
Tad Hogg and Colin B. Williams 

Xerox Palo Alto Research Center 
3333 Coyote Hill Road 

Palo Alto, CA 94304, U.S.A. 
Hogg@parc.xerox.com, CWilliams@parc.xerox.com 

Abstract 
We present and experimentally evaluate the hypothesis that 
cooperative parallel search is well suited for hard graph 
coloring problems near a previously identified transition 
between under- and overconstrained instances. We find that 
simple cooperative methods can often solve such problems 
faster than the same number of independent agents. 

Many A.I. programs involve search to solve NP hard 
problems. While intractable in the worst case, of more 
relevance to many applications is their behavior in typical 
situations. In fact, for many classes of such problems, 
most instances can be solved much more readily than 
might be expected from a worst case analysis. This has led 
to recent studies to identify characteristics of the relatively 
hard instances. In particular, observations [Cheeseman 
et al., 1991, Mitchell et al., 19921 and theory [Williams 
and Hogg, 1992b, Williams and Hogg, 1992a] indicate 
that constraint-satisfaction search problems with highest 
cost (fastest growing exponential scaling) occur near the 
transition from under- to overconstrained problems. These 
transitions, becoming increasingly sharp as problems are 
scaled up, are determined by values of easily measured 
“order” parameters of the problem, and are analogous to 
physical phase transitions as in percolation. The transition 
regions are also characterized by high variance in the 
solution cost for different problem instances, and for a 
single instance with respect to different search methods 
or a single nondeterministic method with e.g., different 
initial conditions or different tie-breaking choices made 
when the search heuristic ranks some choices equally. 
Structurally, these hard problems are characterized by 
many large partial solutions, which prevent early pruning 
by many types of heuristics. This phenomenon is also 
conjectured to appear in other types of search problems. 

Can these observations be exploited in practical search 
algorithms? One immediate application is to use the order 
parameters to estimate the difficulty of alternate problem 
formulations as an aid in deciding which approach to take. 
Another use is based on the observation of high variance 
in solution cost for problems near the transition region. 
Specifically, there have been many studies of the benefit 
of running several methods independently in parallel and 

stopping when any method first finds a solution Fishburn, 
1984, Helmbold and McDowell, 1989, Pramanick and 
Kuhl, 1991, Kornfeld, 1981, Imai et al., 1979, Rao and 
Kumer, 1992, Mehrotra and Gehringer, 19851. Since the 
benefit of this approach relies on variation in the individual 
methods employed, the high variance seen in the transition 
region suggests it should be particularly applicable for hard 
problems [Cheeseman et al., 1991, Rao and Kumer, 19921. 

Another possibility is to allow such programs to ex- 
change and reuse information found during the search, 
rather executing independently. If the search methods 
are sufficiently diverse but nevertheless occasionally able 
to utilize information found in other parts of the search 
space, greater performance improvements are possible. 
Such “cooperative” methods have been studied in the con- 
text of simple constraint satisfaction searches [Clearwater 
et al., 1991, Clearwater et al., 19921. In these cases, co- 
operative methods were observed to give the most benefit 
precisely for those problems with many large partial so- 
lutions that could not be pruned. This was the case even 
though the information exchanged was often misleading 
in the sense of not being part of any solution. While this 
work used fairly simple search methods, it suggests that 
cooperative search may be useful for much harder prob- 
lems employing sophisticated search heuristics. 

These observations lead us to conjecture that a mixture 
of diverse search methods that share information will be 
particularly effective for problems in the transition region. 
In this paper we test this conjecture experimentally for 
graph coloring, a particular class of NP-complete problems 
for which an appropriate order parameter, average connec- 
tivity, and the location of the transition region have been 
empirically determined [Cheeseman et al., 19911. We also 
address some practical issues of sharing information, or 
exchanging “hints”, among sophisticated heuristic search 
methods, which should allow these results to be extended 
readily to other constraint satisfaction problems. 

G.3 Cdd s 

The graph coloring problem consists of a graph, a specified 
number of colors, and the requirement to find a color 
for each node in the graph such that no pair of adjacent 
nodes (i.e., nodes linked by an edge in the graph) have 

Distributed Problem Solving 231 

From: AAAI-93 Proceedings. Copyright © 1993, AAAI (www.aaai.org). All rights reserved. 



the same color. Graph coloring has received considerable 
attention and a number of search methods have been 
developed [Minton et al., 1990, Johnson et al., 1991, 
Selman et al., 19921. This is a well-known NP-complete 
problem whose solution cost grows exponentially in the 
worst case as the size of the problem (i.e., number of 
nodes in the graph) increases. 

For this problem, the average degree of the graph y (i.e., 
the average number of edges coming from a node in the 
graph) is an order parameter that distinguishes relatively 
easy from harder problems, on average. In this paper, we 
focus on the case of 3-coloring (i.e., when 3 different 
colors are available), for which the transition between 
under- and overconstrained problems and hence the region 
of hardest problems occurs near [Cheeseman et al., 19911 
Y = 5. While there are likely to be additional order 
parameters, such as the variance in the degrees, this one 
was sufficient to allow us to find a set of graphs that are 
relatively hard to color with 3 colors. 

In our experiments we used two very different search 
methods. The first was a complete, depth-first backtrack- 
ing search based on the Brelaz heuristic [Johnson et al., 
19911 which assigns the most constrained nodes first (i.e., 
those with the most distinctly colored neighbors), break- 
ing ties by choosing nodes with the most uncolored neigh- 
bors (with any remaining ties broken randomly). For each 
node, the smallest color consistent with the previous as- 
signments is chosen first, with successive choices made 
when the search is forced to backtrack. This complete 
search method is guaranteed to eventually terminate and 
produce correct results. Moreover, it operates by attempt- 
ing to extend partial colorings to complete solutions. 

Our second method used heuristic repair [Minton et al., 
19901 from randomly selected initial configurations. This 
method, which always operates with complete assignments 
(i.e., each node is assigned some color), attempts to pro- 
duce a solution by selecting a node and changing its color 
to reduce as much as possible, or at least leave unchanged, 
the number of violated constraints in the problem. If some 
progress toward actually reducing the number of violations 
is not made within a prespecified number of steps, the 
search restarts from a new initial condition. This method 
is incomplete, i.e., if the problem has no solution it will 
never terminate. In practice, an upper bound on the to- 
tal number of tries is made: if no solution is found, the 
method may incorrectly report there are no solutions. 

For hard problems, both methods have a high variance 
in the number of steps required to find a solution. More- 
over, their very different nature suggests a combination of 
the two methods will give a collection of agents far more 
diverse than if all agents use the same method. In par- 
ticular, heuristic repair is often very effective at finding 
solutions once it starts “near” enough to one. 

To generate hard problems we examined many ran- 
dom graphs with connectivity near the transition re- 
gion. To correspond with the cooperative methods used 
previously [Clearwater et al., 19911 and simplify the use 
of hints, we considered only graphs that did in fact have 
solutions. Specifically, to construct our sample of graphs, 
we first divided the nodes into three classes (as nearly 
equal as possible) and allowed only edges that connected 
nodes in different classes to appear in our graph. This 
guaranteed that the graphs had a solution. Then trivial 
cases of underconstrained nodes were avoided by making 
sure each node had degree at least three. Finally, ad- 
ditional edges required to reach the desired connectivity 
were then added randomly. Many of the resulting graphs 
were trivial to search (e.g., for 100 node graphs, the me- 
dian search cost for the Brelaz heuristic was about 200 
steps at the peak). To identify those that were in fact dif- 
ficult, the resulting graphs were searched repeatedly with 
both search methods, and only those with high search cost 
for all these trials were retained. This selection generally 
produced hard graphs with search costs one to three orders 
of magnitude higher than typical cases. We should also 
note that these graphs were hard even when compared to 
other methods of generating graphs which are known to 
give harder cases on average. Specifically, the prespeci- 
fication of a solution state in our method tends to favor 
graphs with many solutions and hence favors easier graphs 
than uniform random selection. For 100 node graphs, this 
latter method gives a peak median search cost of about 
350 steps. Even more difficult cases are emphasized by 
restricting consideration to graphs with no trivial reduc- 
tions with typical costs of about 1000 steps [Cheeseman 
et al., 19911. 

A Cooperative Search 
There are two basic steps in implementing a cooperative 
search based on individual algorithms. First, the algo- 
rithms themselves must be modified to enable them to 
produce and incorporate information from other agents, 
i.e., read and write hints. Second, decisions as to exactly 
what information to use as hints, when to read them, etc. 
must be made. We should note that the first step may, in 
itself, change the performance of the initial algorithm or its 
characteristics (e.g., changing a complete search method 
into an incomplete one). Since this may change the ab- 
solute performance of the individual algorithm, a proper 
evaluation of the benefit of cooperation should compare 
the behavior of multiple agents, exchanging hints, to that 
of a single one running the same, modified, algorithm, but 
unable to communicate with other agents. In that way, the 
effect of cooperation, due to obtaining hints from other 
agents, will be highlighted. 

For example, a single agent running the Brelaz algo- 
rithm can first be modified so that it may read and write 

232 mx 



hints (it itself produced) from a private blackboard. This 
alone leads to slightly improved performance. The effect 
of cooperation can then be assessed by comparing a so- 
ciety of N agents each running the modified algorithm in 
isolation with N agents running the same algorithm except 
that they read and write to a common blackboard. In this 
way we can subtract out the effects of the changed algo- 
rithm and the memory capacity on the performance of the 
agents, leaving just the effect of cooperation. 

While there are many ways to use hints, we 
made fairly simple choices similar to those used 
previously [Clearwater et al., 19911, in which hints 
consisted of partial solutions (thus for graph coloring, 
these hints are consistent colorings for a subset of the 
nodes in the graph). A central blackboard, of limited 
size, was used to record hints produced by the agents. 
When the blackboard was full, the oldest (i.e., added 
to the blackboard before any others) of the smallest 
(i.e., involving colors for the fewest nodes) hints were 
overwritten with new hints. 

Each agent independently writes a hint, based on its 
current state, at each step with a fixed probability q. When 
an agent was at an appropriate decision point, described 
below, it read a hint with probability p. Otherwise, or if 
there were no available hints, it continued with its original 
search method. Thus, setting p to zero corresponds to 
independent search since hints would never be used. We 
next describe how the two different search methods were 
modified to produce and incorporate hints. 

At any point in a backtracking search, the current partial 
state is nsistent coloring of some subset of the graph’s 
nodes. en writing a hint to the blackboard, the Brelaz 
agents simply wrote their current state. 

Each time the agent was about to expand a node in 
its backtrack search, it would instead, with probability p, 
attempt to read a compatible hint from the blackboard, 
i.e., a hint on the blackboard whose assignments were 1) 
consistent with those of the agent (up to a permutation of 
the colors’) and 2) specified at least one node not already 
assigned in the agent’s current state. Frequently, there was 
no such compatible hint (especially when the agent was 
deep in the tree and hence had already made assignments 
to many of the nodes), in which case the agent continued 
with its own search. 

When a compatible hint was found, its overlap with the 
agent’s current state was used to determine a permutation 
of the hint’s colors that made it consistent with the state. 
This permutation was applied to the remaining colorings 
of the hint and then used to extend the agent’s current state 
as far as possible (ordering the new nodes as determined 

‘We thus used the fact that, for graph coloring, any permutation of the 
color assignments for a consistent set of assignments is also consistent. 

Brelaz heuristic), and retaining 
so that the overall search rem 

effect, this hint simply replaced decisions 
heuristic would have made regarding the initial colors to 
try for a number of nodes. 

euristic repair 
the agent’s state always has a color 

assignment for each node, but it will not be fully consistent 
(until a solution is found). In order to produce a consistent 
partial assignment for use as a hint, we started with the 
full state and randomly removed assignments until a hint 
with no conflicts was obtained. 

The heuristic repair agents have a natural point at which 
to read hints, namely when they are about to start over 
from a new initial state. At these times, we had each agent 
read a random hint from the blackboard with probability 
p, and otherwise randomly generate a new state. This 
hint, consisting of an assignment to some of the nodes, 
overwrote the agent’s current state. 

@a ? 
A simple explanation of th of cooper- 
ative search is given by observing that the hints provide 
consistent colorings for large parts of the graph. Agents 

ding hints in effect then attempt to combine them with 
ir current state. Although not always successful, those 

cases in which hints do combine well ahow the agent to 
proceed to a solution by searching in a reduced space of 
possibilities. Even if many of the hints are not success- 
ful, this results in a larger variation of performance and 
hence can still improve the performance of the group when 
measured by the time for the first agent to finish. 

As a more fond, but oversimplified, argument, sup- 
pose we view the agents as making a series of choices. 
Let pdj be the probability that agent i makes choice i cor- 
rectly (i.e., in the context of its previous choices, this one 
continues a path to a solution, e.g., by selecting a useful 
hint). ‘Ihe probability that the series of choices for agent 
i is correct is then just pi = npdj. Wi sufficient di- 

versity in hints and agents’ choices to prevent the pij 
from being too correlated, and viewing them as random 
variables, this multiplicative process results in a lognormal 
distribution [Redner, 19901 for agent 
random variable whose logarithm is normally distributed. 

ution has an extended tail compared to, say, a 
normal distribution or the distribution of the performance 
of the Brelaz heuristic on many graphs. Hence there is 
an increased likelihood that at least one agent will have 
much higher than average performance, leading to an im- 
provement in group performance. 

In practice, this simple argument must be modified 
to account for the possibility of backtracking and the 
fact that the quality of the hints changes during the 

Distributed Problem Solving 233 



search [Clearwater et al., 19921, but nevertheless gives 
some insight into the reason for the improvement and 
highlights the importance of maintaining diversity. Be- 
cause of the high intrinsic variance in performance near 
the transition point, this in turn suggests why these coop- 
erative methods are likely to be most applicable for the 
hard problems in the transition region. 

Experimental 

In this section we compare the behavior of independent 
searches with the cooperative method described above for 
some hard to color graphs. A simple performance criterion 
is the number of search steps required for the first agent 
to find a solution. However, this could be misleading 
when agents use different search methods whose individ- 
ual steps have very different computational cost. It also 
ignores the additional overhead involved in selecting and 
incorporating hints. Here we present data based on actual 
execution time of an unoptimized serial implementation 
of the searches in which individual steps are multiplexed 
(i.e., each agent in the group takes a single step, with this 
procedure repeated until one agent finds a solution). The 
results are qualitatively similar to those based on counting 
the number of steps [Hogg and Williams, 19931, with the 
main differences being due to 1) a hint-exchange overhead 
which made individual cooperative steps about 5% slower 
than the corresponding independent ones, and 2) heuristic 
repair steps being about 2.4 times faster than Brelaz ones. 
This latter fact means that in a parallel implementation of 
a mixed group, the heuristic repair searches would actu- 
ally complete relatively more search steps than when run 
serially. A parallel implementation would also face pos- 
sible communication bottlenecks at the central blackboard 
though this is unlikely to be a major problem with the 
small blackboards considered here due to the relatively 
low reading rate and the possibility of caching multiple 
copies of the blackboard which are only slowly updated 
with new hints. Thus we can expect the cooperative agents 
to gain nearly the same speedup from parallel execution as 
the independent agents, i.e., a factor of 10 for our group 
size. While this must ultimately be addressed by compar- 
ing careful parallel implementations, the improvement in 
the execution time reported below, as well as the reduced 
number of search steps [Hogg and Williams, 19931, sug- 
gest the cooperative methods are likely to be beneficial for 
parallel solution of large, hard problems. 

In Figs. 1 and 2, we compare the performance of groups 
of 10 cooperative agents with the same number of agents 
running independently. Note that in both cases, coopera- 
tion generally gives better performance than simply taking 
the best of IO independent agents. Moreover, coopera- 
tion appears to be more beneficial as problem hardness 
(measured by the performance of a group of independent 

250 

Independent Time 

Fig. 1. Performance of groups of 10 cooperating agents vs. that 
of roups of 10 independent agents, usin the Brelaz search 
me a od. Each noint corresnonds to a d’ d erent rrranh and is 
the median, ov& 10 trials., bf the execution time’ in’ seconds, 
on a SparcStation 2, re uued for the first agent in the group 
to find a solution. Eat i! second of execution corresponds to 
about 90 search steps for each of the 10 agents. For comparison, 
the diagonal line shows the values at which cooperative and 
independent f erformance are equal. Cooperation is beneficial 
for points be ow this line. In these experiments, the blackboard 
was limited to hold 100 hints, and we used p = 0.5; q = 0.1 
and graphs with 100 nodes. 

I 
200 

150 

B 4 
w 100 

50 

0 

+--M--s------- 

*----.w-.--m-- 

0 50 100 150 200 50 

Independent Time 

Fig. 2. Cooperation with heuristic repair. Each second of 
execution corresponds to about 210 search ste s 

E 
for each of 

the 10 agents. For comparison, the diagonal ‘ne shows the 
values at which cooperative and independent performance are 
equal. Some of the independent agent searches did not finish 
within 50000 steps at which point they were terminated. In 
these cases, the median performance shown in the plot for the 
independent agents is actually a lower bound: the dashed lines 
indicate the possible range of independent agent performances. 
Search parameters are as in Fig. 1. 

agents) increases. We obtained a few graphs of signif- 
icantly greater hardness than those shown in the figures 
which confirm this trend. We also observed that typically 
only a few percent of the hints on the blackboard were 
subsets of any solution so it is not obvious a priori that 
using these hints should be helpful at all. 

Finally, Fig. 3 shows a combined society of agents. In 
this case, half the agents use the Brelaz method, half use 
heuristic repair, and hints are exchanged among all agents. 
Again, we see the benefit gained from cooperative search. 
For the graphs we generated, there was little correlation 



60 

a 
100 150 200 250 

Independent Time 

Fig. 3. Performance of groups of 10 cooperating agents, 5 
using Brelaz and 5 using heuristic repair vs. the erformance 
of the same groups searching independently. R Eat second of 
execution corresponds to about 120 search steps for each of the 
10 agents. For comparison, the diagonal line shows the values 
at which cooperative and independent performance are equal. 
Search parameters are as in Fig. 1. 

between solution cost for the two search methods, so that 
even when the agents were independent, this mixed society 
generally performed better than all agents using a single 
method. 

While these results are encouraging, we should note 
that further work is needed to determine the best ways to 
exchange hints in societies using multiple methods, as well 
as the relative amount of resources devoted to different 
methods. Of particular interest is allowing the mix of 
agent types to change dynamically based on progress made 
during the search. More fundamentally for this avenue 
of research is understanding precisely what aspects of an 
ensemble of problems (e.g., in this case, determined by 
the precise method we used to generate the graphs) are 
important for the benefit of cooperation and the design 
of effective hints. Possibilities include the variance in 
individual search performance, the relative hardness of the 
graph and the proximity to the phase transition point. 

Conclusio 
In summary, we have tested our conjecture that cooper- 
ative methods are particularly well suited to hard graph 
coloring problems and seen that, even using simple hints, 
they can improve performance. It is further encouraging 
that the basic concepts used here, from the existence of 
regions of hard search problems characterized by order 
parameters to the use of partial solutions as hints, are ap- 
plicable to a wide range of search problems. 

There are a number of questions that remain to be ad- 
dressed. An important one is how the observed coopera- 
tive improvement scales, both with problem size and, for 
a fixed size, with changes in the order parameters deter- 
mining problem difficulty. There is also the question of 
how much different a parallel implementation is. 

Another issue concerns whether these ideas can be ap- 
plied to problems with no solutions to more quickly de- 

termine that fact. This is particularly relevant to the hard 
problems since they appear to occur at or near the transi- 
tion from under- to overconstrained problems which have 
many and no solutions respectively. In cases with no so- 
lution, either one must compare complete search methods 
(e.g., by having at least one agent use a complete search 
method even when reading hints) or else evaluate both 
search speed and search accuracy to make a valid com- 
parison. More generally, when applied to optimization 
problems, one would need to consider quality of solutions 
obtained as well as time required. 

This study also raises a number of more general is- 
sues regarding the use of hints. As we have seen, di- 
versity can arise from the intrinsic variation near the 
transition point and from random differences in the use 
of hints. Nevertheless, as more agents, using the same 
basic method, are added diversity does not increase as 
rapidly [Cleat-water et al., 19921. This suggests more 
active approaches to maintaining diversity, such as ex- 
plicitly partitioning the search space or, more interest- 
ingly, combining agents using different search methods 
such as genetic algorithms [Goldberg, 19891 or simulated 
annealing [Johnson et al., 19911. 

From a more practical point of view, a key decision 
for designing cooperative methods is how hints are gener- 
ated and used, i.e., the “hint engineering”. This involves a 
number of issues. The first is the nature of the information 
to exchange. This could consist of any useful information 
concerning regions of the search space to avoid or likely to 
contain solutions. The next major question is when during 
its search should an agent produce a hint. With backtrack- 
ing, the agent always has a current partial solution which 
it could make available by placing it on a central black- 
board. Generally, agents should tend to write hints 
are likely to be useful in other parts of the search space. 
Possible methods to use include only writing the largest 
partial solutions an agent finds (i.e., at the point it is forced 
to backtrack) or only if the hint is at least comparable in 
size to those already on the blackboard. Complementary 

are when should an agent decide to read a hint 
blackboard, which one should it choose and how 

should it make use of the information for its subsequent 
search. Again there are a number of reasonable choices 
which have different benefits, in avoiding search, and costs 
for their evaluation, as well as more global consequences 
for the diversity of the agent population. For instance 
agents could select hints whenever a sufficiently good hint 
is available, or whenever the agent is about to make a ran- 
dom choice in its search method (i.e., use the hint to break 
ties), or whenever the agent is in some sense stuck, e.g., 
needing to backtrack or at a local optimum. For deciding 
which available hint to use, methods range from random 
selection [Clearwater et al., 19911 to picking one that is 

Distributed Problem Solving 235 



a good match, in some sense, to the agent’s current state. 
Final issues are the hint memory requirements and what 
to discard from a full blackboard. 

Given this range of choices, is there any guidance for 
making good use of hints? Theoretical results [Clearwater 
et al., 19921 emphasize the use of diversity for good coop- 
erative performance. As a note of caution in developing 
more sophisticated hint strategies, the choices should pro- 
mote high diversity among the agents [Huberman, 1990, 
Hogg, 19901 giving many opportunities to try hints in 
different contexts. This means that choices that appear 
reasonable when viewed from the perspective of a single 
agent, could result in lowered performance for the group 
as a whole, e.g., if all agents are designed to view the 
same hints as the best to use. 

As with other heuristic techniques, the detailed imple- 
mentation of appropriate choices to maintain diversity of 
the group of agents while also maintaining reasonable indi- 
vidual performance remains an empirical issue. While we 
can expect further improvements from more sophisticated 
use of hints, the fact our relatively simple mechanisms 
are able to give increased performance suggests that such 
methods may be quite easily applied. 

Acknowledgments 
We have benefited from discussions with S. Clearwater. 

Cheeseman, P., Kanefsky, B., and Taylor, W. M. (1991). 
Where the really hard problems are. In Mylopoulos, J. and 
Reiter, R., editors, Proceedings of IJCAI91, pages 331- 
337, San Mateo, CA. Morgan Kaufmann. 
Clearwater, S. H., Huberman, B. A., and Hogg, T. (1991). 
Cooperative solution of constraint satisfaction problems. 
Science, 254: 1181-l 183. 
Clearwater, S. H., Huberman, B. A., and Hogg, T. (1992). 
Cooperative problem solving. In Huberman, B., editor, 
Computation: The Micro and the Macro View, pages 33- 
70. World Scientific, Singapore. 
Fishburn, J. P. (1984). Analysis of Speedup in Distributed 
Algorithms. UMI Research Press, Ann Arbor, Michigan. 
Goldberg, D. E. (1989). Genetic Algorithms in Search, 
Optimization and Machine Learning. Addison-Wesley, 
NY. 
Helmbold, D. P. and McDowell, C. E. (1989). Modeling 
speedup greater than n. In Ris, F. and Kogge, P. M., 
editors, Proc. of 1989 Intl. Co& on Parallel Processing, 
volume 3, pages 219-225, University Park, PA. Penn State 
Press. 
Hogg, T. (1990). The dynamics of complex computational 
systems. In Zurek, W., editor, Complexity, Entropy and the 
Physics of Information, volume VIII of Santa Fe Institute 

Studies in the Sciences of Complexity, pages 207-222. 
Addison-Wesley, Reading, MA. 
Hogg, T. and Williams, C. P. (1993). Solving the really 
hard problems with cooperative search. In Hirsh, H. et al., 
editors, AAAI Spring Symposium on AI and NP-Hard 
Problems, pages 78-84. AAAI. 
Huberman, B. A. (1990). The performance of cooperative 
processes. Physica D, 42138-47. 
Imai, M., Yoshida, Y., and Fukumura, T. (1979). A 
parallel searching scheme for multiprocessor systems and 
its application to combinatorial problems. In Proc. of 
IJCAI-79, pages 416-418. 
Johnson, D. S., Aragon, C. R., McGeoch, L. A., and 
Schevon, C. (1991). Optimization by simulated annealing: 
An experimental evaluation; part ii, graph coloring and 
number partitioning. Operations Research, 39(3):378-406. 
Kornfeld, W. A. (1981). The use of parallelism to im- 
plement a heuristic search. In Proc. of IJCAI-81, pages 
575-580. 
Mehrotra, R. and Gehringer, E. F. (1985). Superlinear 
speedup through randomized algorithms. In Degroot, D., 
editor, Proc. of I985 Intl. Conf. on Parallel Processing, 
pages 291-300, Washington, DC. IEEE. 
Minton, S., Johnston, M. D., Philips, A. B., and Laird, 
P. (1990). Solving large-scale constraint satisfaction and 
scheduling problems using a heursitic repair method. In 
Proceedings of M-90, pages 17-24, Menlo Park, CA. 
AAAI Press. 
Mitchell, D., Selman, B., and Levesque, H. (1992). Hard 
and easy distibutions of SAT problems. In Proc. of 10th 
Natl. Con. on Artificial Intelligence (AAAI92), pages 459- 
465, Menlo Park. AAAI Press. 
Pramanick, I. and Kuhl, J. G. (1991). Study of an 
inherently parallel heuristic technique. In Proc. of 1991 
Intl. Co@ on Parallel Processing, volume 3, pages 95-99. 
Rao, V. N. and Kumer, V. (1992). On the efficiency 
of parallel backtracking. IEEE Trans. on Parallel and 
Distributed Computing. 
Redner, S. (1990). Random multiplicative processes: An 
elementary tutorial. Am. J. Phys., 58(3):267-273. 
Sehnan, B., Levesque, H., and Mitchell, D. (1992). A new 
method for solving hard satisfiability problems. In Proc. of 
10th Natl. Conf. on Artificial Intelligence (AAAI92), pages 
440-446, Menlo Park, CA. AAAI Press. 
Williams, C. P. and Hogg, T. (1992a). Exploiting the deep 
structure of constraint problems. Technical Report SSL92- 
24, Xerox PARC, Palo Alto, CA. 
Williams, C. P. and Hogg, T. (1992b). Using deep 
structure to locate hard problems. In Proc. of 10th Natl. 
Conf. on Artificial Intelligence (AAAl92), pages 472477, 
Menlo Park, CA. AAAI Press. 

236 Hogg 


