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Abstract 

In recent times, there has been an increase in the 
number of Natural Language Generation systems 
that take into consideration a user’s inferences. 
The statements generated by these systems are 
typically connected by inferential links, which are 
opportunistic in nature. In this paper, we de- 
scribe a discourse structuring mechanism which 
organizes inferentially linked statements as well 
as statements connected by certain prescriptive 
links. Our mechanism first extracts relations and 
constraints from the output of a discourse plan- 
ner. It then uses this information to build a di- 
rected graph whose nodes are rhetorical devices, 
and whose links are the relations between these de- 
vices. The mechanism then applies a search proce- 
dure to optimize the traversal through the graph. 
This process generates an ordered set of linear 
discourse sequences, where the elements of each 
sequence are maximally connected. Our mecha- 
nism has been implemented as the discourse orga- 
nization component of a system called WISHFUL 
which generates concept explanations. 

Introduction 
Consideration of the inferences an addressee is likely 
to make from discourse is an essential part of discourse 
planning. In recent times, there has been an increase 
in the number of Natural Language Generation (NLG) 
systems which address the inferences a user is likely to 
make from the information presented by these systems, 
e.g., [Joshi et al. 1984; Zukerman 1990; Cawsey 1991; 
Horacek 1991; Lascarides & Oberlander 1992; Zuker- 
man & McConachy 19931. 

A system that addresses a user’s possible inferences 
poses a new set of problems for the discourse structur- 
ing component of the system. Consider, for example, 
the following discourse: 
1 The first step in Bracket Simplification 

is addition or subtraction. 
2 For example, 2(3~ + 52) = 2 x 82. 
3 Indeed, Bracket Simplification applies to 

Like Terms. 

*This research was supported in part by grant 
A49030462 from the Australian Research Council. 

4 In addition, as you know, it applies to 
Numbers. 

5 However, it does not always apply to 
Algebraic Terms. 

6 For instance, you cannot add the terms in 
brackets in 3(2x + 7~). 
This discourse features inferential relations in lines 

2-3, 3-4 and 4-5 (signaled by italicized conjunctions). 
The sentence in line 3 realizes a generalization from 
the example in line 2, the sentence in line 4 expands 
on the information in line 3, and the sentence in line 5 
violates an expectation established in line 4. 

The two main methods for text organization con- 
sidered to date are the schema-based approach, e.g., 
[Weiner 1980; McKeown 1985; Paris 19881, and the 
goal-based approach, e.g., [Hovy 1988; Moore & 
Swartout 1989; Cawsey 19901. Both of these meth- 
ods are designed to accomplish a single discourse goal. 
However, inferential relations are opportunistic rather 
than prescriptive, and therefore cannot be easily cast 
as contributing to a single communicative goal. Hence, 
these approaches are ill equipped to cope adequately 
with inferential links. 

In this paper, we present a mechanism which orga- 
nizes inferentially linked information into maximally 
connected discourse. This mechanism also copes with 
prescriptive discourse relations between the intended 
information and the prerequisite information that is 
needed to understand the intended information. Our 
mechanism has been implemented as a component of a 
system called WISHFUL which generates concept ex- 
planations [Zukerman & McConachy 19931. 

In the following section, we discuss previous research 
in discourse structuring. Next, we outline the oper- 
ation of our discourse planner as background to the 
description of our discourse structuring mechanism. 
We then discuss our results and present concluding re- 
marks. 

Related Research 
The schema based approach was introduced in [Weiner 
19801. It was later formalized in [McKeown 19851 and 
expanded in [Paris 1988]. This approach consists of 
compiling rhetorical predicates into a schema or tem- 
plate which reflects normal patterns of discourse. Since 
schemas represent compiled knowledge, they are com- 
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putationally efficient. However, they do not cope well 
with the need to exhibit dynamic and adaptive be- 
haviour. This shortcoming is overcome by the goal- 
based approach. 

The two main techniques which represent the goal- 
based approach are described in [Hovy 1988; Hovy & 
McCoy 19891 and in [M oore & Swartout 19891. Both 
techniques involve converting discourse relations iden- 
tified in Rhetorical Structure Theory (RST) [Mann & 
Thompson 19871 into discourse plan operators, and 
then applying a hierarchical planner [Sacerdoti 19771 
to produce a discourse plan. This plan is a tree whose 
leaves are propositions and whose non-leaf nodes are 
relations between propositions. Moore’s mechanism 
takes as input a communicative goal, and uses dis- 
course plan operators both to decide what to say and to 
organize the discourse. Hovy’s structurer, on the other 
hand, is given a set of propositions to be communicated 
as well as one or more communicative goals. [Hovy & 
McCoy 19891 1 a er t combined Hovy’s discourse struc- 
turer with Discourse Focus Trees proposed in [McCoy 
& Cheng 19911 in order to enhance the coherence and 
flexibility of the generated discourse. 

The goal-based approach is particularly suitable 
for situations where a communicative goal may be 
achieved by whatever means are available, e.g., con- 
vincing a user to do something [Moore & Swartout 
19891. However, when the objective is to convey infor- 
mation about a concept, e.g., teach Distributive Law, 
this approach may omit information that does not fit 
in the proposed rhetorical structure. For instance, 
the system described in [Hovy 19881 tries to include 
as much information as possible in a generated RST 
tree, but leaves out information that does not fit. The 
system described in [Cawsey 19901 includes only cer- 
tain types of information in the discourse operators, 
and therefore, other relevant information may never 
be mentioned. 

A different approach was taken in [Mann & Moore 
19811, where discourse organization is viewed as a prob- 
lem solving task whose objective is to satisfy some op- 
timality criterion. They implemented a hill-climbing 
procedure which iteratively selects the best pairwise 
combination of an available set of protosentences. Due 
to the use of the hill-climbing function, this approach 
produces locally optimal discourse. In this research, we 
also view discourse organization as a problem solving 
task, but we generate discourse which satisfies globally 
our optimality criterion. 

Finally, [Mooney et al. 19911 and [Cerbah 19921 con- 
sider the discourse structuring problem at a different 
level. [Mooney et al. 19911 generate extended dis- 
course by first applying a bottom-up strategy to parti- 
tion a large number of information items into groups, 
and then applying a goal-based technique to structure 
the discourse in each group. [Cerbah 19921 uses global 
discourse strategies, such as parallel-explanation and 
concession, to guide the organization of discourse re- 
lations in order to generate discourse that achieves a 
desired overall effect. An interesting avenue of inves- 
tigation is the adaptation of the mechanism presented 
in this paper as a component of these systems. 

Operation of the 
Our discourse planner receives as input a concept to be 
conveyed to a hearer, e.g., Bracket Simplification; a list 
of aspects that must be conveyed about this concept, 
e.g., operation and domain; and an attitude, which de- 
termines a desired level of expertise. It generates a set 
of Rhetorical Devices (RDs), where an RD is composed 
of a rhetorical action, such as Assert or Instantiate, ap- 
plied to a proposition. 
following steps. 

To this effect, it performs the 

Step 1: WISHFUL first consults a model of the 
user’s beliefs in order to determine which propositions 
must be presented to convey the given aspects. This 
step selects for presentation propositions about which 
the user has misconceptions, and propositions that are 
believed by the user but not to the extent demanded by 
the given attitude. Table 1 contains the propositions 
selected to convey the operation and domain of Bracket 
Si rplification. y 

p3: [Bracket-Simplification apply-to Like-Terms] 

Table 1: Propositions to be Conveyed 

Step 2: Next, WISHFUL applies inference rules in 
backward reasoning mode in order to generate alter- 
native RDs that can be used to convey each proposi- 
tion. It then applies inference rules on these RDs in 
forward reasoning mode in order to conjecture which 
other propositions are indirectly affected by these RDs. 
If propositions that are currently believed by the user 
are adversely affected by inferences from the proposed 
RDs, they will be added to the set of propositions to 
be conveyed, e.g., proposition p4 in Table 2. 

Step 3: In this step, the generation process is ap- 
plied recursively with a revised attitude and new as- 
pects for each of the concepts mentioned in each of the 
alternative sets of RDs generated in Step 2. This is 
necessary, since it is possible that the hearer does not 
understand the concepts mentioned in a particular set 
of RDs well enough to understand this set. This pro- 
cess generates subordinate sets of RDs, each of which 
is an alternative way of conveying a concept that was 
not sufficiently understood by the hearer. 

Negate+Instantiate+ ~5: [Bracket-Simplification 

3(2a: + 7~) (N+I+) 
always apply-to 
Algebraic-Terms] 

Table 2: The Set of RDs Selected by WISHFUL 
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Figure 1: A Z-layer RD-Graph 

Step 4: For each concept used in each alternative 
set of RDs, WISHFUL now generates a set of RDs that 
evokes this concept, if the user model indicates that the 
user and the system do not have a common terminol- 
ogy for it’. To ensure that the available discourse op- 
tions are not constrained unnecessarily, Evocative RDs 
are generated before the organization of the discourse. 
Further, they are used to generate constraints for the 
discourse organization process. For instance, consider 
a situation where the only possible evocation of the 
concept Like-Terms is “a kind of Algebraic Expression 
where all the variables are the same.” Now, if the or- 
ganization procedure had been applied before the evo- 
cation step, it could have arbitrarily determined that 
Algebraic-Expressions should be introduced long after 
Like-Terms. In this case, the resulting discourse would 
be awkward at best. This situation is avoided by con- 
straining Algebraic-Expressions to appear either before 
or immediately after Like-Terms. The generation of 
access referring expressions, on the other hand, must 
be performed after the organization of the discourse, 
since decisions regarding pronominalization depend on 
the structure of the discourse. 

Step 5: Owing to the interactions between the in- 
ferences from the RDs in each set of RDs generated 
so far, it is possible that some of the proposed RDs 
are no longer necessary. In order to remove the redun- 
dant RDs, WISHFUL applies an optimization process 
to each set of RDs. It then selects the set with the 
least number of RDs among the resulting sets. 

The output of the discourse planner is an RD-Graph, 
which is a directed graph that contains the following 
components: (1) the set of propositions to be con- 
veyed (P~,--.,P~ 
RDs (J-Z&... 

in Figure 1); (2) the selected set of 
> RDm, iR%+d, - - - > WDm+pl); 

6 
3) 

the inferential relations between the RDs and t e 
propositions (labelled wi,j); and (4) the prescriptive 
relations between the sets of RDs that generate prereq- 
uisite and evocative information and the RDs that are 
connected to the propositions (labelled um+b,j). The 
inferential relations are generated in Step 2 above. The 
weight wi,j contains information about the effect of 
RDi on the user’s belief in proposition pj. The pre- 
requisite information is generated in Step 3, and the 
evocative information in Step 4. 

Table 2 contains the set of RDs generated by WISH- 
FUL for the input in Table 1. The rhetorical action 

‘Evocation pertains to the first time a concept is men- 
tioned in a piece of discourse, as opposed to access, which 
pertains to subsequent references to this concept [Webber 
19831. 

Mention indicates that the user is familiar with the 
proposition in question. Instantiate+ stands for an 
Instantiation annotated with a short explanation, such 
as that in line 6 in the sample discourse in the In- 
troduction. The algebraic expressions 2(31: + 5x) and 
3(2x+7y) in the Instantiations are the objects on which 
the corresponding propositions are instantiated. 

Operation of the Discourse Structurer 
Our discourse structuring mechanism generates an op- 
timal ordering of the RDs in the RD-Graph generated 
by the previous steps of WISHFUL. Our optimality cri- 
terion is maximum connectivity, which stipulates that 
the generated discourse should include the strongest 
possible relations between the RDs in the graph. 

Our procedure first uses the relations in the RD- 
Graph to derive constraints and relations that affect 
the order of the generated RDs. The constraints are 
strict injunctions regarding the relative ordering of 
these RDs, while the relations are suggestions regard- 
ing the manner in which the RDs should be connected. 
These constraints and relations are then represented as 
a Constraint-Relation Graph, which is a directed graph 
whose nodes are RDs and whose links are relations 
and constraints. Finally, we apply a search procedure 
which finds the optimal traversal through the graph, 
i.e., the traversal which uses the strongest links and 
violates no constraints. 

Extracting Constraints and Relations 
The constraints extracted by our mechanism are BE- 
FORE and IMMEDIATELY-AFTER. They are obtained 
directly from the prescriptive links in the RD-Graph 
(the links in the right-hand layer of the graph in Fig- 
ure 1) by applying the following rule: 
If 3 a link between {RD,+I,} and RDj (vm+k,j #O) 
Then BEFORE((RD,+k},RDj) or 

IMMEDIATELY-AFTER({RD,+k},RDj). 
These constraints stipulate that a set of RDs that is 

used to evoke or explain a concept must be presented 
in the discourse either at any time before this concept 
is presented or immediately after it. 

The relations extracted by our mechanism are 
CAUSE,REALIZE,ADD and VIOLATE. Thefirstthree re- 
lations represent corroborating information, where the 
causal relation is the strongest, and the additive rela- 
tion the weakest. The fourth relation represents con- 
flicting information. In order to derive these relations, 
the system first obtains support and soundness infor- 
mation from the weights wi,j of the inferential links in 
the RD-Graph (the links in the left-hand layer of the 
graph in Figure 1). 

Support indicates whether an inference from an RD 
supports or contradicts a proposition. Inferences that 
support a proposition are positive 
that contradict it are negative (- f 

+), while inferences 
. 

Soundness indicates the level of soundness of an 
inference from an RD. We distinguish between three 
types of positive inferences based on the soundness of 
the inference rules that yield these inferences: sound 
(s), acceptable (a) and unacceptable (u). Negative in- 
ferences are not affected by this distinction, since the 
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A+I RD1-+-- PI 
[Bracket-Simplification 

step-l +/-I 

A RD P3 
[Bracket-Simplification 

apply-to Like-Terms] 

M RD P4 
[Bracket-Simplification 

apply-to Numbers] 

N+I+ RD* 
[Bracket-Simplification 

always apply-to 
Algebraic-Terms] 

Figure 2: RD-Graph for the Selected Set of RDs 

manner in which they are addressed is not influenced 
by their soundness. ’ 

Sound inferences are logically sound, e.g., a special- 
ization from a positive statement or a generalization 
from a negative statement. 

Acceptable inferences are sensible! and their re- 
sults hold often, e.g., a generalization from an in- 
stance to a class, a generalization from a positive 
statement, or a specialization from a negative state- 
ment. 

Unacceptable inferences hold only occasionally, 
and hence should not be reinforced, e.g., inferences 
based on the superficial similarity of two items. 

In addition, the discourse structurer requires direct- 
ness information, which conveys the length of the in- 
ference chain which infers a proposition from an RD. 
A directness of level 0 corresponds to a direct infer- 
ence, level 1 corresponds to inferences drawn from the 
application of one inference rule such as generalization 
or specialization, level 2 corresponds to the combina- 
tion of two inference rules, etc. Directness reflects the 
intentionality of the discourse, since direct inferences 
are usually the ones intended by the speaker. Hence, 
an RD that conveys a proposition by means of a di- 
rect inference always has a positive support for this 
proposition’. Directness information is obtained di- 
rectly from the inference rules used by the system. 

Figure 2 depicts support, soundness and directness 
information for the RD-Graph which corresponds to 
the set of RDs in Table 2. For instance, the label +2a 
represents an acceptable inference of positive support 
and directness 2. 

The relations between the RDs are derived from 
these factors by means of the procedure Get- 
Inferential-Relations. For each proposition, the al- 
gorithm builds a set of binary relations of the form 
ReZ(RDi, DirRD). Each binary relation contains one 
RD that conveys this proposition directly (DirRD), 
and another that affects it indirectly (RDi). As stated 
above, the possible values of ReZ considered by our 
mechanism are: VIOLATE, CAUSE, REALIZE and ADD. 
The relation VIOLATE is obtained first from the RDs 
that affect a proposition indirectly with a negative sup- 
port, i.e., DirRD is at odds with each of these RDs. 
The remaining RDs, which have a positive support, 
corroborate DirRD. They are divided into those from 

2The Negation of proposition p has a positive support 
for the intended proposition lp. 

which the proposition is derived by means of a sound 
inference, those from which the proposition is inferred 
by an acceptable inference, and those which yield the 
proposition through an unacceptable inference. These 
RDs are related to DirRD by means of the relations 
CAUSE, REALIZE and ADD, respectively. Table 3 con- 
tains the binary relations generated by our algorithm 
for the RD-Graph in Figure 2. 

Procedure Get-Inferential-Ptelations(RD-Graph) 
For each proposition p E RD-Graph do: 
1. DirRD + the RD from which p is inferred directly. 

2. IndRD + the RDs from which p is inferred 
indirectly. 

3. If IndRD # 8 and DirRD 8 Then 
(VIOLATE(RD~ ,DirRD) f RDa affects p with 

a negative inference} 
{CAUSE(RD~ ,DirRD)I RDi affects p with 

a sound and positive inference} 
(REALIZE(RD~,D~~RD 1 RDi affects p with 

an accepta d de and positive inference} 
{ADD(RDi,DirRD)I RDi affects p with 

an unacceptable and positive inference} 

uilding the Constraint- elation Graph 
After the ordering constraints and relations have been 
extracted from the RD-Graph, they are combined in 
order to generate the Constraint-Relation Graph used 
in the next step of the discourse organization process. 
This is done by iteratively adding each constraint and 
relation to a graph that starts off empty, without dis- 
rupting the links built previously. In order to sup- 
port a numerical optimization process, the links in the 
Constraint-Relation Graph are assigned weights. Con- 
straints (BEFORE and IMMEDIATELY-AFTER) are as- 
signed a height of 00, since constraints must-never 
violated. Relations are assigned weights according 

be 
to 

their support and soundnesg as follo%s: CAUSE 4,k~- 
ALIZE 2, VIOLATE 2 and ADD 1. Figure 3 illustrates the 
Constraint-Relation Graph built from the relations in 
Table 3. 

Figure 3: The Constraint-Relation Graph 

Generating the Optimal Traversal 
The procedure for generating the optimal traversal of 
the Constraint-Relation Graph consists of three stages: 
(1) path extraction, (2) filtering, and (3) optimization. 

The path extraction stage generates all the ter- 
minal paths starting from each node in the Constraint- 
Relation Graph, where a terminal path is one that con- 
tinues until a dead-end is reached. For instance, node 
RD1 in Figure 3 has two alternative terminal paths: 
(1) RD1 -REALIZE - RDa -VIOLATE - RD4 - VIO- 
LATE - RDs, and(2) RD1 -REALIZE- RD2 -ADD - 
RD3 -VIOLATE- RD4. 
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IndRD (+u) 

Relation 

P3 P4 P5 
RD 
RD: 

RD 
RD; 

KU 
(RDz,iD3] 

- - - 

RDI - - 
- RD3 RD2 - 

REALIZE(RDl,RDa) ADD(RD2,RDs) vIoLATE(RD2 ,RD4‘\ 
ADD(RDs,RDz) 
VIOLATE(RD4 ,RD2) 

VIOLATE(R&R&) vIoLATE{RL&,RD~~ 

Table 3: Relations Extracted from the RD-Graph 

The filtering stage deletes redundant and irregdar 
paths, where a path is redundant if there exists an- 
other path which subsumes it; and a path from node 
RDi to node RDj is irregular if it contains consecu- 
tive VIOLATE links, and there exists another path from 
node RDi to node RDj that is composed of positive 
links only. For example, the path RD2 - ADD - RD3 - 
VIOLATE - RD4 is redundant, since it is subsumed by 
path (2) above. The first path above is irregular, since 
there is a positive link, namely ADD, between RD2 and 
RD3. The deletion of redundant paths cuts down the 
search, and the deletion of irregular paths prevents the 
generation of sentences of the form “RD2, but RD4. 
However RD3” if a sentence of the form “RD2 and 
RD3. However RD4” is possible. 

The optimization stage consists of applying algo- 
rithm A* [Nilsson 19801, where the goal is to select an 
ordered set of terminal paths which covers all the nodes 
in the Constraint-Relation Graph, so that the sum of 
the weights of the links in these paths is maximal. The 
operators for expanding a node in the search graph are 
defined as follows: 
Operator Oi traces the terminal path pathi through 
the Constraint-Relation Graph, and removes from the 
graph the nodes along the traced route and the links 
incident upon these nodes. The application of Oi gen- 
erates discourse that connects the RDs in pathi. 

After the application of an operator, the problem 
state consists of (1) the terminal paths removed so 
far from the Constraint-Relation Graph, and (2) the 
remaining part(s) of the Constraint-Relation Graph. 
The remaining parts of the graph must then be pro- 
cessed similarly until the graph is empty. 

A* uses the evaluation function f(n) = g(n) + h(n) 
for each node n in the search graph, and terminates 
the search at the node with the highest value of f. In 
order to satisfy the admissibility conditions of A*, g 
and h are set to the following values: 

9= x x wei!lht(linkRD,,RDj) 
pathrPaths {RDi,RDj}Epath 

h= x WeightRDi - min WeightRDi 
RDie (CRG-Paths] 

RDi E ( CRG- Paths) 

where Paths are the paths removed so far from the 
Constraint-Relation Graph CRG; weight(linkRDi,RDj) 
is the weight of the link which connects RDi and RDj; 
and WeightRD, is the maximum of the weights of the 
links incident on RDi . 

The h function estimates the best possible out- 
come based on the remaining parts of the Constraint- 
Relation Graph. This outcome corresponds to the dis- 
course that would result if the strongest link incident 
on each node could be used in the terminal path that 
covers the remaining graph. The weakest among these 
links is subtracted from the h function, since n- 1 links 
are needed to connect n nodes. 

The result of applying this procedure to the 
Constraint-Relation Graph in Figure 3 is the ordered 
discourse sequence RD1 - REALIZE - RD2 - ADD - 
RD3 - VIOLATE - RD4 which has a total weight of 
2+1+2 = 5. This sequence yields the following out- 
put, which corresponds to the sample text in the In- 
troduction. 

Assert+Instantiate{2(32 + 52)) 
[Bracket-Simplification step-l +/-I 

REALIZE 
Assert [Bracket-Simplification apply-to Like-Terms] 
ADD 
Mention [Bracket-Simplification apply-to Numbers] 
VIOLATE 
Negate+Instantiate+{3(23: + 7~)) 
[Bracket-Simplification always apply-to Algebraic-Terms] 

Handling Constraints 
Our mechanism also handles the constraints BEFORE 
and IMMEDIATELY-AFTER. Recall that these con- 
straints involve a set of RDs which evokes or ex- 
plains a singleton RD, e.g., BEFORE({RD~+~},RD.). 
The discourse structurer extracts constraints and re a- I 
tions from the set {RDm+k} and builds a Constraint- 
Relation Graph as explained above. This graph is sub- 
ordinate to the node RDj in the main graph, and it 
is linked to RDj by a BEFORE/IMMEDIATELY-AFTER 
hyper-link. The optimization process is applied sepa- 
rately to this graph, resulting in a connected sequence 
of RDs for the set {RDm+k}. 

This sequence is treated as a single entity when the 
terminal paths are built for the main graph. When 
the BEFORE link is followed, this sequence yields an in- 
troductory segment that appears at some point before 
RDj. Alternatively, when the IMMEDIATELY-AFTER 
link is followed, it yields a subordinate clause. In 
this case, if the subordinate graph contains only a few 
RDs, the main path may continue after the subordi- 
nate clause. For example, “Bracket Simplification ap- 
plies to Like Terms., which are AZgebraic Terms such as 
3(2a: + 5~). In addition, it applies to Numbers.” Row- 
ever, if the subordinate graph is large, the terminal 
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path must stop immediately after 
an unwieldy tangential discussion. 

it in order to avoid 

esults 
As stated above, the mechanism described in this pa- 
per is part of a system for the generation of concept 
explanations. This system is implemented in Sun Com- 
mon Lisp on a SPARCstation 2. The example dis- 
cussed throughout this paper takes approximately 4 
CPU seconds to reach the stage shown in Table 2, 
and an additional second to produce the final ordered 
output sequence of rhetorical devices and relations. 
Since the discourse organization problem is exponen- 
tial, the mechanism is slowed down by larger input 
patterns with many inter-relationships which produce 
large, highly connected Constraint-Relation Graphs. 
For example, it takes about twenty seconds to struc- 
ture one sample input of twenty RDs. 

The preliminary testing of our mechanism has been 
performed in the domains of algebra (14 examples) and 
zoology (7 examples). Our mechanism was also in- 
formally evaluated by showing hand-generated English 
renditions of its output to staff and tutors in the De- 
partment of Computer Science at Monash University. 
The general opinion of the interviewed staff was that 
the text was logically constructed. In addition, a com- 
parison of the output of our mechanism with texts in 
prescribed textbooks showed that this output follows 
the layout of published instructional material. 

Conclusion 
We have offered a discourse structuring mechanism 
that organizes inferentially linked rhetorical devices as 
well as rhetorical devices linked by prerequisite rela- 
tions. Our mechanism extracts ordering constraints 
and inferential relations from the output of a discourse 
planner, and optimizes the ordering of the generated 
rhetorical devices based on the principle of maximum 
connectivity. The output of this mechanism captures 
sufficient rhetorical features to support continuous dis- 
course. 
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