
esis

R. Bharat Rao Stephen C-Y. Lu
Learning Systems Department

Siemens Corporate Research, Inc.
Knowledge-based Engg. Systems Res. Lab
University of Illinois at Urbana-Champaign

Abstract

Current computer-aided engineering paradigms
for supporting synthesis activities in engineering
design require the designer to use analysis simu-
lators iteratively in an optimization loop. While
optimization is necessary to achieve a good final
design, it has a number of disadvantages during
the early stages of design. In the inverse engi-
neering methodology, machine learning techniques
are used to learn a multidirectional model that
provides vastly improved synthesis (and analy-
sis) support to the designer. This methodology
is demonstrated on the early design of a diesel en-
gine combustion chamber for a truck.

Introduction
A design engineer’s primary task is to develop designs
that can achieve specified performances. For example,
an engine designer may be required to design a “com-
bustion chamber that delivers at least 600hp while min-
imizing the fuel consumption.” The horsepower and
fuel consumption are the performance parameters. In
a parameterized domain, the designer sets the values
of the decision/design parameters (e.g., engine rpm) so
as to meet the performance. Under current computer-
aided engineering (CAE) p aradigms, design support is
typically provided by computer simulators. These sim-
ulators are computerized analysis models that analyze
a design and map decisions to performances. How-
ever, engineering design is largely a synthesis task that
requires mapping the performance space, P, to the de-
cision space, D. In the absence of models that provide
synthesis support, the designer must use the simulator,
F, in an iterative generate and test paradigm, namely,
in an optimization loop. The designer begins with an
initial design (a point in D), evaluates the design with
F, and moves to a new design, based on the differ-
ence between the actual and required performances. A
common way of moving within D is by response sur-
face fitting, where the designer exercises F repeatedly
in the neighborhood of the current design, fits a surface
to the performances, and moves based on this surface.

While the above methodology is essential for the fi-
nal stages of design, it has serious drawbacks during
early design. First, a poor starting design can result
in a large number of optimization steps, which can
be very time-consuming. The designer would prefer
to rapidly develop a good initial design to use as the
starting point in the optimization. Second, the simu-
lator is a point to point simulator. This means that
the designer must assign values to every decision vari-
able at the outset of the design. Ideally, the designer
would specify or restrict only the variables in which
he was interested, leaving the others to be automati-
cally specified as the design progresses. Third, every
new performance objective must be set up as a sepa-
rate design problem. For example, instead of design-
ing an engine that generates 600hp, perhaps there ex-
ists an engine that delivers 590hp but with markedly
improved fuel consumption, or another that delivers
640hp with slightly less efficient fuel consumption. If
the designer had a synthesis model, he could apply and
retract conditions on some of the performance vari-
ables and quickly determine their effects on the other
variables. Similarly he could constrain the decision
variables to reflect cost concerns, inventory stocks, or
simply as part of a “What-if” analysis. The ability to
treat decision and performance variables more or less
identically would prove extraordinarily valuable during
early design. The synthesis model, once learned, could
be used repeatedly for different designs.

The inverse engineering methodology [Rao, 19931
provides solutions to all the above problems by build-
ing an accurate multidirectional model of the problem
domain. The designer uses the model directly to proto-
type a design quickly by successively refining the prob-
lem space, D U P (as opposed to the traditional CAE
paradigm where the designer works only in 0). A sin-
gle invocation of F at the end of the process is suffi-
cient to check the design. The foundation of inverse
engineering is KEDS, the Knowledge-based Equation
Discovery System [Rao and Lu, 19931. KEDS ability
to learn accurate models in representations that can
be converted into constraints (i.e., as piece-wise linear
models) makes inverse engineering a viable proposi-

Intelligent User Interfaces 277

From: AAAI-93 Proceedings. Copyright © 1993, AAAI (www.aaai.org). All rights reserved.

Decisidn Space Performance Space
Table 1: Decision and Performance variables in DESP

z
0

Liip

gzj Y7

5
0 ~6 Multidirectional

Model

Figure 1: The Inverse Engineering Methodology

tion. This rest of this paper describes this methodol-
ogy, and demonstrates (through an example) how these
techniques provides improved support for early design.

The Inverse Engineering Methodology
The essential problem with current CAE paradigms for
design is the lack of synthesis support. The barrier be-
tween analysis and synthesis activities is especially un-
bearable in a concurrent engineering framework, where
speed and timely execution of tasks is paramount. As
directly learning synthesis models is a very hard task
[Rae, 19931, the inverse engineering approach is to
learn analysis models in representations that provide
synthesis support. For example, if the analysis model
for yj E P can be accurately represented as a linear
function of some zi E D (i.e., yj = x(aizi) + b), it
can then be converted into a constraint that provides

BSFC Brake Specific Fuel Consumption
ENBHP Engine Brake Horsepower (HP)

both analysis and synthesis support. The 4 phases of
inverse engineering (see Figure 1) are described below.

Example Generation Phase The Diesel Engine
Simulation Program, DESP [Assanis and Heywood,
19861, provides the data for KEDS. DESP solves mass
and heat balance equations from Thermodynamics and
uses finite difference techniques to provide data that
is representative of real-world engines. The 6 deci-
sion and 2 performance (real-valued) variables for a
6-cylinder, diesel combustion engine are shown in Ta-
ble 1. The decision variables are randomly varied to
generate 145 events. This results in two data sets (one
for each performance variable, BSFC and ENBHP in
Table l), such that each event is a two-tuple of a de-
cision vector X E D and a corresponding performance
variable, yj E P. These data sets are input to KEDS
to learn multidirectional models.

Model Formation Phase KEDS is a model-driven
empirical discovery system that learns models in forms
restricted to F , a user-defined class of parameter-
ized model families (both linear and non-linear F are
permitted). For the purposes of inverse engineer-
ing, F is restricted to the class of linear polynomials,
y = C(uix;) + b. However, it is unlikely that a sim-
ple linear representation will be sufficient, to accurately
model most real-world domains. KEDS can simulta-
neously be viewed as a conceptual clustering system,
which partitions the data based upon the mathemat-
ical relationships that it discovers between the vari-
ables. Each call to KEDS results in a single partial
model (R,f), th a consists of a region (hyperrectan- t
gle), R c D, associated with an equation, f E F ,
that predicts y for all X E R . The KEDS algorithm
(described in [Rao and Lu, 19931) involves recursing
through equation discovery (fitting) and partitioning
(splitting) and combines aspects of fit-and-split [Lan-
gley et al., 19871 and split-and-fit [Friedman, 1991;
Quinlan, 19861 modeling systems as KEDS refines both
the region and the equation. A sample partial model
is shown below.

[321.0< TINJ] [.2482< FMIN <.3941] [13.16< CR <16.8]
[1074< RPM][.0103< VOL] [.813< STBR] ::>
::> BSFC = 1.3 FMIN -.003 TIM -.008 CR +1.5E-5 RPM -27. VOL +1.5

278 Rao

Model Selection Phase KEDS is invoked repeat-
edly to generate a collection of overlapping partial
models. KEDS-MDL [Rao and Lu, 19921 is a resource-
bounded incremental algorithm that uses the minimum
description length [Rissanen, 19861 principle to select
partial models to build a piece-wise complete model.
This is a collection of disjoint partial models that de-
scribes the entire decision space.

Model Utilization Phase Each partial model
(region-equation pair) is equivalent to a linear con-
straint that maps a region in D to an interval in
Yj - KEDS-MDL learns piece-wise linear models for
ENBHP and BSFC. The constraints for ENBHP are
intersected with the constraints for BSFC to produce
a set of intersections. An intersection maps a region in
D to a region in P, and also supports reasoning from P
to D. No two intersections overlap within the decision
space, but the regions in performance space do typi-
cally overlap (as several different designs can achieve
the same performance). Unlike the traditional CAE
paradigm, the designer works in the problem space,
D U P. The designer can refine any intersection by
refining a variable, i.e., by shrinking the interval asso-
ciated with that variable. Refining a decision variable
leads to forward propagation along a constraint and
the new intervals for the other variables can be deter-
mined in a straightforward fashion. Refining a per-
formance variable requires inverse propagation along
constraints. One possibility is to solve the intersection
to find the new feasible region in D (for example, by
using Simplex). Instead, this is done by computing
the projection of the feasible region onto the decision
variables (i.e., the enclosing hyperrectangle) in a sin-
gle step computation [Rao, 19931. Inverse propagations
can lead to forward propagations, and vice versa.

The DESP domain has 15-30 intersections, depend-
ing upon the model formation parameters used in
KEDS. While it would be a great strain, it is remotely
possible that a designer would be able to work individ-
ually with each intersection. However, other domains
can give rise to many more intersections (a process
planning application for a turning machine has lOOO+
intersections). Instead of working with each individual
intersection, the designer refines a single composite re-
gion that consists of the union of the intervals for all
intersections. A truth maintenance system keeps track
of the effects of refinements on each intersection, and
the designer only sees the composite interval for each
variable. This occasionally leads to gaps in the prob-
lem space, when two or more disjoint decision regions
have similar performance.

A number of CAD/CAM [Finger and Dixon, 1989;
Vanderplaats, 19841 and AI [Dixon, 1986] techniques
have been developed to support engineering design.
A complementary approach to inverse engineering for
breaking the analysis-synthesis barrier for early design
is to develop representations and theories for multi-
directional models [Herman, 19891 that could replace

existing analysis simulators. However, this fails to take
advantage of past research efforts in developing com-
puter simulators. Another approach is to speed up
the iterative optimization process by replacing slow
computer simulators with faster models [Yerramareddy
and Lu, 19931. F or a detailed review of related machine
learning and design research, see [Rao, 19931.

NdLKt E!Si@-l emonstration
The inverse engineering interface is shown in Figure 2.
There are 6 function windows. The Control Panel is
used primarily to initialize the domain by loading mod-
els created offline by KEDS-MDL , and to simulate the
final design. The original intervals of the multidirec-
tional model are displayed in the Original Model Win-
dow. The Messages Window displays detailed domain
information. The Lisp Listener is for development.

The Decision Panel is the window in which the de-
signer does virtually all his work. Clicking on the “Re-
fine” button brings up a pop-up menu of the variable
names. Clicking on a variable (e.g., ENBHP) brings
up an Emacs window titled “Ranges for parameter:
ENBHP” that displays the current ranges for that
variable. After refining the values with Emacs com-
mands, hitting the return key causes the refinement
to be quickly propagated through all of the intersec-
tions creating a new world. In Figure 2 the designer
has just refined the ENBHP variable in the Decision
Panel to demand that the engine deliver at least 600hp.
The Worlds Display Panel (WDP) shows a world view
reflecting the state of the world after the ENBHP re-
finement. The first three columns in the world view
show the names of the variables and the current inter-
vals. The last two columns, “Dmin” and “Dmax,” in
the world view represent the change (i.e., the delta) in
the intervals relative to the previous world. Figure 2
shows that after the ENBHP refinement both bound-
aries of the compression ratio were moved inwards, the
lower bound of the engine speed was increased, and
there was no influence on the fuel consumption (see
Table 1 for acronyms). Successive world views occlude
previous views in the WDP. The Messages Window
indicates that the designer cannot refine STBRAT to
fall completely within the gap,]0.969,0.988[. Clicking
on the “Retract” button in the Decision Panel retracts
the last refinement, and uncovers the previous world
view. This interface was built on the interfaces for
the HIDER [Yerramareddy and Lu, 19931 and IDEEA
[Herman, 19891 systems.

Forming an Early Design

The designer’s task is to design a combustion cham-
ber for a &cylinder diesel engine for a truck. The en-
gine should deliver at least 6OOhp, though this could
be slightly relaxed based on the designer’s judgment.
In general, good designs have high ENBHP with a low
BSFC. There are other cost concerns that may come

telligent User Interfaces 27

IINVERSE ENGINEERING INTERFACE 11

Add Custom Menus
Remove Custom Menus

STBRAT .80546 1.2
TIM 320.0 335.0
FMIN .10032 .39736
EEPM 13.068 1000.0 2400.0 17.0

DVOL .00516 .01469

ENBHP 48.5
BSFC 0.32 2.46

nverse>

STBRAT .81343
TIM 321.02 335.0 +I.0175 0
FMIN 0.1266 .3272% +.02628 -.01659
CR 13.162 16.917 +.09368 -.08254
ERPM 1374.0 2400.0 +374.01 0
DVOL .01028 .01469 + .00512 0

_____-_____--____------------------------------- I
ENBHP 600.0

STBRAT 1.969~5 .98819[
TIM I
FMIN
CR
ERPM
DVOL

____--____----__------------------------------------
ENBHP

Figure 2: User Interface for Inverse Engineering Environment

into play as the designer applies his background knowl-
edge. In this section we follow a designer step by step,
as he uses the inverse engineering interface to come up
with a complete early design. Each refinement step is
indexed by a number indicating the level of refinement.

o (1) Refine BSFC to a max of 0.33. The designer ex-
ploits the synthesis support to set fuel consumption
to a low value. The screen bitmap of the correspond-
ing world view is shown in Figure 3(a).

o (2) Refine ENBNP to a min of 600. Figure 3(b)
shows that this refinement influences many other
variables (see “Dmax” and “Dmin” fields).

While the designer does not have to begin all designs
by restricting P, the importance of being able to di-
rectly constrain the performance parameters is tremen-
dous. From this point onwards the designer can make
any changes in D, and is assured that the propagation
mechanisms will constrain the remaining variables to
meet the performance specifications.

e (3) Refine ERPM to a max of 1400. Engines that
run at lower speeds have higher manufacturing tol-
erances and thus lower costs associated with them.
Unfortunately, restricting the speed to a very low
value adversely affects other decision variables as
shown in Figure 3(c). In order to deliver 600hp with
BSFC< .33, the CR must be a minimum of 16.3. I

Higher CR’s requires thicker engine cylinder walls,
increasing the cost of the engine.

l Retract Refinement 3. The system returns to the
state shown in Figure 3(b).

o (3) Refine CR to a value of 15.0. See Figure 3(d).

While the designer can restrict the CR to a range,
the ability to set a variable to an exact value is very
useful. Typically, the values of the variables are opti-
mized by exploring the terrain in the problem space.
Even though decision variables, such as STBRAT and
CR, are continuous-valued, the engine is most easily
manufactured if these variables are set to values that
can be easily machined. These settings could also cut
down on manufacturing costs and time by using exist-
ing inventory and machine setups, rather than retool-
ing factories for every new design.

e (4) Refine DVOL = 0.0145 (cylinder displacement
volume’ is 14.5 liters).

e (5) Refine STBRAT = 1.0. The designer notices a
gap in the range]0.969,0.988[. He chooses 1.0 as an
easily machined value of STBRAT.

e (6) Refine TIM = 334.5. See Figure 3(e).
e (7) Refine ERPM = 2060. The designer conserva-

tively picks central values that meet manufacturing
requirements for the last two unspecified variables.

Parameter
STBRAT
TIM
FMIN
CR
ERPM
DVOL
_---------
ENBHP
BSFC

Min
.80546
320.0

.10032
13.068
1000.0
.00516

48.5
0.32

Max
1.2

335.0
.34388

17.0
2400.0
.01469

821.0
0.33

Dmin Dmax
0 0
0 0
0 -.05348
0 0
0 0
0 0

0 0
0 -2.13

(a) Refining BSFC (b) Refining ENBHP

larameter Min Max Dmin Dmax Parameter Min Max Dmin Dmax
STBRAT .81343 1.2 0 0
TIM 321.02 335.0 0 0
FMIN .16437 .31547 t.03778 -.01181
CR 15.0 15.0 cl.8382 -1.9175
ERPM 1516.2 2400.0 tl42.18 0
DVOL .01028 .01469 0 0
_____-______________----------------------------
ENBHP 600.0 797.22 0 -23.785
BSFC 0.32 0.33 0

STBRAT .81343 .96925 0 - .23075
TIM 333.98 335.0 +12.959 0
FMIN .31305 .32728 t.18645 0
CR 16.384 16.694 t3.2224 -.22374
ERPM 1374.0 1400.0 0 -1000.0
DVOL .01458 .01469 t0.0043 0

____________________----------------------------
ENBHP 600.0 605.27 0 -215.73

(c) Refining ERPM (d) Refining CR

Parameter Min Max Dmin Dmax
STBRAT 1.0 1.0 0 0
TIM 334.5 334.5 t12.151 -.00858
FMIN .16461 0.3071 t.00001 -.00002
CR 15.0 15.0 0 0
ERPM 1809.6 2380.9 t0.1423 0
DVOL 0.0145 0.0145 0 0

-------------------_----------------------- -----
ENBHP 600.0 783.3 0 -.04468
BSFC 0.32 0.33 0 0

Parameter Min Max Dmin Dmax

Parameter
STBRAT
TIM
FMIN
CR
ERP?4
DVOL

STBRAT
TIM
FMIN
CR
ERPM
DVOL

ENBHP
BSFC

.81343
321.02
0.1266
13.162
1374.0
.01028

600.0
0.32

1.2
335.0
.32728
16.917
2400.0
.01469

__--------
821.0
0.33

+ .00797
t1.0175
t.02628
t .09368
t374.01
t .00512

0
0

-.01659
-.08254

0
0

ENBHP

Min Max
1.0 1.0

334.5 334.5
0.247 0.247
15.0 15.0

2860.0 2060.0
0.0145 0.0145

---------------- ---we

603.03 603.03

Dmin
0
0

t .00235
0
0
0

t3.0258

Dmax
0
0

-.05719
0
0
0

--------.
-73.573

BSFC .32225 .32225 t.00225 -ii775

(e) Refining TIM (f) Refining FMIN

Figure 3: Engine Design Example: World views from the Inverse Interface

Intelligent User Interfaces 281

o (8) Refine F&UN = 0.247. The initial design (hence-
forth, Dl) is complete. The world-view in Fig-
ure 3(f) indicates that according to the model, Dl
delivers 603hp at a fuel consumption of 32.3%.

The designer uses the ‘Simulate Design” option in
the Control Panel to run DESP on the design. The per-
formance of Dl is computed to be 612.55 hp at 32.9%
fuel consumption, which meets the performance con-
straints of Refinements 1 and 2 above. Note that any
optimization of Dl with DESP will almost certainly
result in a superior design in the neighborhood of Dl.

Exploring alternate designs
The designer chooses the “Retract Many” option to
retract Refinement 1 limiting the BSFC to 0.33. The
designer is willing to loosen up slightly on the BSFC
requirement if improvements appear elsewhere, for in-
stance in the form of increased horsepower. The de-
signer now sets the minimum ENBHP to 650hp and
proceeds in a similar fashion to that described in the
previous section. The resulting engine, parameterized
by D2=(1.0 334.5 0.247 13.5 2380.0 0.0145), delivers
681hp at 34.2% consumption. The designer had ear-
lier (while designing Dl) unsuccessfully tried to lower
the engine speed so as to reduce manufacturing costs
(see Figure 3(c)). In a further attempt to achieve this,
the designer relaxes the ENBHP constraint (Refine-
ment 2 above) while imposing low BSFC and RPM
constraints. The resulting design, D3=(1.0 334.5 0.247
17.0 1800.0 0.0145), has 32.09% consumption but de-
livers only 555hp. Another design, D4=(0.85 334.5
0.247 15.0 2000.0 0.0145), is created when the designer
constrains STBRAT=0.85, CRs15, and BSFCs0.33.
This design delivers 592hp at 33.0% consumption.

Of the 4 designs, Dl-4, D3 is discarded because the
horsepower delivered by that engine is too low (555hp),
and D4 is eliminated because its performance is worse
than Dl for both horsepower (590hp versus 603hp) and
fuel consumption (33.0% versus 32.9%). The designer
can make a choice between Dl and D2 at this point; for
example, he can eliminate D2 if he deems that the ex-
tra 69hp (=681-612) is not worth the 1.3% drop in fuel
efficiency. Alternatively, he could choose to optimize
both Dl and D2 using the traditional CAE paradigm
and defer the decision. He could then decide to man-
ufacture two lines of trucks or search for more designs
with the user interface. Whichever option the designer
chooses, his choice is likely to be more informed, than
would have been the case had he worked with the tra-
ditional CAE paradigm.

Conclusions
This research demonstrates that machine learning
techniques can be used to provide vastly improved de-
sign support in parameterized domains. The designer
is able to refine both decision and performance vari-
ables and can reuse the model for new performance

specifications. The inverse engineering methodology
has also been applied to process design as a model
translator to convert a point-to-point simulator into a
region-to-region model in a process planner for a turn-
ing machine. In a few design scenarios the design task
is precisely defined and can be automated. This is the
approach we are applying to support “worst-case” de-
sign of analog MOS circuits. The inverse engineering
methodology opens up unexplored paradigms in knowl-
edge processing by harvesting existing analysis-based
simulators to ease the knowledge acquisition bottle-
neck. This methodology shows tremendous promise
for solving a wide variety of problems in engineering
decision making.

Acknowledgments
This work was begun while R. Bharat Rao was at the Uni-
versity of Illinois at Urbana-Champaign (UIUC) and was
partially supported by the Department of Electrical Engi-
neering. We are grateful to Sudhakar Yerramareddy, Allen
Herman, and Prof. Dennis Assanis, all from the Depart-
ment of Mechanical Engineering, UIUC.

eferences
Assanis, D.N. and Heywood, J.B. 1986. The Adiabatic
Engine: Globad Developments. 95-120.

Dixon, J.R. 1986. Artificial intelligence and design: A
mechanical engineers view. In AAAI-86. 872-877.

Finger, S. and Dixon, J.R. 1989. A review of research in
mechanical engineering design. part i: Descriptive, pre-
scriptive, and computer-based models of design processes.
Research in Engineering Design 1(1):51-67.
Friedman, J.H. 1991. Multivariate
splines. AnnaEs of Statistics.

adaptive regression

Herman, A. E. 1989. An artificial intelligence based mod-
eling environment for engineering problem solving. Mas-
ter’s thesis, M&IE, University of Illinois, Urbana, IL.
Langley, P.; Simon, H.A.; Bradshaw, G.L.; and Zytkow,
J.M. 1987. Scientific Discovery: Computational Explo-
rations of the Creative Processes. MIT Press.
Quinlan, J.R. 1986. Induction of decision trees. Machine
Learning 1(1):81-106.
Rao, R. B. 1993. Inverse Engineering: A Machine Learn-
ing Approach to Support Engineering Synthesis. Ph.D.
Dissertation, ECE, University of Illinois, Urbana.
Rao, R. B. and Lu, S. C-Y. 1992. Learning engineering
models with the minimum description length principle. In
AAAI-92. 717-722.

Rao, R. B. and Lu, S. C-Y. 1993. KEDS: A Knowledge-
based Equation Discovery System for learning in engineer-
ing domains. IEEE Expert (to appear).
Rissanen, J. 1986. Stochastic complexity and modeling.
Annals of Statistics 14(3):1080-1100.

Vanderplaats, G. N. 1984. Numerical Optimization
Techniques for Engineering Design - With Applications.
McGraw-Hill.
Yerramareddy, S. and Lu, S.C-Y. 1993. Hierarchical and
interactive decision refinement methodology for engineer-
ing design. Research in Engineering Design (to appear).

282 Rao

