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Abstract 

Current computer-aided engineering paradigms 
for supporting synthesis activities in engineering 
design require the designer to use analysis simu- 
lators iteratively in an optimization loop. While 
optimization is necessary to achieve a good final 
design, it has a number of disadvantages during 
the early stages of design. In the inverse engi- 
neering methodology, machine learning techniques 
are used to learn a multidirectional model that 
provides vastly improved synthesis (and analy- 
sis) support to the designer. This methodology 
is demonstrated on the early design of a diesel en- 
gine combustion chamber for a truck. 

Introduction 
A design engineer’s primary task is to develop designs 
that can achieve specified performances. For example, 
an engine designer may be required to design a “com- 
bustion chamber that delivers at least 600hp while min- 
imizing the fuel consumption.” The horsepower and 
fuel consumption are the performance parameters. In 
a parameterized domain, the designer sets the values 
of the decision/design parameters (e.g., engine rpm) so 
as to meet the performance. Under current computer- 
aided engineering (CAE) p aradigms, design support is 
typically provided by computer simulators. These sim- 
ulators are computerized analysis models that analyze 
a design and map decisions to performances. How- 
ever, engineering design is largely a synthesis task that 
requires mapping the performance space, P, to the de- 
cision space, D. In the absence of models that provide 
synthesis support, the designer must use the simulator, 
F, in an iterative generate and test paradigm, namely, 
in an optimization loop. The designer begins with an 
initial design (a point in D), evaluates the design with 
F, and moves to a new design, based on the differ- 
ence between the actual and required performances. A 
common way of moving within D is by response sur- 
face fitting, where the designer exercises F repeatedly 
in the neighborhood of the current design, fits a surface 
to the performances, and moves based on this surface. 

While the above methodology is essential for the fi- 
nal stages of design, it has serious drawbacks during 
early design. First, a poor starting design can result 
in a large number of optimization steps, which can 
be very time-consuming. The designer would prefer 
to rapidly develop a good initial design to use as the 
starting point in the optimization. Second, the simu- 
lator is a point to point simulator. This means that 
the designer must assign values to every decision vari- 
able at the outset of the design. Ideally, the designer 
would specify or restrict only the variables in which 
he was interested, leaving the others to be automati- 
cally specified as the design progresses. Third, every 
new performance objective must be set up as a sepa- 
rate design problem. For example, instead of design- 
ing an engine that generates 600hp, perhaps there ex- 
ists an engine that delivers 590hp but with markedly 
improved fuel consumption, or another that delivers 
640hp with slightly less efficient fuel consumption. If 
the designer had a synthesis model, he could apply and 
retract conditions on some of the performance vari- 
ables and quickly determine their effects on the other 
variables. Similarly he could constrain the decision 
variables to reflect cost concerns, inventory stocks, or 
simply as part of a “What-if” analysis. The ability to 
treat decision and performance variables more or less 
identically would prove extraordinarily valuable during 
early design. The synthesis model, once learned, could 
be used repeatedly for different designs. 

The inverse engineering methodology [Rao, 19931 
provides solutions to all the above problems by build- 
ing an accurate multidirectional model of the problem 
domain. The designer uses the model directly to proto- 
type a design quickly by successively refining the prob- 
lem space, D U P (as opposed to the traditional CAE 
paradigm where the designer works only in 0). A sin- 
gle invocation of F at the end of the process is suffi- 
cient to check the design. The foundation of inverse 
engineering is KEDS, the Knowledge-based Equation 
Discovery System [Rao and Lu, 19931. KEDS ability 
to learn accurate models in representations that can 
be converted into constraints (i.e., as piece-wise linear 
models) makes inverse engineering a viable proposi- 
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Figure 1: The Inverse Engineering Methodology 

tion. This rest of this paper describes this methodol- 
ogy, and demonstrates (through an example) how these 
techniques provides improved support for early design. 

The Inverse Engineering Methodology 
The essential problem with current CAE paradigms for 
design is the lack of synthesis support. The barrier be- 
tween analysis and synthesis activities is especially un- 
bearable in a concurrent engineering framework, where 
speed and timely execution of tasks is paramount. As 
directly learning synthesis models is a very hard task 
[Rae, 19931, the inverse engineering approach is to 
learn analysis models in representations that provide 
synthesis support. For example, if the analysis model 
for yj E P can be accurately represented as a linear 
function of some zi E D (i.e., yj = x(aizi) + b), it 
can then be converted into a constraint that provides 

BSFC Brake Specific Fuel Consumption 
ENBHP Engine Brake Horsepower (HP) 

both analysis and synthesis support. The 4 phases of 
inverse engineering (see Figure 1) are described below. 

Example Generation Phase The Diesel Engine 
Simulation Program, DESP [Assanis and Heywood, 
19861, provides the data for KEDS. DESP solves mass 
and heat balance equations from Thermodynamics and 
uses finite difference techniques to provide data that 
is representative of real-world engines. The 6 deci- 
sion and 2 performance (real-valued) variables for a 
6-cylinder, diesel combustion engine are shown in Ta- 
ble 1. The decision variables are randomly varied to 
generate 145 events. This results in two data sets (one 
for each performance variable, BSFC and ENBHP in 
Table l), such that each event is a two-tuple of a de- 
cision vector X E D and a corresponding performance 
variable, yj E P. These data sets are input to KEDS 
to learn multidirectional models. 

Model Formation Phase KEDS is a model-driven 
empirical discovery system that learns models in forms 
restricted to F , a user-defined class of parameter- 
ized model families (both linear and non-linear F are 
permitted). For the purposes of inverse engineer- 
ing, F is restricted to the class of linear polynomials, 
y = C(uix;) + b. However, it is unlikely that a sim- 
ple linear representation will be sufficient, to accurately 
model most real-world domains. KEDS can simulta- 
neously be viewed as a conceptual clustering system, 
which partitions the data based upon the mathemat- 
ical relationships that it discovers between the vari- 
ables. Each call to KEDS results in a single partial 
model (R,f), th a consists of a region (hyperrectan- t 
gle), R c D, associated with an equation, f E F , 
that predicts y for all X E R . The KEDS algorithm 
(described in [Rao and Lu, 19931) involves recursing 
through equation discovery (fitting) and partitioning 
(splitting) and combines aspects of fit-and-split [Lan- 
gley et al., 19871 and split-and-fit [Friedman, 1991; 
Quinlan, 19861 modeling systems as KEDS refines both 
the region and the equation. A sample partial model 
is shown below. 

[321.0< TINJ] [.2482< FMIN <.3941] [13.16< CR <16.8] 
[1074< RPM][.0103< VOL] [.813< STBR] ::> 
::> BSFC = 1.3 FMIN -.003 TIM -.008 CR +1.5E-5 RPM -27. VOL +1.5 
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Model Selection Phase KEDS is invoked repeat- 
edly to generate a collection of overlapping partial 
models. KEDS-MDL [Rao and Lu, 19921 is a resource- 
bounded incremental algorithm that uses the minimum 
description length [Rissanen, 19861 principle to select 
partial models to build a piece-wise complete model. 
This is a collection of disjoint partial models that de- 
scribes the entire decision space. 

Model Utilization Phase Each partial model 
(region-equation pair) is equivalent to a linear con- 
straint that maps a region in D to an interval in 
Yj - KEDS-MDL learns piece-wise linear models for 
ENBHP and BSFC. The constraints for ENBHP are 
intersected with the constraints for BSFC to produce 
a set of intersections. An intersection maps a region in 
D to a region in P, and also supports reasoning from P 
to D. No two intersections overlap within the decision 
space, but the regions in performance space do typi- 
cally overlap (as several different designs can achieve 
the same performance). Unlike the traditional CAE 
paradigm, the designer works in the problem space, 
D U P. The designer can refine any intersection by 
refining a variable, i.e., by shrinking the interval asso- 
ciated with that variable. Refining a decision variable 
leads to forward propagation along a constraint and 
the new intervals for the other variables can be deter- 
mined in a straightforward fashion. Refining a per- 
formance variable requires inverse propagation along 
constraints. One possibility is to solve the intersection 
to find the new feasible region in D (for example, by 
using Simplex). Instead, this is done by computing 
the projection of the feasible region onto the decision 
variables (i.e., the enclosing hyperrectangle) in a sin- 
gle step computation [Rao, 19931. Inverse propagations 
can lead to forward propagations, and vice versa. 

The DESP domain has 15-30 intersections, depend- 
ing upon the model formation parameters used in 
KEDS. While it would be a great strain, it is remotely 
possible that a designer would be able to work individ- 
ually with each intersection. However, other domains 
can give rise to many more intersections (a process 
planning application for a turning machine has lOOO+ 
intersections). Instead of working with each individual 
intersection, the designer refines a single composite re- 
gion that consists of the union of the intervals for all 
intersections. A truth maintenance system keeps track 
of the effects of refinements on each intersection, and 
the designer only sees the composite interval for each 
variable. This occasionally leads to gaps in the prob- 
lem space, when two or more disjoint decision regions 
have similar performance. 

A number of CAD/CAM [Finger and Dixon, 1989; 
Vanderplaats, 19841 and AI [Dixon, 1986] techniques 
have been developed to support engineering design. 
A complementary approach to inverse engineering for 
breaking the analysis-synthesis barrier for early design 
is to develop representations and theories for multi- 
directional models [Herman, 19891 that could replace 

existing analysis simulators. However, this fails to take 
advantage of past research efforts in developing com- 
puter simulators. Another approach is to speed up 
the iterative optimization process by replacing slow 
computer simulators with faster models [Yerramareddy 
and Lu, 19931. F or a detailed review of related machine 
learning and design research, see [Rao, 19931. 

NdLKt E!Si@-l emonstration 
The inverse engineering interface is shown in Figure 2. 
There are 6 function windows. The Control Panel is 
used primarily to initialize the domain by loading mod- 
els created offline by KEDS-MDL , and to simulate the 
final design. The original intervals of the multidirec- 
tional model are displayed in the Original Model Win- 
dow. The Messages Window displays detailed domain 
information. The Lisp Listener is for development. 

The Decision Panel is the window in which the de- 
signer does virtually all his work. Clicking on the “Re- 
fine” button brings up a pop-up menu of the variable 
names. Clicking on a variable (e.g., ENBHP) brings 
up an Emacs window titled “Ranges for parameter: 
ENBHP” that displays the current ranges for that 
variable. After refining the values with Emacs com- 
mands, hitting the return key causes the refinement 
to be quickly propagated through all of the intersec- 
tions creating a new world. In Figure 2 the designer 
has just refined the ENBHP variable in the Decision 
Panel to demand that the engine deliver at least 600hp. 
The Worlds Display Panel (WDP) shows a world view 
reflecting the state of the world after the ENBHP re- 
finement. The first three columns in the world view 
show the names of the variables and the current inter- 
vals. The last two columns, “Dmin” and “Dmax,” in 
the world view represent the change (i.e., the delta) in 
the intervals relative to the previous world. Figure 2 
shows that after the ENBHP refinement both bound- 
aries of the compression ratio were moved inwards, the 
lower bound of the engine speed was increased, and 
there was no influence on the fuel consumption (see 
Table 1 for acronyms). Successive world views occlude 
previous views in the WDP. The Messages Window 
indicates that the designer cannot refine STBRAT to 
fall completely within the gap, ]0.969,0.988[. Clicking 
on the “Retract” button in the Decision Panel retracts 
the last refinement, and uncovers the previous world 
view. This interface was built on the interfaces for 
the HIDER [Yerramareddy and Lu, 19931 and IDEEA 
[Herman, 19891 systems. 

Forming an Early Design 

The designer’s task is to design a combustion cham- 
ber for a &cylinder diesel engine for a truck. The en- 
gine should deliver at least 6OOhp, though this could 
be slightly relaxed based on the designer’s judgment. 
In general, good designs have high ENBHP with a low 
BSFC. There are other cost concerns that may come 
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IINVERSE ENGINEERING INTERFACE 11 

Add Custom Menus 
Remove Custom Menus 

STBRAT .80546 1.2 
TIM 320.0 335.0 
FMIN .10032 .39736 
EEPM 13.068 1000.0 2400.0 17.0 

DVOL .00516 .01469 

ENBHP 48.5 
BSFC 0.32 2.46 

nverse> 

STBRAT .81343 
TIM 321.02 335.0 +I.0175 0 
FMIN 0.1266 .3272% +.02628 -.01659 
CR 13.162 16.917 +.09368 -.08254 
ERPM 1374.0 2400.0 +374.01 0 
DVOL .01028 .01469 + .00512 0 

_____-_____--____------------------------------- I 
ENBHP 600.0 

STBRAT 1.969~5 .98819[ 
TIM I 
FMIN 
CR 
ERPM 
DVOL 

____--____----__------------------------------------ 
ENBHP 

Figure 2: User Interface for Inverse Engineering Environment 

into play as the designer applies his background knowl- 
edge. In this section we follow a designer step by step, 
as he uses the inverse engineering interface to come up 
with a complete early design. Each refinement step is 
indexed by a number indicating the level of refinement. 

o (1) Refine BSFC to a max of 0.33. The designer ex- 
ploits the synthesis support to set fuel consumption 
to a low value. The screen bitmap of the correspond- 
ing world view is shown in Figure 3(a). 

o (2) Refine ENBNP to a min of 600. Figure 3(b) 
shows that this refinement influences many other 
variables (see “Dmax” and “Dmin” fields). 

While the designer does not have to begin all designs 
by restricting P, the importance of being able to di- 
rectly constrain the performance parameters is tremen- 
dous. From this point onwards the designer can make 
any changes in D, and is assured that the propagation 
mechanisms will constrain the remaining variables to 
meet the performance specifications. 

e (3) Refine ERPM to a max of 1400. Engines that 
run at lower speeds have higher manufacturing tol- 
erances and thus lower costs associated with them. 
Unfortunately, restricting the speed to a very low 
value adversely affects other decision variables as 
shown in Figure 3(c). In order to deliver 600hp with 
BSFC< .33, the CR must be a minimum of 16.3. I 

Higher CR’s requires thicker engine cylinder walls, 
increasing the cost of the engine. 

l Retract Refinement 3. The system returns to the 
state shown in Figure 3(b). 

o (3) Refine CR to a value of 15.0. See Figure 3(d). 

While the designer can restrict the CR to a range, 
the ability to set a variable to an exact value is very 
useful. Typically, the values of the variables are opti- 
mized by exploring the terrain in the problem space. 
Even though decision variables, such as STBRAT and 
CR, are continuous-valued, the engine is most easily 
manufactured if these variables are set to values that 
can be easily machined. These settings could also cut 
down on manufacturing costs and time by using exist- 
ing inventory and machine setups, rather than retool- 
ing factories for every new design. 

e (4) Refine DVOL = 0.0145 (cylinder displacement 
volume’ is 14.5 liters). 

e (5) Refine STBRAT = 1.0. The designer notices a 
gap in the range ]0.969,0.988[. He chooses 1.0 as an 
easily machined value of STBRAT. 

e (6) Refine TIM = 334.5. See Figure 3(e). 
e (7) Refine ERPM = 2060. The designer conserva- 

tively picks central values that meet manufacturing 
requirements for the last two unspecified variables. 



Parameter 
STBRAT 
TIM 
FMIN 
CR 
ERPM 
DVOL 
_--------- 
ENBHP 
BSFC 

Min 
.80546 
320.0 

.10032 
13.068 
1000.0 
.00516 

48.5 
0.32 

Max 
1.2 

335.0 
.34388 

17.0 
2400.0 
.01469 

------------ 
821.0 
0.33 

Dmin Dmax 
0 0 
0 0 
0 -.05348 
0 0 
0 0 
0 0 

0 0 
0 -2.13 

(a) Refining BSFC (b) Refining ENBHP 

larameter Min Max Dmin Dmax Parameter Min Max Dmin Dmax 
STBRAT .81343 1.2 0 0 
TIM 321.02 335.0 0 0 
FMIN .16437 .31547 t.03778 -.01181 
CR 15.0 15.0 cl.8382 -1.9175 
ERPM 1516.2 2400.0 tl42.18 0 
DVOL .01028 .01469 0 0 
_____-______________---------------------------- 
ENBHP 600.0 797.22 0 -23.785 
BSFC 0.32 0.33 0 

STBRAT .81343 .96925 0 - .23075 
TIM 333.98 335.0 +12.959 0 
FMIN .31305 .32728 t.18645 0 
CR 16.384 16.694 t3.2224 -.22374 
ERPM 1374.0 1400.0 0 -1000.0 
DVOL .01458 .01469 t0.0043 0 

____________________---------------------------- 
ENBHP 600.0 605.27 0 -215.73 

(c) Refining ERPM (d) Refining CR 

Parameter Min Max Dmin Dmax 
STBRAT 1.0 1.0 0 0 
TIM 334.5 334.5 t12.151 -.00858 
FMIN .16461 0.3071 t.00001 -.00002 
CR 15.0 15.0 0 0 
ERPM 1809.6 2380.9 t0.1423 0 
DVOL 0.0145 0.0145 0 0 

-------------------_----------------------- ----- 
ENBHP 600.0 783.3 0 -.04468 
BSFC 0.32 0.33 0 0 

Parameter Min Max Dmin Dmax 

Parameter 
STBRAT 
TIM 
FMIN 
CR 
ERP?4 
DVOL 

STBRAT 
TIM 
FMIN 
CR 
ERPM 
DVOL 
---------- 
ENBHP 
BSFC 

.81343 
321.02 
0.1266 
13.162 
1374.0 
.01028 

600.0 
0.32 

1.2 
335.0 
.32728 
16.917 
2400.0 
.01469 

__-------- 
821.0 
0.33 

+ .00797 
t1.0175 
t.02628 
t .09368 
t374.01 
t .00512 

0 
0 

-.01659 
-.08254 

0 
0 

ENBHP 

Min Max 
1.0 1.0 

334.5 334.5 
0.247 0.247 
15.0 15.0 

2860.0 2060.0 
0.0145 0.0145 

---------------- ---we 

603.03 603.03 

Dmin 
0 
0 

t .00235 
0 
0 
0 

--------- 
t3.0258 

Dmax 
0 
0 

-.05719 
0 
0 
0 

--------. 
-73.573 

BSFC .32225 .32225 t.00225 -ii775 

(e) Refining TIM (f) Refining FMIN 

Figure 3: Engine Design Example: World views from the Inverse Interface 
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o (8) Refine F&UN = 0.247. The initial design (hence- 
forth, Dl) is complete. The world-view in Fig- 
ure 3(f) indicates that according to the model, Dl 
delivers 603hp at a fuel consumption of 32.3%. 

The designer uses the ‘Simulate Design” option in 
the Control Panel to run DESP on the design. The per- 
formance of Dl is computed to be 612.55 hp at 32.9% 
fuel consumption, which meets the performance con- 
straints of Refinements 1 and 2 above. Note that any 
optimization of Dl with DESP will almost certainly 
result in a superior design in the neighborhood of Dl. 

Exploring alternate designs 
The designer chooses the “Retract Many” option to 
retract Refinement 1 limiting the BSFC to 0.33. The 
designer is willing to loosen up slightly on the BSFC 
requirement if improvements appear elsewhere, for in- 
stance in the form of increased horsepower. The de- 
signer now sets the minimum ENBHP to 650hp and 
proceeds in a similar fashion to that described in the 
previous section. The resulting engine, parameterized 
by D2=(1.0 334.5 0.247 13.5 2380.0 0.0145), delivers 
681hp at 34.2% consumption. The designer had ear- 
lier (while designing Dl) unsuccessfully tried to lower 
the engine speed so as to reduce manufacturing costs 
(see Figure 3(c)). In a further attempt to achieve this, 
the designer relaxes the ENBHP constraint (Refine- 
ment 2 above) while imposing low BSFC and RPM 
constraints. The resulting design, D3=(1.0 334.5 0.247 
17.0 1800.0 0.0145), has 32.09% consumption but de- 
livers only 555hp. Another design, D4=(0.85 334.5 
0.247 15.0 2000.0 0.0145), is created when the designer 
constrains STBRAT=0.85, CRs15, and BSFCs0.33. 
This design delivers 592hp at 33.0% consumption. 

Of the 4 designs, Dl-4, D3 is discarded because the 
horsepower delivered by that engine is too low (555hp), 
and D4 is eliminated because its performance is worse 
than Dl for both horsepower (590hp versus 603hp) and 
fuel consumption (33.0% versus 32.9%). The designer 
can make a choice between Dl and D2 at this point; for 
example, he can eliminate D2 if he deems that the ex- 
tra 69hp (=681-612) is not worth the 1.3% drop in fuel 
efficiency. Alternatively, he could choose to optimize 
both Dl and D2 using the traditional CAE paradigm 
and defer the decision. He could then decide to man- 
ufacture two lines of trucks or search for more designs 
with the user interface. Whichever option the designer 
chooses, his choice is likely to be more informed, than 
would have been the case had he worked with the tra- 
ditional CAE paradigm. 

Conclusions 
This research demonstrates that machine learning 
techniques can be used to provide vastly improved de- 
sign support in parameterized domains. The designer 
is able to refine both decision and performance vari- 
ables and can reuse the model for new performance 

specifications. The inverse engineering methodology 
has also been applied to process design as a model 
translator to convert a point-to-point simulator into a 
region-to-region model in a process planner for a turn- 
ing machine. In a few design scenarios the design task 
is precisely defined and can be automated. This is the 
approach we are applying to support “worst-case” de- 
sign of analog MOS circuits. The inverse engineering 
methodology opens up unexplored paradigms in knowl- 
edge processing by harvesting existing analysis-based 
simulators to ease the knowledge acquisition bottle- 
neck. This methodology shows tremendous promise 
for solving a wide variety of problems in engineering 
decision making. 
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