This paper inves- 
tigates formally the problem of learning a single Horn 
clause: we focus on generalizations of the language 
of constant-depth determinate clauses, which is used 
by several practical learning systems. We show first 
that determinate clauses of logarithmic depth are not 
learnable. Next we show that learning indeterminate 
clauses with at most k indeterminate variables is equiv- 
alent to learning DNF. Finally, we show that recursive 
constant-depth determinate clauses are not learnable. 
Our primary technical tool is the method of prediction- 
preserving reducibilities introduced by Pitt and War- 
muth [1990]; as a consequence our results are inde- 
pendent of the representations used by the learning 
system. 

Introduction 
Recently, there has been an increasing amount of re- 
search in learning restricted logic programs, or in- 
ductive logic programming (ILP) [Cohen, 1992; Mug- 
gleton and Feng, 1992; Quinlan, 1990; Muggleton, 
1992a]. One advantage of using logic programs 
than alternative first-order logic formalisms t 

rather 
Cohen 

and Hirsh, 19921) is that its semantics and computa- 
tional complexity have been well-studied; this offers 
some hope that learning systems based on it can also 
be mathematically well-understood. 

Some formal results have in fact been obtained; 
the strongest positive result in the pat-learning model 
[Valiant, 19841 shows that a single constant-depth de- 
terminate clause is pat-learnable, and that a non- 
recursive logic program containing Ic such clauses is 
learnable against any %imple” distribution [DZeroski 
et al., 19921. Some very recent work [Kietz, 19931 
shows that a single clause is not pat-learnable if the 
constant-depth determinacy condition does not hold; 
specifically, it is shown that neither the language of in- 
determinate clauses of fixed depth nor the language of 
determinate clauses of arbitrary depth is pat-learnable. 
These negative results are of limited practical impor- 
tance because they assume that the learner is required 

80 Cohen 

to output a single clause that covers all of the ex- 
amples; however, most practical ILP learning systems 
do not impose this constraint. Such negative learn- 
ability results are sometimes called representation- 
dependent.’ 

This paper presents representation independent neg- 
ative results for three languages of Horn clauses, all ob- 
tained by generalizing the language of constant depth 
determinate clauses. These negative results are ob- 
tained by showing that learning is as hard as breaking 
a (presumably) secure cryptographic system, and thus 
are not dependent on assumptions about the repre- 
sentation used by the learning system. Specifically, we 
will show that determinate clauses of log depth are not 
learnable, and that recursive clauses of constant depth 
are not learnable. We will also show that indetermi- 
nate clauses with Ic “free” variables are exactly as hard 
to learn as DNF. 

Due to space constraints, detailed proofs will not 
be given; the interested reader is referred to a longer 
version of the paper [Cohen, 1993a]. We will focus 
instead on describing the basic intuitions behind the 
proofs. 

Formal preliminaries 
Eearning models 
Our basic notion of learnability is the usual one intro- 
duced by Valiant [1984]. Let X be a set, called the 
domain. Define a concept C over X to be a represen- 
tation of some subset of X, and a language L to be 
a set of concepts. Associated with X and fZ are two 
size complexity measures; we use the notation X, (re- 
spectively ,&) to stand for the set of all elements of X 
(respectively L) of size complexity no greater than n. 
An example of C is a pair (x, b) where b = 1 if x E C 
and b = 0 otherwise. If D is a probability distribution 

‘The prototypical example of a learning problem which 
is hard in a representation-dependent setting but not in 
a broader setting is learning &term DNF. Pat-learning Ic- 
term DNF is NP-hard if the hypotheses of the learning 
system must be k-term DNF; however it is tractable if hy- 
potheses can be expressed in the richer language of k-CNF. 

From: AAAI-93 Proceedings. Copyright © 1993, AAAI (www.aaai.org). All rights reserved. 



function, a sample of C from X drawn according to D size complexity measure for background theories, and 
is a pair of multisets S + , S- drawn from the domain X allow the sample and time complexities of the learner 
according to D, S+ containing only positive examples to also grow (polynomially) with the size complexity 
of C, and S- containing only negative ones. of the background theory provided by the user. 

Finally, a language L is pat-learnable iff there 
is an algorithm LEARN and a polynomial function 
m($, $,ne,nt) so that for every nt > 0, every n8 > 0, 
every C E iCni, every E : 0 < e < 1, every S : 0 < S < 1, 
and every probability distribution function D, for any 
sample S+ , S- of C from Xn, drawn according to D 
containing at least nz( $, $, n,, nt) examples 

1. LEARN, on inputs S+, S-, E, and 6, outputs a hy- 
pothesis H such that 

ilities among prediction problems 

Prob(D(H - 6) + D(C - H) > E) < 6 

Our main analytic tool in this paper is prediction- 
preserving reducibility, as described by Pitt and War- 
muth [1990]. This is essentially a method of showing 
that one language is no harder to predict than another. 
If Cr is a language over domain X1 and ,C2 is a lan- 
guage over domain X2, then we say that predicting ,Cl 
reduces to predicting &, written Icrg&, if there is a 
function fi : X1 + X2, henceforth called the instance 
mapping, and a function fc : Li + &, henceforth 
called the concept mapping, so that the following all 
hold: 2. LEARN runs in time polynomial in $, $, ne, nt, and 

the number of examples; and 

3. The hypothesis H of the learning systems is in L. 

The polynomial function m( $, i, ne, nt) is called the 
sample complexity of the learning algorithm LEARN. 

With condition 3 above, the definition of pac- 
learnability makes a relatively strong restriction on the 
hypotheses the learner can generate; this can lead to 
some counterintuitive results.2 If a learning algorithm 
exists that satisfies all the conditions above except con- 
dition 3, but does output a hypothesis that can be 
evaluated in polynomial time, we will say that t is 
(polynomial/y) predictable.3 

These learning models have been well-studied, and 
are quite appropriate to modeling standard inductive 
learners. However, the typical ILP system is used in a 
somewhat more complex setting, as the user will typi- 
cally provide both a set of examples and a background 
theory K: the task of the learner is then to find a logic 
program P such that P, together with K, is a good 
model of the data. To deal with this wrinkle, we will re- 
quire some additional definitions. If L is some language 
of logic programs4 and I< is a logic program, then C[K] 
denotes the set of all pairs of the form (P, K) such that 
P E C: each such pair represents the set of all atoms e 
such that P A K I- e. If K: is a set of background theo- 
ries, then the family of languages C[K] represents the 
set of all languages QK] where K E /c. We will con- 
sider C[K] to be predictable (pat-learnable) only when 
every C[K] E ,!J[Ic] is predictable (pat-learnable.) This 
requires one slight modification to the definitions of 
predictability pat-learnability: we must now assume a 

21n particular, it may be that a language is hard to learn 
even though an accurate hypothesis can be found, if it is 
hard to encode this hypothesis in the language C. 

3Such learning algorithms are also sometimes called ap- 
proxhation cdgorithms, as in the general case an approxi- 
mation to the target concept may be produced. 

*We assume that the reader is familiar with the basic 
elements of logic programming; see Lloyd [1987] for the 
necessary background. 

1. z E C if and only if fi(x) E fc(C) - i.e., concept 
membership is preserved by the mappings; 

2. the size complexity of fe(C) is polynomial in the 
size complexity of C - i.e. the size of concepts is 
preserved within a polynomial factor; and 

3. fi(z) can be computed in polynomial time. 
Intuitively, fe(Cr) returns a concept C2 E & that 

will “emulate” Cr (i.e., make the same decisions about 
concept membership) on examples that have been 
“preprocessed” with the function fi. If predicting Lr 
reduces to predicting & and a learning algorithm for 
,& exists, then one possible scheme for learning a con- 
cept Cr E Cr would be to preprocess all examples of 
Cr with fi, and then use these preprocessed exam- 
ples to learn some H that is a good approximation of 
c2 = fe(Cr). H can then be used to predict mem- 
bership in Ci: given an example x from the original 
domain Xr , one can simply predict a: E Cr to be true 
whenever fi(x) E H. Pitt and Warmuth [1990] give a 
rigorous argument that this approach leads to a predic- 
tion algorithm for -Cl, leading to the following theorem. 

Theorem 1 (Pitt and rmuth) If icl9C2 and 
L2 is polynomially predictable, then -Cl is podynomi- 
ally predictable. Conversely, if Lc,a La and Cl is not 
podynomially predictable, then C2 is not polynomially 
predictable. 

estrictions on Logic Programs 

In this paper, logic programs will always be function- 
free and (unless otherwise indicated) nonrecursive. A 
background theory K will always be a set of ground 
unit clauses (aka relations, a set of atomic facts, or a 
model) with arity bounded by the constant a; the sym- 
bol a-X: (K if a is an arbitrary constant) will denote the 
set of such background theories. The size complexity 
of a background theory K is its cardinality, and usually 
will be denoted by nb. Examples will be represented 
by a single atom of arity ne or less; thus we allow the 

Complexity in Machine Learning 81 



head of a Horn clause to have a large arity, although 
literals in the body have constant arity.5 

Muggleton and Feng [1992] have introduced sev- 
eral additional useful restrictions on Horn clauses. If 
AtBl A . . . A B, is an (ordered) Horn clause, then 
the input variables of the literal Bi are those vari- 
ables appearing in Bi which also appear in the clause 
A+Bl A.. . A Bi-1; all other variables appearing in Bi 
are called output variables. A literal Bi is determinate 
(with respect- to K and X) if for every possible sub- 
stitution u that unifies A with some e E X such that 
K I- (B1 A . . . A Bi-l)a there is at most one substi- 
tution 19 so that K I- B&. Less formally, a literal is 
determinate if its output variables have only one pos- 
sible binding, given K and the binding of the input 
variables. A clause is determinate if all of its literals 
are determinate. 

Next, define the depth of a variable appearing in a 
clause AtBl A. . . A B, as follows. Variables appearing 
in the head of a clause have depth zero. Otherwise, let 
Bi be the first literal containing the variable V, and 
let d be the maximal depth of the input variables of 
Bi; then the depth of V is d+ 1. The depth of a clause 
is the maximal depth of any variable in the clause. 

A determinate clause of depth bounded by a con- 
stant i over a background theory K E j-X: is called ij- 
determinate. The learning program GOLEM, which 
has been applied to a number of practical problems 
[Muggleton and Feng, 1992; Muggleton, 1992b], learns 
ij-determinate programs. Closely related restrictions 
also have been adopted by several other inductive 
logic programming systems, including FOIL [Quinlan, 
19911, LINUS [LavraE and Dzeroski, 19921, and GREN- 
DEL [Cohen, 1993c]. 

As an example, in the determinate clause 

multiply(X,Y,Z) 4- 
decrement(Y,W) A 
multiply(X,W,V) A 
plus(X,V,Z). 

W has depth one and V has depth two; thus the clause 
is 23-determinate. 

Learning log-depth determinate clauses 
We will first consider generalizing the definition of 

ij-determinacy by relaxing the restriction that clauses 
have constant depth. The -key result of this section 
is an observation about the expressive power of deter- 
minate clauses: there is a background theory K such 
that every depth d boolean circuit can be emulated by a 

51t should be n oted that the parameters n,, !nb, and nt 
(the complexity of the target concept) all measure differ- 
ent aspects of the complexity of a learning problem; as 
the requirement on the learner is that it is polynomial 
in all of these parameters, the reader can simply view 
them as different names for a single complexity parame- 
ter n = maX(n,, nb, nt). 

output 

circuit(XP,X2,X3,X4,X5) 
not(Xl,Yl) A 
and(X2,X3,Y2) A 
or(X4,X5,Y3) A 
or(Yl,Y2,Y4) A 
or(Y2,Y3,Y5) A 
and(Y4,Y5,0utput) 
true(Output) 

t 

Figure 1: Reducing a circuit to a clause 

depth d determinate clause over K. The background 
theory K contains these facts: 

and(O,O,O) and(O,l,O) and(l,O,O) and(l,l,l) 
or@4 60) 0 f(O, 41) orP,O,O) 041, Al) 
not(O, 1) not(l,O) true (I) 

The emulation is the obvious one, illustrated by exam- 
ple in Figure 1. Notice an example from the circuit 
domain is a binary vector br . . . b, encoding an assign- 
ment to the n boolean inputs to the circuit, and hence 
must be preprocessed to the atom circuit&, . . . , b,). 

The learnability of circuits has been well-studied. 
In particular, the language of log-depth circuits (also 
familiar as the complexity class iVC1) is known to 
be hard to learn, under cryptographic assumptions 
[Kearns and Valiant, 19891. Thus we have the fol- 
lowing theorem; here CijmDET denotes the language of 
logic programs containing a single non-recursive ij- 
determinate clause. 
Theorem 2 There is a small background theory K E 
3-K: such that NC1 5 Ccl,, n,13-DET[K]. Thus, for 
j 2 3, the family of languages Cc,,, n,Ij-DET [j-xc] is not 
polynomially predictable, and hence not pat-learnable, 
under cryptographic assumptions. 

It has recently been shown that NC1 is not 
predictable even against the uniform distribution 
[Kharitonov, 19921, suggesting that distributional re- 
strictions will not make log-depth determinate clauses 
predictable. 

Learning indeterminate clauses 
We will now consider relaxing the definition of i j- 
determinacy by allowing indeterminacy. Let the free 
variables of a Horn clause be those variables that ap- 
pear in the body of the clause but not in the head; we 
will consider the learnability of the language ChqFREE, 
defined as all nonrecursive clauses with at most Ic free 
variables. Clauses in C,_,,,, are necessarily of depth 
at most k; also restricting the number of free variables 
is required to ensure that clauses can be evaluated in 
polynomial time. 

Notice that CrmFREE is the most restricted language 
possible that contains indeterminate clauses. We be- 
gin with an observation about the expressive power of 

82 Cohen 



Background theory: 
fori=l,...,k 

truei (b, y) for all b, y : b = 1 or y E 1, . . . , T but y # i 
falsei(b,y) forallb,y:b=OoryEl,...,rbuty#i 

DNF formula: (VI A EA vq) V (ETA%) V (VI AK) 

Equivalent clause: 
dnf(Xl,X2,X3,X4) + 

true1 (X,,Y) A false1 (&,Y) A truel(X4,Y) A 
false:!(Xz,Y) A falsez(&,Y)A 
trues(Xr,Y) A falses(X4,Y). 

Figure 2: Reducing a DNF formula to a clause 

this language: for every r, there is a background the- 
ory K, such that every DNF formula with r or fewer 
terms can be emulated by a clause in CImFREEIKr]. 
The emulation is a bit more indirect than the emu- 
lation for circuits, but the intuition is simple: it is 
based on the observation that a clause p(X)+q(X, Y) 
classifies an example p(a) as true exactly when K I- 
a(a,h) v . . - V K I- q(a, b,), where br, . . . , b, are the 
possible bindings of the (indeterminate) variable Y; 
thus indeterminate variables allow some “disjunctive” 
concepts to be expressed by a single clause. 

Specifically, K, will contain sufficient atomic facts 
to define the binary predicates truel, falsel, . . . , true,, 
false, which behave as follows: 
e truei (X, Y) succeeds if X = 1, 

0rifY E {l,..., i-l,i+l,..., r}. 
8 falsei (X, Y) succeeds if X = 0, 

0rifY E {l,..., i-l,i+l,..., r}. 
The way in which a formula is emulated is illus- 

trated in Figure 2. The free variable in the emulating 
clause is Y, and the r possible bindings of Y corre- 
spond to the r terms of the emulated DNF formula. 
Assume without loss of generality that the DNF has 
exactly r terms6 and let the i-th term of the DNF be 
Ti = r\;L, lij; this will be emulated by a conjunction 
of literals Ci = A,“!-, Litij designed so that Ci will suc- 
ceed exactly when Ti succeeds and Y is bound to i, or 
when Y is bound to some constant other than i. This 
can be accomplished by defining 

Litij E truei (Xk, Y) if lij = Vk 
falsei (xk, Y) if Zij = @ 

Now, assume that Xi is bound to the value of the i-th 
boolean variable vi that is used in the DNF formula; 
then the conjunction AI==, Ci will succeed when Y is 
bound to 1 and Tl succeeds, or when Y is bound to 2 
and Tz succeeds, or . . . or Y is bound to r and TT suc- 
ceeds. Hence, if we assume that each example bl . . . b, 
is preprocessed to the atom dnf&, . . . , b,), the clause 

61f necessary, null terms ZII- can be added to make the 
DNF T terms long. 

dnf (Xl,. . . ,&-J + A;=, ci ( in which Y can be bound 
to any of the r values) will correctly emulate the orig- 
inal formula. 

As a consequence, we have the following theorem: 
Theorem 3 Let DNF, denote the language of DNF 
expressions of complexity n or less; for all n there 
is a polynomial sized background theory Kn such that 
DNF, a C1sFREE [KJ. Thus, for all constant k, the 
family of languages Ck-,REE[K] is predictable only if 
DNF, is predictable. 

An important question is whether there are lan- 
guages in cksFREE that are harder to learn than DNF. 
The answer to this questions is no: for every k and 
every background theory K E a-x, every clause in 
c k-FREE[K] can be emulated by a DNF formula. Let 
Cl = A t B,, A . . . A B,, be a clause in CkVFREE[K]. 
As we assume clauses are nonrecursive, Cl covers an 
example e iff 

3a:KI-(B,, A...AB,,)d, (1) 

where 0, is the most general unifier of A and e. How- 
ever, since the background theory K is of size nb, and 
all predicates are of arity a or less, there are at most 
a?ab constants in K, and hence only (unb)k possible 
substitutions 01,. . . , U(~Q to the Ic free variables. 
Also (as we assume clauses are function-free) if K de- 
fines i different predicates, there are at most 1 - (n, + 
k)” < nb -(n, +/c)a possible literals B1, . . . , B,,(,,+rcja 
that can appear in the body of a ckwFn,, clause. 

So, let us introduce the boolean variables vij where 
i ranges from one to nb . (?a, + /c)a and .i ranges from 

one to (anb)lc. We will preprocess an example e by 
constructing an assignment r], to these variables: vij 
will be true in qe if and only if K t- BigjO,. This 
means that Equation 1 is true exactly when the DNF 
formula 

(anb)= 1 

V // %j 

j=l ix1 

is true; hence the clause Cl can be emulated by DNF 
over the vij ‘s. 

We can thus strengthen Theorem 3 as follows: 
Theorem 4 The family of languages ckWFREE is pre- 
dictable if and only if DNF is predictable. 

This does not actually settle the question of whether 
indeterminate clauses are predictable, but does show 
that answering the question will require substantial ad- 
vances in computational learning theory; the learnabil- 
ity and predictability of DNF has been an open prob- 
lem in computational learning theory for several years. 

Learning recursive clauses 
Finally, we will consider learning a single recursive 
ij-determinate clause. A realistic analysis of recur- 
sive clauses requires a slight extension of our formal- 
ism: rather than representing an example as a sin- 
gle atom of arity n,, we will (in this section of the 

Complexity in Machine Learning 83 



paper only) represent an example as a ground goal 
atom, e, plus a set of up to ne ground description 
atoms D = (dl,... , dne) of arity bounded by a. A 
program P now classifies an example (e, D) as true iff 
PA K A D I- e. This also allows structured objects like 
lists to be used in examples; for example, an example 
of the predicate member(X, Ys) might be represented 
as the goal atom e =member(b,list-ab) together with 
the description 
D = { head(list-ab,a), tail(list,ab,list-b), 

head(list-b,b), tail(list-b,nil) } 
This formalism follows the actual use of learning sys- 
tems like FOIL. Finally, in order to talk sensibly about 
one-clause recursive programs, we will also assume that 
the non-recursive “base case” of the target program is 
part of D or K. 

Again, the key result of this section is an observation 
about expressive power: there is a background theory 
Kn such that every log-space deterministic (DLOG) 
Turing machine M can be emulated, on inputs of size 
n or less, by a single recursive ij-determinate clause. 
Since DLOG Turing machines are cryptographically 
hard to predict, this will lead to a negative predictabil- 
ity result for recursive clauses. 

Before describing the emulation, we will begin with 
some basic facts about DLOG machines. First, we can 
assume, without loss of generality, that the tape al- 
phabet is (0, 1). Then a DLOG machine M accepting 
only inputs of size n can be encoded by a series of 
transitions of the following form: 
if xi - - b and CONFIG=cj then let CONFIG:=ci 
where xi denotes the value of the i-th square of the in- 
put tape, b E (0, l}, and cj and cs are constants from 
a polynomial-sized alphabet CON = {cl, . . . , ~~(~1) 
of constant symbols denoting internal configurations 
of M.7 One can also assume without loss of gener- 
ality that there is a unique starting configuration CO, 
a unique accepting configuration c,,,, and a unique 
“failing” configuration cfail, and that there is ex- 
actly one transition of the form given above for ev- 
ery combination of i : 1 5 i 5 n, b E {O,l}, and 
cj E CON - {cacc, cfaia}. On input X = x1 . . . X~ 
the machine M starts with CONFIG=co, then ex- 
ecutes transitions until it reaches CONFIG=c,,, or 
CONFIG=C~,~~, at which point X is accepted or re- 
jected (respectively). 

To emulate M, we will preprocess an example S = 
h . . . b, into the goal atom e and the description D 
defined below: 

e s tm( news, CO) 

7An internal configuration encodes the contents of M’s 
worktape, along with all other properties of its internal 
state relevant to the computation. Since M’s worktape is 
of length logn it can have only n different contents; thus 
there are only a polynomial number p(n) of internal con- 
figurations for M. 

D E { b%(news, bJ)Yzl U {tm(news, cacc>} 

Now we will define the following predicates for the 
background theory K,. First, for every possible 
b E {O,l) and j : 1 5 j 5 p(n), the predicate 
statb,j (B, C, Y) will be defined so that given bindings for 
variables B and c, statb,j (B, C, Y) will fail if C = cfail ; 
otherwise it will succeed, binding Y to active if B = b 
and C = cj and binding Y to inactive otherwise. Sec- 
ond, for j : 1 5 j 5 p(n), the predicate nextj (Y, C) will 
be true if Y = active and C = cj, or if Y = inactive 
and C = cacc. It is easy to show that these definitions 
require only polynomially many facts to be in Kn. 

TRANSibj - bit;(S,Bibj) A Statb,j(c,Bibj,Yibj) A 
IRXtjf (Yibj,clibj) A kIl(S,Clibj) 

Given K, and D, and assuming that S is bound to 
news and C is bound to some configuration c, this 
conjunction will fail if c = cfail; otherwise, it will suc- 
ceed trivially if xi # b or c # cj8 ; finally, if xi = b 
and c = cj, TRANSibj will succeed only if the atom 
tm(news, cjl) is provable. g From this it is clear that 
the one-clause logic program 

tm(S,C) + A TRANSibj 

iE(1 ,...,n}, bE{O,l) 
jE{l ,...dn>l 

will correctly emulate the machine M. Thus, let- 
ting Rij-DET denote the language of one-clause ij- 
determinate recursive logic programs, and letting 
DLOGn represent the class of problems on inputs of 
size n computable in deterministic space log n, we have 
the following theorem. 

Theorem 5 For all n there is a background theory Kn 
such that DLOG,a R,,-,,, [Kn]. Thus the family of 

lfqw-wes &j-DET [K] is not polynomially predictable, 
and hence not pat-learnable, under cryptographic as- 
sumptions. 

Although this result is negative, it should be noted 
that (unlike the case in the previous theorems) the 
preprocessing step used here distorts the distribution 
of examples: thus this result does not preclude the 
possibility of distribution-specific learning algorithms 
for recursive clauses. 

Concluding remarks 
This paper presented three negative results on learn- 
ing one-clause logic programs. These negative results 
are stronger than earlier results [Kietz, 19931 in a num- 
ber of ways; most importantly, they are not based on 
restricting the learner to produce hypotheses in some 

‘In this case Yibj will be bound to inactive and Clibj 

will be bound to cacc -the recursive call to tm/2 succeeds 
because tm(news ,cacc) E D. 

‘In this case, Yibj will be bound to active and clibj 

will be bound to cjj. 

84 Cohen 



designated language. Instead, they are obtained by 
showing that learning is as hard as breaking a secure 
cryptographic system. 

In particular, we have shown that several extensions 
to the language of constant-depth determinate clauses 
lead to hard learning problems. First, allowing depth 
to grow as the log of the problem size makes learn- 
ing a single determinate clause as hard as learning a 
log-depth circuit, which is hard under cryptographic 
assumptions; this shows that all learning algorithms 
for determinate clauses will require time worse than 
exponential in the depth of the target concept. Sec- 
ond, indeterminate clauses with Ic “free” variables (a 
restriction of the language of constant-depth indeter- 
minate clauses) are exactly as hard to learn as DNF; 
the learnability of DNF is a long-standing open prob- 
lem in computational learning theory. 

Finally, adding recursion to the language of i j- 
determinate clauses makes them as hard to learn as a 
log-space Turing machine; again, this learning problem 
is cryptographically hard. There are however, learn- 
able classes of one-clause linearly recursive clauses; a 
discussion of this is given in a companion paper [Co- 
hen, 1993b]. 

Acknowledgements 
Thanks to Mike Kearns and Rob Schapire for several 
helpful discussions, and to Susan Cohen for proofread- 
ing the paper. 

eferences 
(Cohen and Hirsh, 1992) William W. Cohen and 

Haym Hirsh. Learnability of description logics. 
In Proceedings of the Fourth Annual Workshop on 
Computational Learning Theory, Pittsburgh, Penn- 
sylvania, 1992. ACM Press. 

(Cohen, 1992) William W. Cohen. Compiling knowl- 
edge into an explicit bias. In Proceedings of the Ninth 
International Conference on Machine Learning, Ab- 
erdeen, Scotland, 1992. Morgan Kaufmann. 

(Cohen, 1993a) William W. Cohen. Learnability of 
restricted logic programs. In Proceedings of the 
Third International Workshop on Inductive Logic 
Programming, Bled, Slovenia, 1993. 

(Cohen, 199313) William W. Cohen. A pat-learning al- 
gorithm for a restricted class of recursive logic pro- 
grams. In Proceedings of the Tenth National Con- 
ference on Artificial Intelligence, Washington, D.C., 
1993. 

(Cohen, 1993c) William W. Cohen. Rapid prototyp- 
ing of ILP systems using explicit bias. In prepara- 
tion, 1993. 

1992 Workshop on Computational Learning Theory, 
Pittsburgh, Pennsylvania, 1992. 

(Kearns and Valiant, 1989) Micheal Kearns and Les 
Valiant. Cryptographic limitations on learning 
Boolean formulae and finite automata. In 21th An- 
nual Symposium on the Theory of Computing. ACM 
Press, 1989. 

(Kharitonov, 1992) Michael Kharitonov. Crypto- 
graphic lower bounds on the learnability of boolean 
functions on the uniform distribution. In Proceed- 
ings of the Fourth Annual Workshop on Computa- 
tional Learning Theory, Pittsburgh, Pennsylvania, 
1992. ACM Press. 

(Kietz, 1993) Jorg-Uwe Kietz. Some computational 
lower bounds for the computational complexity of 
inductive logic programming. In Proceedings of the 
1993 European Conference on Machine Learning, 
Vienna, Austria, 1993. 

(Lavrae and DZeroski, 1992) Nada LavraE and Saso 
DZeroski. Background knowledge and declarative 
bias in inductive concept learning. In K. P. Jantke, 
editor, Analogical and Inductive Inference: Interna- 
tional Workshop AII’92. Springer Verlag, Daghstuhl 
Castle, Germany, 1992. Lecture in Artificial Intelli- 
gence Series #642. 

(Lloyd, 1987) J. W. Lloyd. Foundations of Logic Pro- 
gramming: Second Edition. Springer-Verlag, 1987. 

(Muggleton and Feng, 1992) Steven Muggleton and 
Cao Feng. Efficient induction of logic programs. 
In Inductive Logic Programming. Academic Press, 
1992. 

(Muggleton, 1992a) S. H. Muggleton, editor. Induc- 
tive Logic Programming. Academic Press, 1992. 

(Muggleton, 1992b) Steven Muggleton. Inductive 
logic programming. In Inductive Logic Program- 
ming. Academic Press, 1992. 

(Pitt and Warmuth, 1990) Leonard Pitt and Manfred 
Warmuth. Prediction-preserving reducibility. Jour- 
nal of Computer and System Sciences, 41:430-467, 
1990. 

(Quinlan, 1990) J. Ross Quinlan. Learning logical def- 
initions from relations. Machine Learning, 5(3), 
1990. 

(Quinlan, 1991) J. Ross Quinlan. Determinate liter- 
als in inductive logic programming. In Proceedings 
of the Eighth International Workshop on Machine 
Learning, Ithaca, New York, 1991. Morgan Kauf- 
mann. 

(Valiant, 1984) L. G. Valiant. A theory of the learn- 
able. Communications of the ACM, 27( ll), Novem- 
ber 1984. 

(DZeroski et al., 1992) Savso DZeroski, Stephen Mug- 
gleton, and Stuart Russell. Pat-learnability of de- 
terminate logic programs. In Proceedings of the 

Complexity in Machine Learning 85 


